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Strong resolution theorem

For every X (char. 0) there is
f: X" — X such that

)

) f: composite of smooth blow ups,
) isomorphism over X"

) f~1(Sing X)) is normal crossings,
) functorial on smooth morphisms,
) functorial on field extensions.

Hironaka

Giraud

Villamayor, Bravo, Encinas
Bierstone and Milman

Fncinas and Hauser
Wiodarczyk



Example
Resolving S := (2% + 3> — 2% = 0)
(Secret: single elliptic curve (E?) = —1)
Method: H := (z = 0) and use SN H.

Step 1. mult(SN H) = (y* — 2°=0) =3
but came from multiplicity 2
blow up until the mult. drops below 2.

2 blow ups to achieve this:

S coordinates
72 —|—y3 _ 6
2 3 3 T Yy _
x1+ (Y7 — 21)2 L1 =01 = 5,721 =%
2 3 2 _ I | _
([ ]
1] — 2 — e
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Step 2. Make S N H disjoint from positive
coeff. exceptional curves

1 — 0 — e
/

1] —2 — 1 —-—0— e
AN

1 — 0 — e

Step 3. Blow up exceptional curves
with multiplicity > 2.

one such curve:

1 — 0 — o
/

1 — [0 —1—-0—e
AN

1l — 0 — o

where the boxed curve is elliptic.



Problem 1.
Get too many curves.
Higher dimensions: no minimal resolution,
we do not know which resolution is simple

No solution.

Problem 2.
Reduction: from surfaces in A®
to curves in A2

but exceptional curves and multiplicities
treated differently.

Solution: marked ideals (I, m).
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Problem 3.

S has multiplicity < 2 along the
birational transform of H.
but what happens outside H?”

Example: H' = (z — 2% = 0)

S H’
T2 + y3 — 20 T — 2°
T+ (Y — 23) 2 T — 2
o+ (Y — Dz w1

singular point not on H’

Solution: careful choice of H

maximal contact



Problem 4.

Too many singularities on H

Example: H" := (z — 2° = 0).
4yt — 2= (v -2+ 2+
so S|yn: triple line.

Really a problem?
Yes: induction ruined

Solution: coefficient ideal C'(.5)

(i) resolving S is equivalent to
“resolving” C'(.5), and

(ii) resolving the traces C'(9)|g
does not generate extra blow ups for S
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Problem 5.
H not unique

e.g. automorphisms of S
(2,9,2) = (& + 3", yv/1 =2z — 4, 2)

Even with maximal contact choice of H,
S' N H depends on H

Solution: ideal W (S) such that

(i) resolving S is equivalent to
resolving W (S), and

(ii) W(S)|g are analytically isomorphic
for all maximal contact H.



Problem 6.

(i) Many choices remain.
functorial but not “canonical”

(ii) Computationally hopeless.
Exponential increase in degrees and
generators at each step.

No solutions
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Principalization

Data: X smooth variety,
I C Oy ideal sheat,
E =) . E; normal crossing divisor with
ordered index set

Blow ups: smooth centers,
normal crossing with £

Strong principalization theorem

For every (X, I, F) (char. 0) there is
f: X" — X such that

(1) f*I C Ox locally principal,

(2) f: composite of smooth blow ups,

(3) 1somorphlsm over X \ cosupp [,

(4) f~1(E U cosupp I) is normal crossing,
(5) functorial on smooth morphisms,

(6) functorial on field extensions,

(7) functorial on closed embeddmgs
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Strong principalization = Resolution

Projective case

take X — PV N > dim X + 2.
I C Opx ideal sheaf of X, E = ()

Principalize (P, I, ).

I is not principal along X,
so at some point, the
birational transform X’ of X is blown up.

But: we blow up only smooth centers,
so X' is smooth.

Uniqueness? Local question.
Lemma. Let X — A" X — A
be closed embeddings. Then

X — A" — A" and
X — A" — Antm
differ by an automorphism of A",
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ord, I := order of vanishing of I at x
max-ord I := maximum {ord, [ : x € X}

blow up Z toget m: Bz X — X

typical chart Z = (zy =--- =2, = 0)
g(x1,...,xy,) pulls back to
g =g(xixl, . . x T e, X).
if ordy I = s then
g = (x))gaxl, ... ¢ _jxl x xe,.. x).

Lemma. max-ord ¢’ < 2max-ord g — s.

