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1 Introduction

The discovery of general relativity and quantum mechanics are the biggest events in
the history of twentieth century physics. General relativity is the theory of gravity that is
relevant at long distances (celestial and universal scales) while quantum mechanics is the
framework to describe physics at tiny scales (of atoms, nuclei, etc). Since then, physicists’
dream has been to unify the two. Quantum mechanics successfully absorbed the special
relativity, and developed into quantum field theory. Gauge principle that came out of
general relativity is included in the framework of quantum field theory and resulted in
quantum gauge theory, the prominent example of which is the standard model of particle
physics. However, gravity itself is kept aside from this progress. A naive attempt, includ-
ing gravity in the framework of quantum mechanics, suffers from difficulties originating
from the blowing up strength at short distances. It also sacrifices the beauty of general
relativity. It looks like some new framework is required. String theory is a candidate for

a framework that truely unifies quantum mechanics and general relativity.

The two events in physics had enormous impact in mathematics. General relativity,
which is described by Riemannian geometry, promoted progress in differential geometry.
Quantum mechanics literally gave birth to new fields in mathematics such as functional
analysis and operator algebra. One may expect that the right framework of unified theory
is described by mathematical language that unifies also the fields in mathematics that are
developed through general relativity and quantum mechanics. In the study of string
theory, we indeed encounter unexpected relation between different fields in mathematics.
Mirror symmetry, which is the theme of this lecture series, shows an example of such
a relation. The fields that are involved are: complex algebraic/analytic geometry and
symplectic geometry. It states that the complex geometry of one mathematical object
is equivalent to the symplectic geometry of another object, when quantum correction
induced by strings is included in both sides. But it will soon become clear that more

surprise involving yet other fields is expected.

2 String Theory — An Introduction

The idea of string theory is to consider a string instead of a point particle as the
elementary object. A string is a circle (closed string) or a segment (open string), and
it can be oriented or unoriented. At long distances, a tiny string looks point-like, and
various vibration modes are regarded as species of particles of various masses. Interaction

among them corresponds to the process of splitting and joining of strings. In a spacetime



manifold, a string sweeps out a two-dimensional surface, which is called the worldsheet of
a string. The worldsheet for propagation of a closed or open string is just a cylinder or a
strip. When the process of splitting/joining as well as creation/annihilation is included,
it can be a surface of arbitrary topology. A scattering amplitude is given by the sum over
all possible worldsheets with a fixed asymptotic condition specified by the incoming and
outgoing particles. Obviously, we need to specify the weight of this summation, or the

measure of the so called path-integral.

2.1 Non-linear sigma models

There is a standard way, based on non-linear sigma models, in which the worldsheet
is regarded as a domain mapped to the target spacetime. The data to fix the theory
is the target manifold M with a Riemannian metric g. The summation variable is the
worldsheet X, its metric h and the map to the target X : ¥ — M. The non-linear sigma

model action, included in the path-integral weight e Nt is given by
1
SNLoM = o / gU(X(a))h“”(a)auXI(a)a,,XJ(U)\/EdQU, (2.1)
)

when ¥ is oriented. v/hd?o is the volume element. o is some constant which has the
dimension of lenght squared in the target space. This action is invariant under the dif-
feomorphism of the worldsheet f : ¥ — ¥; (h, X) — (f*h, X o f) as well as the Weyl
rescaling of the worldsheet metric h(c) — e?(@h(s). Weyl rescaling sometimes fails to
be a symmetry — a certain condituion is required, as I shall explain below. Thus, the
summation is over the topology of ¥, and for each topology, we have a path-integral over
the space of (h, X) modulo the group of diffecomorphisms and Weyl rescalings. The latter
space naturally has a Riemannian metric and the integration measure is formaly given by

its volume form. The weight e NteM can be modified by a phase e*? where

Sp=— /X*B (2.2)
)

2mad
for a two-form B on M called the B-field. Another action that can be added is

1
Sp=— [ Ru(0)®(X(0))Vhd?c (2.3)
4dr [
for a function ® on M called the dilaton field, where Rj, is the scalar curvature of the
worldsheet. For a constant ®, this gives a weight e X® on the worldsheet of Euler number

x. This amounts to assigning the factor of e® to each piece of pair of pants, when



the worldsheet is decomposed into union of pairs of pants. Since a pair of pants is

splitting/joining of closed strings, g, = e® can be regarded as the string coupling constant.

Weyl rescaling symmetry, or conformal invariance is generically broken in the renor-
malization procedure. It is maintained in the quantum theory when the data (g, B, ®)

obey certain conditions, which can be written as differential equations in power series in
!/

o'
1
R]] — ZHIKLHJKL—FQVIVJ@—FO(O/) = 0, (24)
ViHY; —2(Vg®) HY; +0() =0, (2.5)
D -2 1
" 4(VP)? —4V?® — R+ —H?+ O(d/) = 0, (2.6)

3a/ 12

where D is the dimension of the space. R;; and R are the Ricci tensor and the scalar
curvature. H = dB is the “curvature” three-form of the B-field called the H-field. These
equations can be regarded as the classical equation of motion for the spacetime fields
(g9, B, ®). Since o' has dimension of length squared, the terms O(a/) consists of higher
curvature and higher derivatives of (g, B, ®). For example, the first equation includes
a term —%'RIKLTR FLT . These terms are relatively small when the curvature is small
and everything is slowly varying. Note that the flat space R;;xr = Hyjx = 0 with & =
constant is a solution if and only if the dimension is 26. As the curvature is increased, for
example by rescaling ¢ — Ag and taking A smaller and smaller, the o' expansion stops
to make sense. However, this does not necessarily mean that the theory ceases to exist
beyond some small volume (or large curvature). It is just that the non-linear sigma model
can no longer be used as a good description of the worldsheet theory. Abstractly, any

conformal field theory with central charge 26 defines a classical solution of string theory.

