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To avoid complications: throughout,
X will be a smooth projective variety
of dimension n over C.

For statements for singular varieties
and varieties over field of positive char-
acteristic or non-algebraically closed fields,
see Kollar.



Definitions

X 1s rational if there exists a birational
map P" «~ X: that is, if its function
field

C(X) = Clzy,...,zpn).

X is unirational if there exists a dom-
inant rational map P ~» X for some
m; that is, if its function field

C(X) C C(:Cl, . ,:Em>.

Equivalently, X is unirational if there
exists a dominant rational map P" ~-

X; that is, if C(X) C C(xq,...,xn).



Rational Connectivity (Campana;
Kollar-Miyaoka-Mori)

X is rationally connected it two general
points p, g € X can be joined by a chain
of rational curves.

This is equivalent to the a priori stronger
condition that any finite subset of X is
contained in a single rational curve; if
n > 3 we can also require this curve C
to be smooth.



For curves and surfaces, the three notions—
rationality, unirationality and rational
connectivity—coincide.

For higher-dimensional varieties, how-
ever, they behave quite differently. The
primary goal of this talk will be to give
an overview of the properties of ratio-
nal connectivity, emphasizing the ways
in which they differ from (known) prop-
erties of rationality and unirationality.



1. There exists a “local” criterion for
rational connectivity:

Lemma. X is rationally connected iff
there exists a map f : P! — X such
that the pullback f*Ty is ample.

If n > 3, we can also say that X
is rationally connected iff there exists
a smooth rational curve C' C X with
ample normal bundle.

As an application, we have:



2. Rational connectivity is both an
open and a closed condition: we have

Lemma. If X — B is a smooth, pro-
jective morphism, then the locus

{b € B : X} is rationally connected }
is both open and closed in B.

It’s not known whether rationality is
open or closed, though work of Hassett
suggests that the answer is “neither” (to
be discussed later).



Closed: For any pg, gy € Xp, we can
join nearby points pp, qp € Xp by a ra-
tional curve Cp C Xp; the limit of Cp
as b — 0 will contain a chain of rational
curves in X through pg and q.

Open: Say X contains a smooth ra-
tional curve C' with ample normal bun-
dle. From the sequence

0= Neyxy = Neyxy — (Nxg xdle =0
we see that the normal bundle of C' in
X 1s generated by global sections; thus

C' deforms to a curve Cp C X}, whose
normal bundle remains ample.
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3. There 1s a divisor-theoretic cri-
terton for rational connectivity. we
have the

Theorem (C, K-M-M). If X is Fano—
that is, it —Ky is ample—then X is
rationally connected.

Corollary. If X ¢ P! is a smooth
hypersurtface of degree d, then X is ra-
tionally connected ifft d < n + 1.

(Exercise: prove this corollary using
only the two lemmas above.)
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Compare this with the situation for
rationality: as Kollar points out, no one
has ever found a smooth rational hyper-
surface of degree 4 or more; we don'’t
know if one exists.

As for unirationality, we have the

Theorem (Paranjape, Srinivas): For
any d, there exists N = N(d) such that
for n > N, a general hypersurface X C
P+ is unirational.

This was extended to any smooth hy-
persurface (with substantially larger V)
by Mazur, Pandharipande, -
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4. There is (conjecturally, at least) a
numerical criterion for rational con-
nectivity: it’s not hard to see that if
X is rationally connected, then all con-
travariant holomorphic tensors on X van-
ish, and Mumford has conjectured that
the converse should be true as well, i.e.,

Conjecture 1. X is rationally con-
nected iff

WX, (THE™) = 0 ¥Ym >0

In this connection, we should also men-
tioned the related

Conjecture 2. X is uniruled iff
(XK =0 Vm >0
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5. There exists a “quantitative ver-
ston” of rational connectivity.

Suppose we define an equivalence rela-
tion on the points of X by saying that
p ~ q it p and q are connected by a
chain of rational curves. We could try
to construct a quotient of X by this
relation—that is, a map

T X — 7

with the properties that

e the fibers of 7 are rationally connected:;
and

e all rational curves in X are contained
in fibers of .
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Such a quotient can’t possibly exist in
general (for example, a K3 surface has
countably many rational curves).

But suppose we weaken the require-
ments on the map 7 : X — Z, to

e the fibers of 7 are rationally connected;
and

e almost all rational curves in X are
contained in fibers of m, in the sense
that for very general z € Z, any ra-
tional curve in X meeting X, lies in

XZ.

Such a map is called a maximal ra-
tionally connected fibration, or mrc fi-
bration for short; and we have the



15

Theorem (C, K-M-M). The mrc fibra-
tion of X exists and is unique up to bi-
rational equivalence.

