Theorem. Let m : X — B be a
proper morphism of varieties, with B
a smooth curve. If the general fiber F
of f is rationally connected, then f has
a section.

Corollary. Let X ~» Y be a domi-
nant map of varieties, with general fiber

F'. It Y and F are rationally connected,
then X is.



Preliminaries.

We will assume throughout that X is
a smooth, connected projective variety,
that m : X — B is a nonconstant mor-
phism to a smooth curve B, and that for

general b € B the fiber X = 77 1(b) is
rationally connected.

We may also take B = PL: the general
case will follow from this.

Finally, for simplicity we will assume
the fiber dimension of 7 is at least 3.



Definition. An n-pointed stable map
(Cip1, ... ypn; f: C— X) consists of

e a nodal curve C:

e n distinct ordered smooth points
p1,...,pn € C; and

e amap f:C — X

such that #Aut(f) < oo.

For any 6 € Ni(X), the moduli space

of all such maps with C' of genus g and
f+|C] = B is denoted M 4 (X, 3).

Note that we have a map

where 7,3 = d- | B] (and we write d for
d-|BJ).



Notation. Let C be a curve, E a lo-
cally free sheat on C, p € C' a smooth

point and £ C E; a one-dimensional
subspace of the fiber E),.

We will denote by E(&) the sheaf of
rational sections of F having at most
a simple pole at p in the direction of &
and regular elsewhere.



Lemma. Fix ¢, I and an integer
n. There exists an integer NV such that
if p1,...,py € C are general points,
& C Ep. general one-dimensional sub-
spaces, and we set

E' = BE(&+-+&y)

then for q,...,qn, € C arbitrary, we
have

Hl(Ca E,(_Ql — - —qn)) = 0.

Proof. For some m, we have
HYC,E(p1+ -+ +pm)) = 0.

Now just take N = rank(E)-(m-+n+g)
and specialize to the case where the &;
span the fibers of £ at m+n+ g points.



Normal bundles to nodal curves.

Suppose C' = DU D' C X is a nodal

curve with D and D’ smooth and p =
DN D" anode of C. Let

§C (Np/x)p
be the one-dimensional subspace given

by TpD’ .



We have an inclusion of sheaves

0— Np/x = Neyx)lp

identifying (N y )| p with the sheaf N/ x(£)
of sections of Ny, /X having a pole at p
in the direction &.

A first-order deformation o € H O(C , N / )
of C'in X smooths the node piff o|p ¢
HO(D7 ND/X)



On with the argument!

Given the basic setup m : X — B,
our goal will be to construct a curve
C' C X such that by deforming C' in
X, we can move the branch points of
the projection

Tlc : C — B

independently—in other words, such that
the map

¢ : Mg,@(Xa ﬁ) - MQ,O(Ba d)
is locally dominant at the point |[C].

Such a curve will be called flexible.
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Since the space of branched covers of P1
of degree d and genus ¢ is irreducible,
and its closure in M 2 o(PL, d) contains

points f : C' — Pl at the boundary
consisting of d copies of P! each map-
ping isomorphically to the target, we
can degenerate a flexible curve to a union
of d sections of 7 : X — B = Pl

Note: this is the only point at which
we will use the hypothesis that B =
P!, We could avoid this by invoking
the (less well known) fact that the space
of branched covers of B is irreducible
whenever ¢ is large relative to d and
the genus of B.
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When is a curve flexible?

Suppose C' C X is a smooth curve,
with 7| : C — B simply ramified
at points p1,...,pp € C, and suppose
that the points p; are smooth points of
the fiber of 7, so that the differential

1
T - (Neyxpy = Trp)P
is surjective. Then it
HYC, Noyx(=p1— - —pp)) =0,
it follows that
HY(C, Noyx) = @il Neyx)p;

and so deformations of C' C X domi-
nate deformations of its branch divisor.
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Now suppose Cy C X is any smooth
curve, disjoint from the singular locus
of the map 7.