Non-linear sigma model itself makes perfect sense as quantum field theory even without
the conditions (2.4)-(2.6). It is simply that (g, B, ®) change as the energy scale p is
changed (for example, cut-off dependence) — the left hand sides of (2.4)-(2.6) are the
log i derivatives of (grs, Bry, 16m2®/a’). For example, consider the sigma model on the
sphere SV with B = 0, ® = constant. Since SV is Ricci positive, the equation udgry/dp =
Rr7+0(a’) shows that SV is larger and the curvature is smaller as we increase the energy
scale, and it eventually flattens in the high energy limit. This is called the asymptotic
freedom. In the low energy limit, on the other hand, SV becomes smaller and the non-
linear sigma model stops to be a good description — the theory must be described by
something else. For spaces like hyperbolic space HY with negative curvature, the situation
is opposite. It flattens out in the low energy limit, but at high energies it is highy curved

and the theory must be described by something else than the non-linear sigma model.



Coming back to backgrounds obeying (2.4)-(2.6), there is actually a problem at string
loop diagrams, i.e. for the worldsheet of genus one and higher. The integration of the
worldsheet geometry diverges at the boundary corresponding to a long neck, due to the
propagation of tachyon — a particle of negative mass squared. One can actually construct
a different string theory without such a problem — superstring theory. The first step is

to introduce fermionic fields and supersymmetry on the worldsheet.

2.2 Supersymmetric sigma models

The sigma model action in flat Minkowski space is

1

S, —
b 4ol

/ [gu (atxfatxf . GUXI&,X"> + B, (8tX18(,X" . angatXJ)] dtdo,
(2.7)
where t and o are the time and space coordinates. To this system, we include anti-

commuting (fermionic) fields ¢ which are spinors with values in the pull back by X of
the tangent bundle of M. The action to be added to 5 is

1
4ol

Sy = /{iguwl (VE’) + fo))l/)f +igrl (V,ﬁ” B fo’)wi

1
3 R ot dudo (28)
where V&) is the Levi-Civita connection twisted by the H-field, so that
1
Vf)zﬁl - 6#1/11 + QLXJ (F!I]K + §gIMH]MK> wK,

and R, = gien(RS)M is the curvature of V). If the B-field is flat, H = 0, the two
connections agree to the Levi-Civita connection. In addition to the standard Poincaré
invariance (translations and Lorentz transformation of (¢,0)), this system has a fermionic

symmetry generated by
OXT =il —iel ¢l
oyl = :I:G;(at +0,) X1 + €L f!, (2.9)

(ff =T it + Lg"™ Hyeppgp S pk)

where ¢! are real fermionic variation parameters. The “square” of such a transformation

are proportional to the time and space translations (up to equations of motion)
[6,0"10 = 2ie" €V (8, + 9,) O + 2ie! (8, — 9,) 0.
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Such a fermionic symmetry is called the supersymmetry. Since there is one real right
moving and one real left moving parameters, this is technically called the (1,1) super-

symmetry. The action also has mod 2 fermion number symmetries

(=) (@, 9h) — (=l 9l), (2.10)
(—1)F (L, ) — (vl —l), (2.11)

The sum over worldsheet geometries must incorporate this supersymmetry, and pro-
ceeds as follows (see [1] and references therein for details): First, we couple Sy + S to
two dimensional supergravity whose variables are the metric h (or the zweibein) and a
spinor-valued fermionic one-form x4 ,. The coupled system classically has diffeomorphism
(and local Lorentz), local supersymmetry, Weyl rescaling, and local superconformal sym-
metry. We then integrate over the space of (h,x, X, ») modulo these gauge symmetry
actions. The exact conformal and superconformal invariance in quantum theory requires
a condition on the data (g, B, ®) similar to (2.4)-(2.6). One notable difference is that the
critical dimension D = 26 is replaced by D = 10.

GSO projection

The theory includes spinors and there are choices in the spin structure. For example,
on a cylindrical part of the worldsheet the spinors can be periodic or anti-periodic along
the circle — these are called Ramond and Neveu-Schwarz sectors respectively. It is then
natural to include sum over spin structures in the worldsheet path-integral. There are
various ways to do so. One may not correlate the spin structures of left handed fermions
Y, and right handed fermions ¢)_ (chiral) or one may correlate them (non-chiral), and
there are choices in the phase of summation. This result in the projection of the spectrum,
called the GSO projections, where we only admit states with plus or minus one eigenvalues
under (—1)"+, (—=1)"= (chiral) or their product (—1)% (non-chiral). There are two ways to
perform chiral GSO projection, and the resulting theories are called the Type IIA or Type
IIB superstring theory. There are also two ways to perform non-chiral GSO projections,
corresponding to Type 0A and 0B string. In Type II superstring formulated on flat ten-
dimensional Minkowski space, tachyon is removed from the spectrum by the projection,
and the divergence from the long neck boundary is absent. It moreover has space-time
supersymmetry — the particle spectrum is invariant under the exchange of bosons (from
NS-NS and R-R sectors) and fermions (from R-NS and NS-R sectors). Type ITA string

has (1, 1) supersymmetry in ten-dimensions, while Type IIB has (2, 0) supersymmetry.



