Homological Mirror Symmetry for Blowups of \mathbb{CP}^2

Denis Auroux (MIT)

(joint work with L. Katzarkov, D. Orlov) (after ideas of Kontsevich, Seidel, Hori, Vafa, ...)

See: math.AG/0404281, math.AG/0506166

Mirror Symmetry

Complex manifolds: (X, J) locally $\simeq (\mathbb{C}^n, i)$

Look at complex analytic cycles + holom. vector bundles, or better: coherent sheaves Intersection theory = Morphisms and extensions of sheaves.

Symplectic manifolds: (Y, ω) locally $\simeq (\mathbb{R}^{2n}, \sum dx_i \wedge dy_i)$

Look at Lagrangian submanifolds (+ flat unitary bundles):

$$L^n \subset Y^{2n}$$
 with $\omega_{|L} = 0$ (locally $\simeq \mathbb{R}^n \subset \mathbb{R}^{2n}$; in dim _{\mathbb{R}} 2, any embedded curve!)

Intersection theory (with quantum corrections) = Floer homology (discard intersections that cancel by Hamiltonian isotopy)

Mirror symmetry:

D-branes = boundary conditions for open strings.

Homological mirror symmetry (Kontsevich): at the level of derived categories,

A-branes = Lagrangian submanifolds, B-branes = coherent sheaves.

HMS Conjecture: Calabi-Yau case

$$X, Y$$
 Calabi-Yau $(c_1 = 0)$ mirror pair $\Rightarrow \begin{bmatrix} D^b Coh(X) \simeq D\mathcal{F}(Y) \\ D\mathcal{F}(X) \simeq D^b Coh(Y) \end{bmatrix}$

Coh(X) = category of coherent sheaves on X complex manifold.

 D^b = bounded derived category:

Objects = complexes
$$0 \to \cdots \to \mathcal{E}^i \xrightarrow{d^i} \mathcal{E}^{i+1} \to \cdots \to 0$$
.

Morphisms = morphisms of complexes (up to homotopy, + inverses of quasi-isoms)

 $\mathcal{F}(Y) = \text{Fukaya } A_{\infty}\text{-category of } (Y, \omega). \text{ Roughly:}$

Objects = (some) Lagrangian submanifolds (+ flat unitary bundles)

Morphisms: $\operatorname{Hom}(L, L') = \mathbb{C}F^*(L, L') = \mathbb{C}^{|L \cap L'|}$ if $L \cap L'$. (or $\bigoplus \operatorname{Hom}(\mathcal{E}_p, \mathcal{E}'_p)$) (Floer complex, graded by Maslov index)

with: differential $d = m_1$; product m_2 (composition; only associative up to homotopy); and higher products $(m_k)_{k>3}$ (related by A_{∞} -equations).

Fukaya categories

$$\operatorname{Hom}(L, L') = CF^*(L, L') = \mathbb{C}^{|L \cap L'|} \text{ if } L \pitchfork L'. \quad (\text{or: } \bigoplus_{p \in L \cap L'} \operatorname{Hom}(\mathcal{E}_p, \mathcal{E}'_p))$$

• Differential $d = m_1 : \operatorname{Hom}(L_0, L_1) \to \operatorname{Hom}(L_0, L_1)[1]$

$$\langle m_1(p), q \rangle = \sum_{u \in \mathcal{M}(p,q)} \pm \exp(-\int_{D^2} u^* \omega)$$

counts pseudo-holomorphic maps
(in dim_R 2: immersed discs with convex corners)

• Product $m_2 : \operatorname{Hom}(L_0, L_1) \otimes \operatorname{Hom}(L_1, L_2) \to \operatorname{Hom}(L_0, L_2)$

 $\langle m_2(p,q),r\rangle$ counts pseudo-holomorphic maps

• Higher products m_k : Hom $(L_0, L_1) \otimes \cdots \otimes \operatorname{Hom}(L_{k-1}, L_k) \to \operatorname{Hom}(L_0, L_k)[2-k]$

 $\langle m_k(p_1,\ldots,p_k),q\rangle$ counts pseudo-holomorphic maps

HMS Conjecture: Fano case

$$X$$
 Fano $(c_1(TX) > 0) \stackrel{M.S.}{\longleftrightarrow}$ "Landau-Ginzburg model" $\begin{cases} Y \text{ (non-compact) manifold} \\ W : Y \to \mathbb{C} \text{ "superpotential"} \end{cases}$

$$D^bCoh(X) \simeq D^bLag(W)$$

$$D^{\pi}\mathcal{F}(X) \simeq D^bSing(W)$$

 $D^bLag(W)$ (Lagrangians) and $D^bSing(W)$ (sheaves) = symplectic and complex geometries of singularities of W.