Let p1,...,pn € Cpbe general points
of Cy and

§i € (NCO/X)pi = Ip; Xp,
general normal directions to Cj at the
points p;. Since X, Is rationally con-
nected, we can find a smooth rational
curve C; C Xp, such that

o (;NC ={p;}

o 1),C; =¢&;; and

o NCZ' / y 1s generated by global sec-
tions
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Let
C=Cul JG
)

By our Lemma, for N > 0, we see
that N is generated by global sections,
so that C' can be deformed to a smooth
curve C’, still of genus ¢; and moreover,
if R is the ramification divisor

H'(C. Neyx(=R)) = 0

so the same is true for 7.
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So what’s the problem?

Just one: the requirement that C' be
disjoint from the singular locus of 7. It
the singular locus of m has codimension
2 or more in X, we can just take C a
general complete intersection in X and
we're done. But if the singular locus of
7 has codimension 1—in other words, if
a fiber of m has multiple components—
this is a problem.
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This is serious: if a fiber X4 has a mul-
tiple component, then any point of C'N
X 18 necessarily a ramification point of
mlc : C — B, and the corresponding
branch point ¢ of 7|~ cannot be moved
under deformation.

And, of course, if 7 has an everywhere
nonreduced fiber, there can’t be any sec-
tion of 7.
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To deal with this, we need a second
construction. Let C' C X be any smooth
curve, A C B the branch divisor of 7|,
b € B notin A and p,g € C N X,
Choose a rational curve D C X such
that

CND = {p,q}.

After adding a collection of rational curves
C; in fiber of m meeting C' once, we can
deform the result to a smooth curve C”,
with the property that:

The branch divisor A" of 7| is the
union of a small deformation of A with
a pair of points near b, each having mon-
odromy exchanging the sheets contain-
ing p and q.
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In other words: given a smooth curve
C' C X, we can introduce m new pairs
of branch points of 7|, each with as-
signed monodromy. We can also ensure
that the deformations resulting curve
C" C X move the branch points of 7|
freely.
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Now: let C' C X be a general com-
plete intersection. Let M C B be the
locus of fibers with multiple components.
For each b € M, let o, be the mon-
odromy of 7|~ around b, and express
oy, as a product of transpositions:

gp = Tb,lTb,Z . "Tb,kb

Next, foreachb € M anda =1,... k
we create two new branch points with
monodromy 7 ,; and for each b we let
one of each of these pairs tend to b.
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The limiting stable curve will then have
no monodromy around b € M; that is,
any component of the limit flat over B
will be branched away from M.
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For arbitrary B:

Just express B as a branched cover
g: B — Pl of P! and take the “norm”
of m under ¢: that is, the variety Y over
P! whose fiber over a general p € P! is
the product

v, = ]| X,
g€g~(p)
By the result for P!, the map Y — P!
has a section, and hence so does X —

B. (de Jong)
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A converse

Taken literally, the converse of the the-
orem is nonsense: families with any kind
of fibers may have sections. But it’s still
reasonable to ask whether the theorem
holds for any larger, geometrically de-
fined class of varieties.

For example, Serre asked if it held for
families of O-acyclic varieties—that is,
varieties X with H*(X, Ox) = 0 for all
1> 0.
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We do have the

Theorem (Graber, Mazur, Starr, -).
Let m : X — B be any morphism. If,
for any irreducible curve C' C B the
restriction

WciXC:XXBC%C

has a section, then X contains a sub-
variety Z dominating B whose general
fiber Zp is rationally connected.



22

We can apply this to the universal
family over the moduli space of of polar-
ized Enriques surfaces to conclude the

Corollary There exist one-parameter
families of Enriques surfaces without ra-
tional sections.

G. Lafon has actually constructed fam-
ilies of Enriques surfaces with everywhere
nonreduced fibers.