2.3 D-branes

The worldsheet of open string has boundaries, and one must specify a boundary con-
dition. For a non-linear sigma model, there is a standard boundary condition for each
submanifold W of M. Let us consider the “left-half plane” ¢ < 0, —oco < t < 00, with
the timelike boundary ¢ = 0. The boundary condition at ¢ = 0 is that

X(t,0) € W and 0,X(t,0) is normal to W at X(¢,0), (2.12)

when B =0 and ® = consatnt. This is the boundary condition for the D-brane wrapped
on the submanifold W. For supersymmetric sigma model the following condition for
fermions

Yy +1p_ is tangent to W and ¢, — )_ is normal to W (2.13)

is compatible with the diagonal (N" = 1) supersymmetry generated by e/ = —¢l | while
the one with the relative sign of ¢4 and 1_ reversed is compatible with e = €} . One can
introduce a U(N) gauge field A on the D-brane. The open string end point is charged so
that the worldsheet path-integral weight has a matrix factor

P exp <—i /U ~ [atXMAM + iFMNq/)Mq/)N] dt) (2.14)

called the Chan-Paton factor. “P exp” stands for the path-ordered exponential. M ,N are
the indices of the coordinates of W. Here we have in mind the boundary condition (2.13)
and M = Y + M.

Just as in the closed string case, conformal invariance requires certain conditions on
the D-brane data (W, A). For the rank one case, it is given by [2]

VY Eny +0(a') =0, (2.15)
"N Ky +0(a') =0, (2.16)

where gyrx is the metric induced on W from the metric ¢ on M, and K1, is the second
fundamental form of W C M. To the leading order in the o' expansion, a solution

corresponds to a minimal surface W with a gauge field obeying the Maxwell equation.

In Type II string theory on flat Minkowski space R?™, D-brane at the flat subspace
R”*! with A = 0 is a solution (called the Dp-brane) and it preserves a half of the spacetime
supersymmetry if p is even for Type IIA and odd for Type IIB. For sucn values of p, Dp-
brane is charged or is a sourse of the (p 4 1)-form gauged potential coming from massless
bosons in the R-R sector [3]. For the other values of p, the open string spectrum of Dp

brane contains a tachyon, and is unstable.

Tachyon



2.4 Orientifolds

2.5 Heterotic strings

2.6 The five string theories in ten dimensions
2.7 Duality

M theory

Mirror Symmetry

3 (2,2) theories and the moduli space

A simple example

Let us consider the supersymmetric sigma model with the Euclidean 2-plane R? or the
complex plane C as the target space. The variables (X!, X2 ¢! ¢2%) can be combined
into complex variables - a complex scalar field ¢ and a Dirac fermion 1., ¢, = 1/)1,[. The
action is expressed as

1 — —
5= o [{1008 ~ 0,08 + @+ 000 + 0.0 - )0 Jaudo. (1)

™

Here we set o/ = 1. The system has a supersymmetry generated by

0 =erh. —e g, b= +e ¢,
6y = Fie(0y £ 01)p, by = Fiex (0o £ 01)0,

where €4 are now complex fermionic parameters and €, = el are the complex conjugates.

and thus § is a supersymmetry. Since there is one complex (or two real) right-handed and
left-handed parameters, it is (2,2) supersymmetry. If we set ex = i€} with real €}, we get
back the (1, 1) supersymmetry. The model has also two U(1) symmetries:

Uy e — ey, by — ey,
U(L)g:tpe — eTFhy, Yy — e

When the supersymmetry is conjugated with these U(1) symmetries, the parameters
€+ receive phase rotations, U(1)y : ex — e ey, U(1)4 : ex — eTPey. Such U(1)

symmetries are called (vector and axial) R-symmetries.
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3.1 (2,2) supersymmetry algebra

For each continuous symmetry of the classical action, there is a conserved charge found
by the Nother procedure. The charge for the time and space translation symmetries are

the Hamiltonian and momentum. In the above example they are

1 _ J—
H= o /{|3t¢|2 + 10,0 — i) 9,0 + iw+6gw+}da,

P=y- [{000.0+ 0,606+ 00—+ 0,0, Jdo

The conserved charges for the supersymmetry are called the supercharges. Since there are

four real parameters, there are four supercharges Q. and Q. In the example, they are

Q=5 [0£0,)5- v,

— 1 —
o LR AT

The ones for the U(1) R-symmetries, (vector and axial) R-charges, are

Fo= o [@ 0o+ 5,00
Fa= o [0 0 + 5,000

When the system is quantized, conserved charges gives rise to operators acting on the
Hilbert space of states and generate the symmetry transformations. In a (2,2) supersym-
metric system, Hamiltonian H, momentum P, charge for Lorentz transformation M, the

supercharges @+, @, obey the following (anti-)commutation relations:
Q2=Q>=0,=Q. =0,
{Qia@ﬂ:} =H=LP,

Q.0 } =27, {Q+,Q-}=27",

{Q-Q.}=7 {0:.Q }=7",
[iM, Q<] = FQx, [iM, Q4] = FQ4, (
7 and Z are central charges which is non-trivial only when the boundary condition at the
left infinity (0 — —o0) and the right infinity (0 — +o00) are different. They vanish when

the system is quantized on the cylinder where o is a periodic space coordinate. When
there are R-symmetries Fy, and/or F4, they commute with H, P, M and obey

[iFy, Q] = —iQx, [iFy,Q.] =1iQy, (3.7)
[iF4,Q+] = FiQx, [iF4, Q.] = +iQ,. (3.8)

8



Although the R-charge may not always exist, we require the conservation of mod 2 fermion
number

(_1)F7
under which the supercharges are odd. When an R-charge is conserved and integral, it

can be used to define (—1)¥ in the form of ™" or e™F4.

