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. For § C R nonempty and bounded above, let s = sup S; then for all ¢ > 0, there
exists x € S such that x > s — e.

. For any s and s’ € S, suppose that go f(s) = go f(s'). Then g(f(s)) = g(f(s')) by
definition of composition. Since g is injective, f(s) = f(s’). Then since f is injective,
s = 5. Hence g o f is injective.

. Proof by induction on n. For n = 0, clearly 2°+* = 2 > 2 = 20 4+ 2. Now assume that
for a given n, 2" > 2n + 2. Then 272 = 2.2nFL = ntl L ontl > 9 1 24 In 4+ 2 =
2(n+1)+2+n > 2(n+1)+2 where the last inequality is because n > 0 for all natural
n.

. (a) f(z) = [z]; ) f(z) =z. (c): fx <y, then SN[0,z] C SNJ0,y], so any upper
bound (such as sup S N [0,y]) for the latter is an upper bound for the former, so the
least upper bound must satisfy sup S N[0, z] <sup SNJ[0,y], so f(x) < f(y). Hence
f is monotonic, hence integrable on [0, 10].

. Proof 1: Forall x € R, |g(z)| < 1,s0 =1 < g(z) < 1, so by the comparison theorem for
integrals, —(b —a) = f; —1ldz < ffg(x) dr < fab ldx =b—a, so |fabg(x) dr| <b—a.
Proof 2: By an assigned problem (A5#6 in fact) g integrable implies |g| integrable,
and by another assigned problem (A4#5) and the comparison theorem for integrals,
] fabg(x) dz| < fab lg(z)] dx < fab ldr =b— a.

(Proof 1 is perhaps better than Proof 2 since it doesn’t use g integrable implies |g|
integrable, which is relatively hard to prove.)

. Proof 1: If there were a limit, say K € R, then by the definition of limit, for all
e > 0 there exists § > 0 such that 0 < |z| < § implies |1/z — K| < ¢, that is,
—e < 1/x— K < e. For any such € and 4, by the Archimedean property there exists an
integer n > max(1/d, e+ K), that is, n > 1/§ and n > ¢ + K. Then = = 1/n satisfies
0 < |z|] <d but 1/z — K > €, contradiction.

Proof 2: If there were a limit, say K € R, then basic limit theorem 1c implies 1 =
lim,_, .:1:% = (lim, 0 z)(lim, o %) = 0K = 0, contradiction.

. Proof 1: since all terms in the inequalities are nonnegative, |fg(x)| = |f(x)| |g(z)| <
lz] - 1 = |z|, so —|z| < fg(x) < |z|. Since lim, o —|z| = lim,|z| = 0, by the
squeezing theorem lim, o fg(z) = 0. But |f(0)] < [0, so f(0) = 0 and fg(0) =
0g(0) = 0. Hence lim,_,o fg(x) = fg(0).

Proof 2: Given € > 0, take 0 = €. Then 0 < |z—0| < ¢ implies | fg(z)| = | f(z)] |g(x)]
|z| -1 < 0 =€, s0lim, o fg(xz) = 0. But |f(0)] < [0], so f(0) =0 and fg(0) = 0g(0)
0. Hence lim,_,o fg(x) = fg(0).
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