The target Z of the mrc fibration of
X 1s called the mrc quotient of X.
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We can also define the rational di-
mension of X as

rdim(X) = dim X — dim Z,

or simply as the maximal dimension of
a rationally connected subvariety of X
through a very general point of X. We
see that

0 < rdim(X) < dim(X)
with

e rdim(X) > 0 iff X is uniruled, and

o rdim(X) = dim(X) iff X is rationally
connected.
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6. Rational connectivity behaves well
in fibrations. Simply, we have the

Theorem (Graber, Starr, -). Let X ~»
Y be a dominant map of varieties, with
general fiber F'. It Y and F' are ratio-
nally connected, then X is.

This is certainly not the case for ratio-
nality: for example, consider the projec-

tion of a cubic threefold X c P?* onto
a line.



18

This theorem follows from the (very
slightly stronger)

Theorem. Let f : X — B be a
proper morphism of varieties, with B
a smooth curve. If the general fiber F
of f is rationally connected, then f has
a section.

(More about this later)
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T'wo corollaries of this theorem, pointed
out by Kollar:

Corollary. If X is any variety, and
f X ~» Z its mrc fibration, then Z is
not uniruled.

In other words, every variety is uniquely
(up to birational equivalence) express-
ible as a fibration, with rationally con-
nected fibers, over a non-uniruled vari-
ety.

Corollary. Conjecture 2 implies Con-
jecture 1.
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An arithmetic question

If X is defined over a number field
K and is rational or unirational over
K, then its K-rational points are dense.
More generally, if X is unirational over

K. it is potentially dense: for some fi-
nite extension L of K, X (L) is dense.

Question. Is the same true for ratio-
nally connected varieties?

More generally, what arithmetic con-
sequences can we deduce from the geo-
metric condition of rational connectiv-
ity?
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An embarrassing confession

Now that we've spent all this time dif-
ferentiating the conditions of rational-
ity, unirationality and rational connec-
tivity, it’s time to confess:

We don’t actually know that the classes
of unirational varieties and rationally
connected varieties are distinct.

We don’t logically need to know the
answer to this, but it does raise some
Interesting questions.
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How can we distinguish between unira-
tional varieties and rationally connected
varieties?

One possible way:

If X is unirational, then X contains
lots of rational subvarieties of every di-
mension between 1 and n = dim(X).

This raises the

Question. Does a rationally connected
variety necessarily contain any rational
subvarieties of dimension > 17
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Consider the following three varieties:

e A general hypersurface X ¢ P of
degree d = n + 1, with n large;

e A double cover X — P" branched
over a general hypersurface B C P" of
degree 2n, again with n large; and

e A general hypersurface X € P2 x P?
of bidegree (2, d), with d large.

The first two are rationally connected
by virtue of having — Ky ample; the
third by virtue of being a conic bundle
over P2 via projection on the second fac-
tor.
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Question. Are any of these three va-
rieties unirational?

More specifically, we can ask:

Do the first two contain any rational
surfaces”

Does the third contain any rational
surfaces other than preimages of ratio-
nal curves in the second factor?
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Totally bogus (but possibly sugges-
tive) dimension count:

By way of a preliminary: suppose we
didn’t know the theorem of Campana
and Kollar-Miyaoka-Mori, and wanted
to guess whether a hypersurface X C
PPt of degree d was rationally con-
nected. We could ask:

What is the expected dimension of the
space of rational curves C' C X of de-
oree e’
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The space of rational curves C' C P+l
of degree e has dimension

(e+1)(n+2)—4.

The number of conditions for such a
curve to lie on X 1s

e-d-+ 1.

So the expected dimension of the fam-
ily of rational curves of degree e on X
1S

e(n+2—d)+n—3.

(We could also obtain this number as
the Euler characteristic x(N¢,x) of a

rational curve C' of degree e on a hyper-
surface X C P of degree d.)
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Open problem: Is this true for a gen-
eral hypersurface X < P"* of degree
d’

A related question, proposed by de
Jong:

Question: In case e = 1, is this true
for an arbitrary smooth hypersurface X C

Pl of degree d < n + 17
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Outcome: If the expected dimension
of the family of rational curves of degree
e on X 1S

e(n+2—d)+n—3,

then

o If d < n+2, we expect lots of rational
curves, more as e increases; and

e If d > n + 2, we expect that the
rational curves on X will never fill up

X.

In other words, the dimension count
suggests the correct conclusion.
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Now let’s try it for rational surfaces,
for example images of maps f : P? —
Pt given by polynomials of degree e:

The space of such surfaces has dimen-

sion )
(e‘; >(n+2)—9.

The number of conditions for such a sur-
face to lie on X is

ed + 2
(27)
So the expected dimension of the fam-
ily of such surfaces on X is

n+ 92 — d?

> e+ Ole).
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Of course, this proves nothing. So we'll
just leave it as an open problem:

For which d does a general hypersurtace
X c P of degree d contain rational
surfaces?