In the model (3.1), the fields ¢, ¢, 1+ and v obey the canonical (anti-)commutation
relations [¢(0), 0yd(0")] = 27id (0 — o), {¢+(0), ¥ (0")} = 275(0 — o') etc. It is a simple
exercise to show that the conserved charges in the model (3.1) obey all of the above (2, 2)

supersymmetry algebra, in which the central charges are zero, Z = Z = 0.

Mirror Symmetry

Mirror symmetry is an equivalence of two (2, 2) supersymmetric quantum field theories
such that the isomorphism between the space of states maps the generators H, P, M,
Q. @+ in one theory to those in the other, but exchanges the rest of the generators as

follows

Q- «—Q_,
Fy <— Fja, (3.9)

7+ 7.

3.2 Non-linear sigma models

We have introduced the supersymmetric sigma model for a manifold M with a metric
g and a B-field B. The variables are the map X : R?> — M and the fermions ¢, with
values in X*T'M, and the action is S, + Sy where S, and Sy are given in (2.7) and
(2.8). In general it has (1,1) supersymmetry, but it also has (2,2) supersymmetry under
the following condition [4]: M has two complex structures J, and J_ which are both
orthogonal with respect to the metric g (i.e. g(Jv, Jrw) = g(v,w)) and are parallel with
respect to V(H) and V() respectively; V(H.J, = 0 and V(=)J_ = 0. Such a manifold is
called the twisted generalized Kéhler manifold.

Kihler manifolds are the special cases, in which J, = —J_ = J and H = 0 so that V(*)
is the Levi-Civita connection V. In what follows we shall focus most of our attention to

Kéhler case. The non-linear sigma model action is expressed in terms of the holomorphic



variables @', ¢, and their complex conjugates as

1 . = . o
SNLom = o / |:gi] (th)latgzﬁﬂ _ &,d)l&;d)J)
Figal (Ve + Vo) +iggiy (Vi — Vo)t + Ryt 050 6 | (3.10)

The (2,2) supersymmetry transformation is

59" = estl — ey, 5% = e 0 ted,,
o' = i€_(0y + 05)p" + €L F", 0P, = —ie (0, +0,)¢ + e F, (3.11)
0t = —ig, (0 — 0,)¢' + e F', 04" =iey (8, — 0,)P +e_F,

where ' = F;kwiw’i, and the supercharges are

1 .
Q+ = o /gij(at + aa)¢J Y do (3.12)
— 1 - .
Qi = o /gzﬂ/}i(at + 0,)¢’ do (3.13)

The classical action has both vector and axial R-symmetry;
Uy 9k = ek, Py — e,
U(1)a:dh — ™00k, g — Py

In the quantum theory, U(1)y is always a symmetry but U(1)4 is not. In a bosonic

background X : ¥ — M, U(1)4 transforms the path-integral measure by multiplication

exp (-m /E X*CI(M)>

where ¢, (M) is the first Chern class of the holomorphic tangent bundle Ty;. Thus, U(1)a

is a symmetry only when ¢; (M) = 0, namely for Calabi-Yau manifolds. If not, it is broken

of the phase

to its discrete subgroup. For example, for M = CP¥ ™!, c1(M) is N times a generator
of the integral second cohomology group. Thus only the Zyy subgroup of U(1), is a

symmetry. In general, the Z, subgroup is always a symmetry.

3.3 Landau-Ginzburg models

We now introduce a different class of models called the Landau-Ginzburg models (LG
models). The data to define a LG model is a Kéhler manifold (M, g) with a holomorphic

function W, called the superpotential, whose critical points are all isolated. We present the
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model in the particular case where M = C" and W is a polynomial, but the generalization
is obvious. The variables are n complex scalars ¢!, ..., ¢" and n Dirac fermions . ,...,9%.
The action is

1 n ) ) 3 . - .
S = g/{; (|at¢l|2 — 0,67 + " (0 + 05" + i)', (8; — 80)@&1)

n
=1

o @) = 3 (a0, wieyv? + 00 715" ) | ardo
ij=1
(3.14)
|2

The new part is the we now have a potential U = |[W'(¢)|* as well as the coupling

W"(¢) 1. The supersymmetry transfprmation is given by (3.11) where now F! =

—0;W (¢), and the supercharges are

Q. = %/2 ((at +9,) Ui F iE;@W) do (3.15)
0, = %/; (V0 0,)' + 0 ) do (3.16)

The system always have axial U(1) R-symmetry
U)a: ¢ — ¥4k, G — 05,

but vector U(1) R-symmetry is not automatic becuase of the term —W"y, ¢ in the

action. When there is a transformation ¢ — (e**9)’;¢/ with hermitian matrix ¢ such that
W (e ) = e**W(¢) (3.17)
the action is invariant under
Uy = ¢ — €96, gy — 0Dy,

and ¢ — e™®9¢, ¢p, — e~*@= V), . A polynomial having the property (3.17) is is said
to be quasi-homogeneous. For a more general polynomial, the vector R-symmetry group

is a discrete subgroup that includes Zs.