Our blow ups for the triple (X, I, F):
Z smooth, normal crossing with F,
ordy, I = max-ord I = m.

New trlple (Xl, [1, El)
X1 = BzX with F' C BzX except. div.
I =1 = Op,x(mF) -1
Ey =m,'E + F (last divisor)

by lemma: max-ord /; < max-ord 1.
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Solution of Problem 2

marked ideals (I, m)

Aim: for Z C H C X,
(1) (|7, m) = trace of ;1T on By H.

Our blow ups for the triple (X, I, m, F):
Z smooth, normal crossing with F,
ord, I > m.

New triple (X1, I;, m, F1)
X1 = BzX with F C Bz X except. div.
(I, m) =7, ' (I,m) := Op,x(mF) - 71
Ei1 =m,'E + F (last divisor)

Note: for m = max-ord I:

blow up segs. of order m for (X, 1)

blow up seqs. of order > m for (X, I, m)
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Order reduction for ideals
For (X, I, F) and m = max-ord I,
there is (X', I’ E') and IT : X' — X s.t.

(1) IT is composite of order m blow ups
H : (X/7[/7 El) — (XTalTaET) E) tte
(X17[17E1) & (X(),]O,E()) — (X, ]7 E),

(2) max-ord I" < m, and
(3) functoriality properties.

Order reduction for marked ideals
For (X, I,m, F), there is
(X, I'ym,E") and IT : X' — X st.

(1) IT is composite of order > m blow ups
: (X, I''m,E)=(X,,I,,m E,) ~= ...
e & (X07[07m7 EO) — (X7[7m7 E)a

(2) max-ord I” < m, and
(3) functoriality properties.



Spiraling induction

Order reduction, marked ideals, dim =n — 1

4

Order reduction, ideals, dim = n

4

Order reduction, marked ideals, dim = n

Hard: first arrow
Easy: second arrow

Order reduction

4

Principalization

Proot: In m steps, reduce order to O:
[1I;'7 = Oxs. Thus
[T*1 = Oxi(— > ¢;E;) for some ¢;.
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Structure of the proof

Step 1. Solve Problem 2 using
marked ideals

Step 2. Solve Problem 3 using
maximal contact

Step 3. Solve Problem 4 for
D-balanced 1deals

Step 4. Solve Problem 5 for
MC-invariant ideals
Step 5. Given I, find W (I) such that

(i) order reduction for (X, I, F)
is equivalent to
order reduction for (X, W(I), m!, F),
(ii) W (1) is D-balanced and MC-invariant

Step 6. Complete the spiraling induction.
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Derivative ideals

D(I) = ( . g € I,z : loc. coord.)
D (1) = D(Dr(1)

D lowers order by 1, so
D'(I,m) = (DT([) m —r)

Key computation

Blowup Z = (x1=--- =2, =0):

7 _ Tr—1 _ _
Ni=ygo- 1= 7Y = Tryeoo s Yn = I

—-1( 0 0 . -1 :
. (@fam_ 1) — @_ng-* (f7m> fOI‘] <.7n7
7T>|<_1 (@_xjfam o 1) — y?“@_yjﬂ-*_l(fa m> for J =T,
m (G fm=1) =y (f,m)

—Yr Zz’<r aiyl.ﬂ-*_l(fa m>+
e (f m)(=1)

Corollary: IT,*(D’(I,m)) C D/(II,}(I,m))
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Solution of Problem 3

Corollary: Any order > m blow up seq.
(X, I'm, E") = (X,, I,,m, E,) == --.
25 (X, Ty, m, EBy) = (X, I,m, E),

gives order > 7 blow up seq.
(X, 5, E) = (X,, ], j, B,) == -
— (X, Jo, j, Bo) = (X, D" (1), j, E).

Maximal contact: ;7 = 1 case:
MC(I) = D™ }I) maximal contact ideal

max-ord M C(I) = 1, so for general h € I,
H := (h =0) is smooth at x and
if H is smooth (ok on open subset) then

Going down theorem

Blow up segs. of order m for (X, I)

M

Blow up seqs. of order > m for (H,I|g, m)
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Tuning ideals

Corollary: Any order > m blow up seq.
starting with (X, I, m, F)

gives order > > . j; blow up seq.
starting with

(X, H D" (), Z ji, E).

Definition:

W(I) = <H(ij([))cj > e > m!>

Since W (1) D I~V we get

Theorem

Order reduction for (X, I, m, E).