If $W: Y \to \mathbb{C}$ is a Morse function (isolated non-degenerate crit. pts):

 $L_i \subset \Sigma_0$ Lagrangian sphere = vanishing cycle associated to γ_i (collapses to crit. pt. by parallel transport)

Seidel: $Lag(W, \{\gamma_i\})$ finite, directed A_{∞} -category.

Objects: L_1, \ldots, L_r .

$$\operatorname{Hom}(L_{i}, L_{j}) = \begin{cases} CF^{*}(L_{i}, L_{j}) = \mathbb{C}^{|L_{i} \cap L_{j}|} & \text{if } i < j \\ \mathbb{C} \cdot \operatorname{Id} & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}$$

Products: $(m_k)_{k\geq 1}$ = Floer theory for Lagrangians $\subset \Sigma_0$.

Categories of Lagrangian vanishing cycles

 $L_i \subset \Sigma_0$ Lagrangian sphere = vanishing cycle associated to γ_i

Seidel: $Lag(W, \{\gamma_i\})$ finite, directed A_{∞} -category.

Objects: L_1, \ldots, L_r .

$$\operatorname{Hom}(L_{i}, L_{j}) = \begin{cases} CF^{*}(L_{i}, L_{j}) = \mathbb{C}^{|L_{i} \cap L_{j}|} & \text{if } i < j \\ \mathbb{C} \cdot \operatorname{Id} & \text{if } i = j \\ 0 & \text{if } i > j \end{cases}$$

Products: $(m_k)_{k>1}$ = Floer theory for Lagrangians $\subset \Sigma_0$.

- m_k : Hom $(L_{i_0}, L_{i_1}) \otimes \cdots \otimes$ Hom $(L_{i_{k-1}}, L_{i_k}) \rightarrow$ Hom $(L_{i_0}, L_{i_k})[2-k]$ is trivial unless $i_0 < \cdots < i_k$.
- m_k counts discs in Σ_0 with boundary in $\bigcup L_i$, with coefficients $\pm \exp(-\int_{D^2} u^*\omega)$.
- in our case $\pi_2(\Sigma_0) = 0$, $\pi_2(\Sigma_0, L_i) = 0$, so no bubbling.

Remarks:

- $\langle L_1, \ldots, L_r \rangle$ = exceptional collection generating $D^b Lag$.
- objects also represent Lefschetz thimbles (Lagrangian discs bounded by L_i , fibering above γ_i)

Theorem. (Seidel) Changing $\{\gamma_i\}$ affects $Lag(W, \{\gamma_i\})$ by mutations; $D^bLag(W)$ depends only on $W:(Y,\omega)\to\mathbb{C}$.

Example 1: weighted projective planes

(Auroux-Katzarkov-Orlov, math.AG/0404281; cf. work of Seidel on \mathbb{CP}^2)

 $X = \mathbb{CP}^2(a, b, c) = (\mathbb{C}^3 - \{0\})/(x, y, z) \sim (t^a x, t^b y, t^c z)$ (Fano orbifold). $D^bCoh(X)$ has an exceptional collection $\mathcal{O}, \mathcal{O}(1), \dots, \mathcal{O}(N-1)$ (N = a + b + c) (Homogeneous coords. x, y, z are sections of $\mathcal{O}(a), \mathcal{O}(b), \mathcal{O}(c)$)

 $\operatorname{Hom}(\mathcal{O}(i), \mathcal{O}(j)) \simeq \operatorname{deg.}(j-i)$ part of symmetric algebra $\mathbb{C}[x,y,z]$ (degs. a,b,c) All in degree 0 (no Ext's); composition = obvious.

Mirror: $Y = \{x^a y^b z^c = 1\} \subset (\mathbb{C}^*)^3$, W = x + y + z. $(Y \simeq (\mathbb{C}^*)^2 \text{ if } gcd(a, b, c) = 1)$ \mathbb{Z}/N (N = a + b + c) acts by diagonal mult., the N crit. pts. are an orbit; complex conjugation. We choose ω invariant under \mathbb{Z}/N and complex conj. $(\Rightarrow [\omega] = 0 \text{ exact})$

Theorem. $D^bLag(W) \simeq D^bCoh(X)$.

(this should extend to weighted projective spaces in all dimensions; for technical reasons we only have a partial argument when $\dim_{\mathbb{C}} \geq 3$).

Non-commutative deformations

$$X = \mathbb{CP}^2(a, b, c);$$
 $Y = \{x^a y^b z^c = 1\} \subset (\mathbb{C}^*)^3, \ W = x + y + z,$

Theorem. If ω is exact, then $D^bLag(W) \simeq D^bCoh(X)$.