3.4 Supersymmetric ground states

Let us quantize the system on a cylinder with a periodic boundary condition on all

fields. The fermions are in particular periodic, and the states are in the RR sector on
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which the (2,2) supersymmetry generators act with 7 = Z = 0. By Ql = @, and
(3.3), the spectrum is positive semi-definite, H > 0. Zero energy states are necessarily
the ground states and are annihilated by all the supercharges Q., Q.. Such states are
called supersymmetric ground states. They span a finite dimensional subspace Hsysy of
the infinite dimensional space of states H, under the assumption that each energy level is

finite dimensional.

Let us denote Q4 = Q, + Q- and Q5 = Q. + Q_. The operators (Q, F) = (Q4, F4)
or (@p, Fy) obey the following commutation relations

{Q, Q" = 2H, (3.18)
Q* =0, (3.19)
[F,Q] = Q. (3.20)

By the second and the third equation, the Hilbert space of states H can be regarded as
the Q-complex;

Dy et 9y qge 9 qpent 9 (3.21)

where H? is the subspace of R-charge F' = ¢. By the equation (3.18), @-cohomology

classes are in one to one correspondence with the supersymmetric ground states;
Ker @ : H9 — HIt

q ~ [74 .
Hsysy = H(Q) = T Q : Hi- 1 = Hi (3.22)
Witten index is the @-index (or the Euler characteristic of the complex (3.21))
Try(—1)" e = (1) dim H(Q), (3.23)

q

and is independent of any supersymmetric deformation of the system.

In the above, we have assumed that the R-charge F'is conserved and the eigenvalues are
integers. Otherwise, one can use (—1)¥ to define a Z, grading so that we have a Z, graded
(double periodic) @Q-complex. Then, we have HI2y = H°4(Q) and Try(—1)F e #H =
dim H*(Q) — dim H°4(Q).

Sigma models and LG models

The space of supersymmetric ground states of NLSM on M is isomorphic to the
cohomology group of M which is in turn the same as the space of harmonic forms on M

(this can be understood when we discuss twisting to topological field theory);

Hsusy = €D H(M). (3.24)

p,q=1

12



Here HP(M) is the space of harmonic (p,q) forms, or (p, q)-th Dolbeault cohomology
group. If M is Calabi-Yau, the vector and axial R-charges of the ground states are

Qv =-p+q,

on HP9(M). (3.25)
ga=p+qg—n

If M is not Calabi-Yau, the axial R-symmetry is anomalous, and only the expression for
qv makes sense. In either case, using (—1)™ as the mod 2 fermion number (—1)¥, Witten
index is given by [ =} (=1)7P*dim HI(M) = S22 (=1)'HY (M) = x(M), the Euler
number of M. If the non-linear sigma models on two Calabi-Yau manifolds M and M are
mirror to each other, the ground states in HP?(M) are mapped to the ground states in

H™P4(M) so that the vector and axial R-charges are exchanged. In particular, there is

a relation between M and M in the Hodge numbers hP¢ = dim HP*4:

hP4(M) = B P9(M). (3.26)

The supersymmetric ground states of LG model are in one to one correspondence with
the critical points of the superpotential W if all the critical points are non-degenerate.

The axial R-charges of the ground states are all zero
ga =0 on the ground states. (3.27)

The reason is that the ground state wavefunctions in the dimensionally reduced model (su-
persymmetric quantum mechanics) is given by middle-dimensional forms. Witten index
is thus the number of critical points I = #Crit(W).

If a NLSM on M is mirror to a LG model with non-degenerate critical points only,
then the vector R~charge of the NLSM ground states has to be zero. Namely, HP7(M) = 0
if p # q. Thus the Hodge diamond of M is diagonal.

3.5 Twisting to topological field theory
Chiral ring

An operator O is called a chiral operator if it (anti-)commute with QQp and twisted
chiral operator if it (anti-)commute with Q4. It represents a Q = QQp/Q4 cohomology
class of operators. One can show from the supersymmetry algebra (with Z = Z = 0)
that if O is a chiral operator, [Qg, O] = 0, then [(H + P), O] = (@3, [Q+, O]]. Thus, the
worlsheet translations do not change the ()g-cohomology classes. If O; and O, are two

chiral operators, the product O;0s is also a chiral operator. Same can be said on twisted
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chiral operators. Thus, ()-cohomology classes of operators form a ring, called the chiral
ring for QQ = Qp and twisted chiral ring for Q = Q) 4.

