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1. For S ⊂ R nonempty and bounded above, let s = sup S; then for all ε > 0, there
exists x ∈ S such that x > s− ε.

2. For any s and s′ ∈ S, suppose that g ◦ f(s) = g ◦ f(s′). Then g(f(s)) = g(f(s′)) by
definition of composition. Since g is injective, f(s) = f(s′). Then since f is injective,
s = s′. Hence g ◦ f is injective.

3. Proof by induction on n. For n = 0, clearly 20+1 = 2 ≥ 2 = 20̇ + 2. Now assume that
for a given n, 2n+1 ≥ 2n+ 2. Then 2n+2 = 2 · 2n+1 = 2n+1 + 2n+1 ≥ 2n+ 2 + 2n+ 2 =
2(n+1)+2+n ≥ 2(n+1)+2 where the last inequality is because n ≥ 0 for all natural
n.

4. (a) f(x) = [x]; (b) f(x) = x. (c): If x ≤ y, then S ∩ [0, x] ⊂ S ∩ [0, y], so any upper
bound (such as sup S ∩ [0, y]) for the latter is an upper bound for the former, so the
least upper bound must satisfy sup S ∩ [0, x] ≤ sup S ∩ [0, y], so f(x) ≤ f(y). Hence
f is monotonic, hence integrable on [0, 10].

5. Proof 1: For all x ∈ R, |g(x)| ≤ 1, so −1 ≤ g(x) ≤ 1, so by the comparison theorem for

integrals, −(b− a) =
∫ b

a
−1 dx ≤

∫ b

a
g(x) dx ≤

∫ b

a
1 dx = b− a, so |

∫ b

a
g(x) dx| ≤ b− a.

Proof 2: By an assigned problem (A5#6 in fact) g integrable implies |g| integrable,
and by another assigned problem (A4#5) and the comparison theorem for integrals,

|
∫ b

a
g(x) dx| ≤

∫ b

a
|g(x)| dx ≤

∫ b

a
1 dx = b− a.

(Proof 1 is perhaps better than Proof 2 since it doesn’t use g integrable implies |g|
integrable, which is relatively hard to prove.)

6. Proof 1: If there were a limit, say K ∈ R, then by the definition of limit, for all
ε > 0 there exists δ > 0 such that 0 < |x| < δ implies |1/x − K| < ε, that is,
−ε < 1/x−K < ε. For any such ε and δ, by the Archimedean property there exists an
integer n > max(1/δ, ε+ K), that is, n > 1/δ and n > ε + K. Then x = 1/n satisfies
0 < |x| < δ but 1/x−K > ε, contradiction.
Proof 2: If there were a limit, say K ∈ R, then basic limit theorem 1c implies 1 =
limx→0 x

1
x

= (limx→0 x)(limx→0
1
x
) = 0K = 0, contradiction.

7. Proof 1: since all terms in the inequalities are nonnegative, |fg(x)| = |f(x)| |g(x)| ≤
|x| · 1 = |x|, so −|x| ≤ fg(x) ≤ |x|. Since limx→0−|x| = limx→0 |x| = 0, by the
squeezing theorem limx→0 fg(x) = 0. But |f(0)| ≤ |0|, so f(0) = 0 and fg(0) =
0g(0) = 0. Hence limx→0 fg(x) = fg(0).
Proof 2: Given ε > 0, take δ = ε. Then 0 < |x−0| < δ implies |fg(x)| = |f(x)| |g(x)| ≤
|x| · 1 < δ = ε, so limx→0 fg(x) = 0. But |f(0)| ≤ |0|, so f(0) = 0 and fg(0) = 0g(0) =
0. Hence limx→0 fg(x) = fg(0).