0

Order reduction for (X, W (I),m!, F).
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Derivatives and restriction

Problem. Multiplicity jumps in restriction
e.g. (xy — 2")|(y=0)

Defn. cosupp(I,m) = {x : ord, I > m}.

Problem again:

S N cosupp(I, m) C cosupp(I|g, m)
and = holds only for m = 1.

Theorem. S C X smooth, then
S, M cosupp (H;l([, m)) —

= (7 cosupp(Il|s, ) ((DI)]s, m — j)

Solution attempt:
cosupp(I, m) = cosupp(D™ (1), 1)

Other problem: Set S := (x1 = 0), then
D(I|s) € D(I)|g since 9/0z1 is lost.



Solution:

(1> Set DlOgS = <$1aix17 %7 SR 7>

then: D([|S) = DlogS([MS-
(ii) D*(I) = (well defined as filtration)

5 oI o
— DlogS([) + DlogS(&%j ) Tt <(9513‘i>

Restrict to S: 5
(D*1)]s = D*(I]s)+D*" 1(—ls) (5 s|s)
Apply this to 7 ([ ) with chart

21 — — .
Y1 =3 "'7y7”1 T 7y7“_x7“7'°'7yn_ajn-

. ~ o [N, m
D Ty 1([,771) — ZDlogJSl < a(] >>

=0 i

Usually diff. does not commute with
birational transforms, but it does so

for 3/0x1 and 0/dyy, so
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_ Z [P, m
L7

For a sequence of blow ups II:
- o’ (I, m)
m) = DI T -

increasing the Summands on the right:

ZDngJSTH (DT, m—7)

restricting to S,
(DI (1, m)) s, =
=2 D (Mls ) (D D)]s,m — j)

For s = m — 1, take cosupport to get the
theorem.
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Solution of Problem 4.
D-balanced: (D/(I))" C I™™ ¥V j<m

Going up theorem
I: D-balanced, S C X smooth such that
(i) S ¢ cosupp(l,m), m = max-ord [,
(ii) E|g is normal crossing,

then:
blow up segs. of order m for (X, I, F).
U
blow up segs. of order > m for (S, I|s,m, E|g).
Proof:
cosupp(Il|s,); ! ((D”)st 7)
= cosupp(I|s,); ((Dj[ \S, m(m — ]))
(since I )\s) C (I|s)™7)
> cosupp(Il|g, ) (1" |g, m(m — 7))
= cosupp(Il|s,);  ({]s, m)
Thus

S ﬂcosupp(ﬂ ([ m)) = cosupp(Il]s, ), (]|S> )
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Going up and down theorem
I: D-balanced, H C X smooth such that
(i) H is maximal contact,
(ii) H ¢ cosupp(I, m), m = max-ord [
(iii) F|g is normal crossing,
then:

blow up seqs. of order m for (X, I, F)

blow up segs. of order > m for (H, I|g, m, E|g)

Are we done?

Problem: No global H, so

we have open cover X = UX",
on each: H* C X', smooth max. contact

How to patch?

Solution:
Make sure blow ups do not depend on H.



R = K|[xy,...,x,]], B C R ideal.

For any b, € B and general A\, € K

(.I'l, . ,ZIZ'n) — (1‘1-|—)\1[?1, . ,CUn—I-)\nbn)
is an automorphism.

Lemma. For I C R, equivalent:
(i) I invariant under above automs.

(ii) B- D(I) C I,

(iii) B/ - DI(I) C IV §.

Proof of (iii) = (i): Taylor expansion
f(£E1-|—b1,...,33n—|-bn) =

1 0 f

Definition. [ is MC-invariant it
MC(I)-D(I)cC 1
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Solution of Problem 5.

Theorem Assume:
I is MC-invariant,
H., H' C X max. contact, smooth at z,
H + FE and H' + E both normal crossing

Then there is ¢ € Aut(X)
(Where X denotes completlon) such that

(1) ¢(H) = H' and $(E) = E,

(2) ¢*I = I and ¢* (1)) = 1|,

(3) for any blow up sequence of order m
(X, I, E.) — - — (X, Iy, F)
¢ lifts to ¢; € Aut(X; x x X)
which is identity on the center of the
next blow up Z; X x X.

Proof: Pick zs, ..., x, and x1, 2} € MC(I)
such that H = (z; =0), H = (z} = 0),
and £ C (x9---x, =0)

Apply lemma to:

(], e, ... xy) = (2] + (11 — 2)), 2, ..., X))

— (l’l,x‘g, ce ,.Clj'n)
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Theorem. W (I) is
D-balanced and MC-invariant.