Twisting

By Wick rotation, we obtain the Euclidean theory where the group of rotation is
Spin(2) generated by Mp = iM. It makes a perfect sense to formulate the Euclidean
theory on an arbitrary two dimensional surface ¥ with a Riemannian metric h as long as
the spin structure is chosen. However, it generically loses supersymmetry. To see this, we

note that a supervariation of the action would be given by
68 = / V,.eG*Vhd?z,
)

where € is the fermionic variation parameter, which is a section of the spinor bundle, and
G* is the supercurrent, a vector with values in the spinor bundle. If (X, h) is curved,
there is no covaraintly constant spinor and thus the action is not invariant under any
supervariation. The only way to preserve a supersymmetry is to change the system
so that some of the supercharges Qi, @, are scalars and the corresponding variation
parameters (being scalars) can be covariantly constant, Ve = d,e = 0. This is the idea
of tuisting. If a vector R-charge FYy is conserved and integral, one can twist the theory
by declaring that Mg + Fy to be the new rotation generator. This is called the A-twist.
The same procedure for axial R-symmetry is called the B-twist. After B(A)-twist, Q n
and Q_ (Q, and Q_) become scalars and thus there is a supersymmetry even when
the worldsheet is curved. Correlation functions with insertions of only (twisted) chiral
operators are independent of the choice of worldsheet metric. This is because the variation
of the metric h,, corresponds to insertion of the energy-momentum tensor 7},, but in the
twisted theory it is Q@ = Qp (Q4) exact

T/w - {Qa Guu}

so that it annihilates the correlators with only ()-closed operators. For this reason the
twisted model is sometimes called topological B(A)-model. Sphere 3-point functions de-

termine the structure constants of the (twisted) chiral ring.

When a B-twist is possible, there is a one to one correspondence with chiral ring
elements and supersymmetric ground states. Consider a worlsheet of semi-infinite cigar
geometry as in Fig. 1, and perform the B-twisted path-integral in the interior of the cigar,
with a chiral ring element ¢; inserted at the tip. This leads to a wavefunction at the circle

boundary. The flat cylinder region is not affected by twisting, and thus the wavefunction
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Figure 1: The semi-infinite cigar

can be regarded as a state of the untwisted theory. Because of the twisting in the curved
region, the fermions are periodic along the circle — namely the state belongs to RR sector.
In the limit of infinite length, all the excited states are projected out and we are left with
the zero energy state |7). This is the supersymmetric ground state corresponding to ¢;.
The same applies to A-twistable theories where the ground states corresponds to twisted

chiral ring elements.

Ezamples

We can consider A-twist of non-linear sigma models (where Fy, is conserved) and B-
twist of Landau-Ginzburg models on Calabi-Yau target spaces (where F, is conserved).
We recall that My + Fy (Mg + Fa) is the rotation generator after A-twist (B-twist). The

quantum numbers of the fermions change under twisting, as shown in the table.

Mg Fy | Fy |Mp+Fy|Mg+Fy
Y| 1 —1 1 0 2
I | ~1 ~1 -2 —2
7R 1 1 -1
oo | -1 1 1 0 0

Let us first consider A-twist of NLSM on a Kéhler manifold (M, g) with B-field B.
The change of the spin motivates to rename the fields as x* = ' , ' = Ei, pL = ¥ and
- =)’ . Then, under the scalar supersymmetry § = €Q) 4, the fields transform as
5¢f =ex!, ox'=0, &p. =2ied;¢ + GF;.-kP%Xkai (3.28)

0§ = €X', OX =0, Opl = —2ied.§ + el plx". '
For a differential form o € QP9(M), O, = ozilmz-pjlquxil...Xipyjl...qu obeys 60, = €04,
Thus, the @ s-cohomology classes of fields are in one to one correspondence with the
de Rham cohomology classes of M. Configurations invariant under ()4 are those with
0-¢' = 0, namely holomorphic maps of the worldsheet to M. Thus, A-model correlation
functions receive contributions only from holomorphic maps. We note that the classical

action for a holomorphic map ¢ : ¥ — M is expressed as
S = / gish" 0,8'0,6’Vhd*x — i / ¢*B = / ¢*(w —iB). (3.29)
) ) )
5

1



For instance, genus zero three-point functions are expressed as

<Oa10a20a3 Z nalazag (w lB) (330)
BeH2 (M)
where the sum is over the homology class of the image of the maps and n? . .. is the

number of “image 3’ holomorphic maps such that the three points 0,1, 00 of ¥ = CP!

are mapped to fixed Poincaré dual cycles of [a1], [aw], [a3] respectively.

Let us next consider B-twist of LG model with superpotential W on a CY space M.

. . . . . —7 =T\ - —a
This time, an appropriate renaming of the fermions is 6; = g5(_ — ), W =¥_ + 9,

=L, py = . Under the scalar supersymmetry d = eQ)p the fields transform as

(S(ﬁl = 0, (59] = —GajI/V,
8¢ =en’, o =0, (3.31)
Sp, = 2¢J%,0,0".

The @ p-cohomology group is isomorphic to the space of holomorphic functions on M
modulo holomorphic derivatives of W. Q)g-invariant configurations are constant maps to

the critical points of W. In particular, genus zero three-point functions are

<Of10f20f3>9 0= Z fldeijgg(ml{?)() )’ (332)

p€eCrit(W)

where the sum is over the critical points of W and 9*W the Hessian matrix of second
derivatives of W. Note that the Hessian and the determinant both depend on the choice
of the coordinates. The ambiguity is fixed by fixing a nowhere vanishing holomorphic top
form Q and choosing a coordinate system such that € is written as dz' A --- A dz". One
could also consider the case where M is a compact CY manifold and W = 0. In such a
case, the @ p-cohomology group is identified as H%*(M, A*Ty;), under the identification
n' < dz’, 0;

7

3-form 2 are given by

<OM1 Om OM3>QZU = / /J“Zi A :u% N /J“I;Qijk A, (333)

M

for p1y p2, U3 € HO’I(MaTM)'

Mirror Symmetry

Under mirror symmetry, (Qpg, Fia) of one theory is mapped to (Q 4, Fy) of the mirror

theory. Thus, the chiral ring of one theory is the same as the twisted chiral ring of the
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mirror. Also, B-twist of one theory is mapped to A-twist of the mirror. The problem of
counting the number of holomorphic curves in a Kahler manifold, which is sometimes diffi-
cult, is mapped to the classical problem of finding the critical points of the superpotential

and computing the sum (3.32), or performing the classical integration like (3.33).