Can deform Lag(W) by changing $[\omega]$ (and introducing a B-field).

Choose
$$t \in \mathbb{C}$$
, and take $\int_{S^1 \times S^1} [B + i\omega] = t$ $(S^1 \times S^1 = \text{generator of } H_2(Y, \mathbb{Z}) \simeq \mathbb{Z})$
 $\to \text{ deformed category } D^b Lag(W)_t.$

This corresponds to a **non-commutative deformation** X_t of X: deform weighted polynomial algebra $\mathbb{C}[x, y, z]$ to

$$yz = \mu_1 zy$$
, $zx = \mu_2 xz$, $xy = \mu_3 yx$, with $\mu_1^a \mu_2^b \mu_3^c = e^{it}$

Theorem. $\forall t \in \mathbb{C}, \ D^b Lag(W)_t \simeq D^b Coh(X)_t.$

Example 2: Del Pezzo surfaces

(Auroux-Katzarkov-Orlov, math.AG/0506166)

 $X = \mathbb{CP}^2$ blown up at $k \leq 9$ points, $-K_X$ ample (or more generally, nef).

 $D^bCoh(X)$ has an exceptional collection \mathcal{O} , $\pi^*T_{\mathbb{P}^2}(-1)$, $\pi^*\mathcal{O}_{\mathbb{P}^2}(1)$, $\mathcal{O}_{E_1},\ldots,\mathcal{O}_{E_k}$

Compositions encode coordinates of blown up points. For generic blowups, $\text{Hom}(\mathcal{O}_{E_i}, \mathcal{O}_{E_j}) = 0$. Infinitely close blowups give pairs of morphisms in deg. 0 and 1 (recover \mathcal{O}_C (-2-curve) as a cone).

Mirror: mirror to \mathbb{CP}^2 compactifies to $\overline{M} = \text{resolution of } \{XYZ = T^3\} \subset \mathbb{CP}^3$, with elliptic fibration $W = T^{-1}(X + Y + Z) : \overline{M} \to \mathbb{C} \cup \{\infty\}$.

W is Morse, with 3 crit. pts. in $\{|W| < \infty\}$; fiber at infinity has 9 components.

Mirror to $X = \text{deform } (\overline{M}, W)$ to bring k of the crit. pts. over ∞ into finite part. Get an elliptic fibration over $\{|W_k| < \infty\}$: $W_k : M_k \to \mathbb{C}$, with 3 + k sing. fibers. (symplectic form to be specified later)

Theorem. For suitable choice of $[B + i\omega]$, $D Lag(W_k) \simeq D^b Coh(X_k)$.

The vanishing cycles of W_k

Symplectic deformation parameters: $[B + i\omega] \in H^2(M_k, \mathbb{C})$:

- Area of fiber: $\tau = \frac{1}{2\pi} \int_{\Sigma} (B + i\omega) \longrightarrow \text{cubic curve } \mathbb{CP}^2 \supset E \simeq \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ (all blowups are at points of E; think of E as zero set of $\beta \in H^0(\Lambda^2 T)$.)
- Area of C ($\partial C = L_0 + L_1 + L_2$): $t = \frac{1}{2\pi} \int_C (B + i\omega) \longleftrightarrow \sigma \in \operatorname{Pic}_0(E)$ (same parameter as in Example 1; commutative deformations correspond to t = 0; takes values in $\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$.)

The vanishing cycles of W_k

Symplectic deformation parameters: $[B + i\omega] \in H^2(M_k, \mathbb{C})$:

- Area of fiber: $\tau = \frac{1}{2\pi} \int_{\Sigma} (B + i\omega) \longrightarrow \text{cubic curve } \mathbb{CP}^2 \supset E \simeq \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$ (all blowups are at points of E; think of E as zero set of $\beta \in H^0(\Lambda^2 T)$.)
- Area of C ($\partial C = L_0 + L_1 + L_2$): $t = \frac{1}{2\pi} \int_C (B + i\omega) \longleftrightarrow \sigma \in \operatorname{Pic}_0(E)$ (same parameter as in Example 1; commutative deformations correspond to t = 0; takes values in $\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$.)
- Areas of cycles C_j ($\partial C_j = L_{3+j} + \ldots$): $t_j = \frac{1}{2\pi} \int_{C_j} (B + i\omega)$, take values in $\mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$.

 = positions of blown up points on E.

For $t_i - t_j = 0 \mod (\mathbb{Z} + \tau \mathbb{Z})$, L_{3+i} , L_{3+j} become Ham. isotopic, acquire $HF^*(L_{3+i}, L_{3+j}) \simeq H^*(S^1)$. This corresponds to infinitely close blowups, where -2-curves appear.