Proof. Remember that W (I) =
= (Hj(Dm_j([))cﬂ' > jc > m!).
By product rule D*(W (I)) C
C (Hj(Dm_J([))CJ g >ml—s).
Since MC(W (1)) = MC(I) = D™ Y(I),
MCW(I))*- D*(W(I)) c W(I).

D-balanced: (DS(W(D))m! c W)™
Fix > j-¢; > m! — s, then

(IL(Dm= ()™ = TP (1))
1D ()™

:__j( (1))

= W(I)=7< c W(I)™-

K

M N

but this is weakly D-balanced:
m! . .
(D*(W(I)))™ is integral over W (I)™=*

2 solutions

(i) weakly D-balanced enough (Slide 33)
(ii) more work: W ([I) is D-balanced
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Order reduction, marked ideals, dim =n — 1

4

Order reduction, ideals, dim = n

Start with (X, I, F)

Step 1. Replace I by W (I), so assume:
I is D-balanced and MC-invariant

Step 2. (Local case): there is a smooth
maximal contact H.

Substep 2.1 (achieve H+ E normal crossing)
use Going up to get:
Supp E; disjoint from cosupp(Z, m).
Note: get new divisors E; but they are
automatically normal crossing with any H

Substep 2.2 (H + E nc along cosupp(Z,m))
restrict to H: (H, I|g,m, E|g)
use induction and Going up and down.
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Patching problem: If X = X' U X?,
we do the same over X' N X2,

but for blow ups whith centers over
XN\ X% or X%\ X!
we dont know in which order

Step 3. (Quasi projective case)
C; C X :j € J all possible images of
blow up centers for local order reductions.

Clarm. L sufficiently ample,

h € L ® MC(I) general, then

(h = 0) has smooth point on every C}.
= X = U,X? such that

(i) smooth max. contact H* C X*V s,
(ii) each X* intersects each C}.

Thus: order reduction for each (X?, I|xs, E|xs)

(i) involves every blow up,
(ii) with same total ordering.

Hence: automatically globalizes.



Step 4. (Algebraic space)

Writew : U — X étale, U quasi projective
order reduction for (U, u*I,u*FE) plus
étale invariance:

descends to X.

(Note: we see that Step 3 was not needed)
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Order reduction, ideals, dim = n

4

Order reduction, marked ideals, dim = n

Difference between I1; 1 and II;1(1, m):
ideal of exceptional divisor.

monomial part: M(I) =
largest Ox(—> e;F;) C I
nonmonomial part: N(I):= M)~ 1.

Step 1. (Achieve max-ord N(I) < m)
This is just order reduction for N (7).
Why not go down to max-ord N(I) = 07

Answer: Only mult > m blow ups allowed.

So if max-ord N(I) = s < m, we can blow
up only points where ord I > m.

Reduction trick:

ord, J; > s

ord, Jo > m & ord,(J1" + J3) > ms
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Step 2. (Achieve max-ord N(I) = 0)
Apply order reduction to N(I)™ + I°.

Step 3. (Take care of I = M(I))

Substep 3.1 Blow up E; with
ordg, M(I) > m.

Use index set order to make it functorial.

Substep 3.2 Blow up E; N E; with
ordg,np, M(I) > m.

Check: new exceptional divisors
have order < m.

Substep 3.3 Blow up E; N E; N L), with
OrdEiﬂEijk M([) Z m.

Check: new pairwise intersections
have order < m.

etc.
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Appendix: Integral dependence

R :ting, I C Rideal. r € R is

integral over I if
rl+ar® 4. 4a; =0 where a; € I
All elements integral over I:

integral closure: 1.

Lemma. If J is integral over I then

cosupp(J, m) D cosupp(l, m).

Proof. Assume, r € I but ord, r < ord, I.
ord (a1t + -+ + ayg) > min;{ord, (a;r")}
> (d—1)ord, r+ord, I > d-ord,r,

which contradicts the equation.

Lemmea. It J integral over I then
Y J,m) is integral over f_1(I,m).
Proof: Lift the equation.

Cor. If D?(I)™ integral over 1™/, then

cosupp(Il|s, ) (D7 (1)™]s, m(m — j))
> cosupp(Il|s,); (I s, m(m — 7)).

This is what we needed on Slide 22.