3.6 Moduli space of (2,2) theories
Descent relations

Let us consider a bosonic scalar chiral operator @. We define fermionic one-form

operators O and bosonic two-form operator O by
O = Zda*[Qy., 0]+ 5da7[Q-, O, (3.34)
1
0¥ = —{Q+,[Q-, Ol}dtdo (3.35)

where % =t 4+ 0. Then, using the supersymmetry algebra and the fact that O is chiral,

it is easy to show the following decent relations

0= [QB: O]a
dO = {Qp, OW}, (3.36)
do = [Qg, 0P,
If we choose a representative O in the same ()g-cohomology class that commutes with

both @, and Q_, refined decent relations hold. Define O®Y and O%? to be the dz*
and dz~ parts of O, They fit into the following “ascent diagram”

0
/\
ooy 0
/! N\ S
@] 0o (3.37)
N\ S N\
o0 0
N\
0

where the upper-right and lower-right arrows correspond to the action of @), and Q_

respectively. They obey the following descent relations
0= [@iv O]
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90 = {Q,, 00N}, 90 = {Q_, 01}, (3.38)
2000 = [@,,00), 900D = [G_, 0],

where 0 = dz~0_ and 0 = dz0,.

The same applies to a bosonic twisted-chiral scalar operator O (that commutes with
both @, and @_). One can construct fermionic one-forms 001 O and a bosonic
two-form O®@ that obeys the descent relations for Q4 or for Q 4 and Q_. All we need to
do is to replace Q_ by @_ and Q_ by Q_ in the construction for the chiral case.

Chiral and twisted-chiral deformations

Chiral and twisted-chiral ring elements can be used to deform the theory while pre-
serving the (2,2) supersymmetry. Let O; be chiral operators that are annihilated by both
@Jr and Q_ and O, be twisted chiral operators annihilated by both @Jr and (Q_. Then,
one can deform the theory by adding

AS = /th@z@) + / ZtNa@((f) + complex conjugate (3.39)

to the original action Sy. By definition and using the descent relation, we see that it
preserves the (2,2) supersymmetry, namely, it commutes with all four supercharges Q,
Q... For example, the integrand Ol@) commutes with Q1 and the commutators [Q_, O]
are total derivatives dO™0) /dO©1, We shall call ¢; and t, chiral and twisted chiral

deformation parameters respectively.

Chiral deformation terms fti(’)Z@) + c.c. are Q4-exact. This can be shown using the
“ascent relation” (3.37), Q- = Q4 — Q,, and the descent relations;

0 = Zde {Q-, 0"}

i _
= de{Qa - @y, ob}

= %dx_ [{Q4, 0D} —00] = {Qa, -} + total derivative.

Eor the complex conjugate part, we use the expression ?(Z) = —%dx*{@Jr,@(l’O)} and
Q. = Qa — Q_, as well as the complex conjugate of {Q_, 01"} = 9O. This means
that the correlation functions of the A-twisted topological field theory does not depend
on the chiral deformation parameter. Consersely, the twisted chiral deformation terms

f ?,1(5(2) + c.c. are () g-exact, and does not affect the topological correlation functions of
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the B-twisted model. In this sense, chiral and twisted chiral deformations are decoupled

from each other. Also, the t; part of the chiral deformation is @ g-exact. This follows from

o® — _%df{@,@“’“)}

_ —%df{QB —g 0"

= Qo+ 5@ 0y = Q)

where we have used the complex conjugate of the equation {@ _, 0(1’0)} = 0 (see the arrow
at the bottom of the ascent diagram (3.37)). This means that topological correlators of
the B-twisted model do not depend on ;’s, namely they are holomorphic functions of
the chiral parameters t; only. Likewise, topological correlators of the A-twisted model are

holomorphic functions of the twisted chiral parameters t, only.

The moduli space

As the decoupling of the chiral and twisted chiral deformations suggests, the moduli

space of (2,2) theories is a product of two spaces
M= MC X Mt (340)

The spaces M. and M, are parametrized respectively by chiral and twisted chiral param-
eters. Topological correlation functions of B-twisted models are holomorphic functions on

M, whereas those for A-twisted models are holomorphic functions on M,.

Let us see what M, and M, are for the non-linear sigma models on a Kahler man-

ifold M. We have seen that the topological correlators of the A-twisted models depend

exp <—/E¢*w+i/2¢*B>.

for amap ¢ : ¥ — M of the worldsheet to the target, where w is the Kéahler form and B is
the closed B-field. This depends only on the class of w —iB in the group H?(M,C/2miZ)
which is a cylinder of dimension r if h"' (M) = r. Thus, we identify M; as the space of

holomorphically on

the Kéhler class complexified by the B-field class, (complexified Kihler class in short):
[w—iB] € H*(M,C/2miZ).

On the other hand, the topological correlators in the B-twisted model, when possible (i.e.
when M is Calabi-Yau), depends holomorphically on the complex structure of M. Thus,

we identify M, as the space of complex structures on M.
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There is something strange here — since the Kéhler form must be positive definite,
one cannot take the entire cylinder H?(M,C/2miZ) as M; but we must chop-off the
region where the positivity fails. Is M; a space with such a sharp boundary? As noticed
earlier, non-linear sigma models stops to be a good description of the theory when the
curvature is large (compared to 1/a’ which we are setting 1) or equivalently when the size
is small (compared to v/a/ = 1). Thus, the answer to the question is: as the Kihler class
[w] decreases, quantum correction becomes large and we can no longer use the non-linear
sigma model description. H?(M,C/2miZ) is a good approximation to M; only in the
“large volume region” and it must be glued to something else in the interior! This is
a tough but interesting question, and great progress has been made during late 1980’s
through mid 1990’s. As of today, we have mainly two methods to understand the “deep

interior” of M; — one is linear sigma model and another is mirror symmetry.

Before discussing about it, let us look at the other space, M.. Here the decoupling
of chiral and twisted chiral deformations greatly helps. M, does not depend on where
you are in M,. In particular, we can take the large volume limit in M, where the metric
is scaled up to infinity and the curvature is everywhere vanishingly small. In this limit,
the quantum correction is absent and everything is classical. In particular, M, is really
identified as the moduli space of complex structures of M. For a Calabi-Yau manifold
of dimension 3, there is a well-developed machinery to define and study the structure of
the moduli space. It has a metric, called the special geometry, which is determined by

the period integrals of the holomorphic volume form over symplectic basis elements of
H3(M,Z).

Let us now describe the use of mirror symmetry in studying M,. Let M be a Calabi-
Yau manifold and let M be the mirror. Since chiral and twisted chiral rings are exchanged

under mirror symmetry, we find the relation
My(M) = M (M), M (M) = M,(M). (3.41)

As we have just noted, MC(]T/[/) is a classical moduli space of complex structures of M

which we can study without worrying about the quantum correction. Thus, we can learn
about M, (M) by studying M. .(M).

Let us look at an example. Consider the quintic hypersurface M in CP*, which is the

zero set of a degree five polynomial of homogeneous coordinates.
G(ajla To,T3, T4, .1'5) = 0.

It has h"' (M) = 1 coming from the pull-back of the Kéhler class of CP* and h?>' (M) = 101

from the parameters of quintic polynomials G(z). Thus, in the large volume region M,
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looks like the cylinder H?(M,C/2miZ) = R x S'. The mirror M is known to be (a
resolution of) the quotient of a quintic hypersurface in CP* of the type

5 5 5 5 5
2] 29 + 25 + 24 + 25 — D2 29232425 = 0

by the Z2 action on the homogeneous coordinates (21, ...,25) given by z; — w;z;, with

w) = [[_,wi = 1. This indeed has h"'(M) = 101, and h>'(M) = 1. The complex
structure of M is parametrized by . To be more precise, since 1 — ¢2%/5) can be
abosrbed by the coordinate change, say, z; — e 2™/5z, the fifth power ¢° is the right
parameter of MC(]T/[/) The special geometry of this 1)°-space MC(M) is studied in detail
by P. Candelas, X. C. De La Ossa, P. S. Green and L. Parkes in [5], where the first
prediction on the number of rational curves was also made. We see that there are three
special points: ¢° = 0,1,00. At ¢° = 0 the manifold M has Zs symmetry given by
21— e 2% and z; — 2 (i = 2,3,4,5). At ¢° =1, M has a singularity at z; = 1 (V4),
which looks like the origin of w? + w3 + w3 + w} = 0 in C*. In physics, it is called the
conifold singularity while in mathematics it is called the ordinary double point. At this
point, the worldsheet theory is expected to break down. At ¢® = oo, the term 220232425
dominates and the manifold looks like the union of five CP*’s. It turns out that this last
point 1% = oo corresponds to the large volume limit of the original quintic M. The other

two points are in the deep interior of M, (M).

Large Volume
[ ]

Singular

LG Orbifold

Figure 2: The Kahler moduli space of quintic
This provides a complete understanding of the geometry of M, (M), but there remain
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some physical questions such as the interpretation of the two special points in the original
theory. The situation is greatly improved by the use of linear sigma models which are
very simple gauge theories with (2,2) supersymmetry [6]. The twisted chiral parameters
of a linear sigma model are the theta parameters of the gauge fields and their complex
partners. The parameter space include the regions corresponding to non-linear sigma
models on large volume Calabi-Yau manifolds but it also contains other regimes that
have no such geometrical interpretation. Figure 2 shows the understanding of M;(M)
obtained by the linear sigma model. The shaded region correspond to the regime where
the theory is well-described by non-linear sigma model on the quintic hypersurface M.
The point marked “LG Orbifold” is where the theory is the Landau-Ginzburg model of

five variables z, ..., x5 with superpotential
W — G(Ila X2, X3,T4, .1'5)

moded out by the orbifold group Zs generated by z; — €*>™/®z,. This corresponds to the
point 1% = 0. The point marked “Singular” is where the theory is singular becuase a

non-compact flat direction opens out. This corresponds to the point 1% = 1.

3.7 Linear sigma models

3.8 Degree d hypersurface in CP"V ™!
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