
Appendix C

Molecular Phylogenetics

C.1 Introduction

The main goal in molecular phylogenetics is to reconstruct a phylogenetic tree
from a set of protein or genomic sequences. The tree will represent the history
of a set of organisms that share a common ancestor. For this purpose, sequences
need to be homologous; that is, they should have evolved from a common ancestral
sequence. Alignment of homologous sequences is the first step to any phylogenetic
inference. For instance, let us try to align two small sequences that we suspect are
homologous: S 1 = ACTGCGAA and S 2 = CCGTCT AA. An alignment is a map
between a set of strings of the same length that contain the same nucleotides and
have the same order as in the original data, and could include gaps, represented
by −. For instance, a potential alignment can be of the form:

S ′1 = ACTG −CGAA

S ′2 = −CCGTCT AA,

consisting of two strings of length 9, that differ in position 1 (A → −), position
3 (T → C), position 5 (− → T ), and position 7 (G → T ). Differences between
two nucleotides represent mutations between the two bases, and a gap indicates a
deletion or insertion of a particular nucleotide.

There are many potential alignments between a set of sequences, and we need
criteria to determine which are optimal. A common approach is to consider a score
for each alignment. For instance, one could count the number of differences. In the
case of the alignment {S ′1, S ′2}, this would be 4. A simple score is just the number
of similarities minus the number of differences, in this case 5−4 = 1. But of course,
not every change is necessarily weighted equally, indeed, there are some changes
that are more likely to occur than others. The genomic material in all known organ-
isms is polymers of nucleotides, each composed of a sugar, a nitrogenous base, and
a phosphate group. The five-carbon sugar (ribose or deoxyribose) defines the type
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of molecule, RNA or DNA. Bases can be divided into two types based on the chem-
ical structure, purines (adenine and guanine) and pyrimidines (cytosine, uracil and
thymine). A substitution, changing a base into another, could happen as a result
of different chemical processes. For instance, one of the most common chemical
processes is a spontaneous deamination (removing an amine group) of a cytosine,
changing it into uracil. If not correctly repaired, that will lead to a C → T mutation
in DNA. It turns out that changes within purines and within pyrimidines (tran-
sitions) are much more common than changes between purines and pyrimidines
(transversions). The probabilities of these changes can be inferred experimentally,
by considering data across different homologous sequences and estimating likeli-
hoods. Similarly, one can evaluate the effect of small insertions and deletions by
working with protein sequences.

A popular type of score assigns to every alignment a linear score that adds the
weights for every substitution and adds a gap penalty for indels. There are sev-
eral classic dynamic programming algorithms, like Needleman-Wunsch [379] and
Smith-Waterman [468], for optimal alignment between a pair of sequences. When
dealing with multiple sequences one could consider adding the pairwise scores, but
this problem has been shown to be NP-complete [521]. In practice, heuristics are
used.

Once the sequences are aligned one can start inferring trees (see Figure C.1).
There are several kinds of trees to consider. In some cases, trees can be rooted,
e.g., if they have a node that represents the common ancestor to all the analyzed
taxa, which gives information about the temporal order of nodes in the tree. Alter-
natively, unrooted trees display the evolutionary relationships among taxa, without
any ancestral root. The root is usually, but not always, determined by using an out-
group taxon that falls outside the group of taxa of interest. In general, when this
information is not available or not used, one can construct an unrooted tree. For
m sequences, an unrooted tree has m external nodes (or leaves) each of which
is labeled with a different sequence. Internal nodes can be labeled by inferred
sequences that represent the genomic information of common ancestors of two
of the contiguous nodes. With m labeled leaves it is easy to see that the number of
tree topologies is (2m − 5)!! = (2m − 5)(2m − 7)(2m − 9) · · · 1. That is, for m = 3
branches, there is only one labeled unrooted tree, for m = 4 there are 3, for m = 5
there are 15, etc.

Edges could be weighted by a positive number that is associated to the num-
ber of changes between nodes (for instance, it could be the number of changes, or
a weighted version of this, assigning each change a different weight). The space
of potential trees is enormous and some criterion is needed to find the optimal
tree. There are many methods that have been proposed. Here we explain some of
the most popular ones. Many methods work directly with the aligned sequences,
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Figure C.1 Notation on a tree. There are 2m − 3 possible ways of constructing a
rooted tree from an unrooted tree of m leaves.

referred to as alignment-based methods. In all these methods the strategy is to min-
imize a criterion (a likelihood, for instance) by exploring a large number of trees.
As previously described, the number of trees increases as m!, making it unfeasible
to explore all possible tree topologies. Different heuristics are used to explore a
reasonable set of topologies.

A second type of approach computes a distance metric from the data, and works
directly using the distance data. These methods have the advantage that they scale
polynomially in the number of sequences and genome length, and so one can easily
work with thousands of sequences. On the other hand, the results are sometimes
less biologically plausible than likelihood-based methods.

C.2 Sequence Based Methods

C.2.1 Parsimony

The parsimony principle is the preference for the simplest explanation of some
facts. In the case of phylogenetic reconstruction, parsimony selects the tree with
the minimum number of changes required to explain an alignment. Given a tree T ,
and a set of sequences S from a multiple alignment attached to the leaves (external
vertices), we can assign hypothetical sequences H to internal nodes. We can com-
pute for each edge a distance using the Hamming metric or a weighted version of
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it. Adding the results for all edges, we obtain the parsimony score P(T,H | S ). The
(large) maximum parsimony tree is the tree T and hypothetical internal sequences
assignment H that minimizes P(T,H | S ). The task of computing the best H, given a
particular tree topology T , from some external data S , is called the small parsimony
problem and can be computed in polynomial time, using for example, some clas-
sical algorithms from phylogenetics such as the Fitch algorithm [176]. The large
parsimony problem requires going through all possible topologies and for each one
computing the optimal H. The output is the topology that minimizes the parsimony
score. This problem has been shown to be NP-complete [180].

There are, however, some heuristic methods to explore possible solutions, with-
out, of course, any guarantee that they will be the optimal solution. Branch and
bound methods start with a subset of three sequences S 3 from the original data S .
In this case, there is a unique tree and a maximum parsimony solution can easily be
found. Now, we can select a sequence from S that is not in S 3 and attach a new leaf
to any of the three leaves. There are three different possibilities to consider. Now
we can select another sequence from S that was not previously considered, and
repeat the procedure, but now there are five potential edges. In this way, one can
construct iteratively all possible trees in a hierarchical fashion (a tree of trees). Now
in each of these iterations we can compute the parsimony score, which will always
increase when considering more branches. In the branch and bound method, one
proceeds iteratively and selects the best tree in each iteration and only considers
subsequent iterations along those particular branches in the tree of trees (see
Figure C.2).
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Figure C.3 As the number of taxa increases, the number of potential trees
becomes extremely large. There are techniques to explore the space of potential
trees by branch swapping strategies: (A) nearest neighbor interchange (NNI), (B)
pruning and regrafting (SPR), and (C) tree bisection and reconnection (TBR).

A second type of strategy is based on the idea of swapping branches. Here we
describe three major strategies, nearest neighbor interchange (NNI), pruning and
regrafting (SPR), and tree bisection and reconnection (TBR). Any internal edge
on a bifurcating tree has four neighbor subtrees, two attached to one vertex and
two to the other. NNI is an operation that exchanges a tree of one of the neigh-
bor vertices with another one (see Figure C.3). There are several implementations
of these methods, but in the simplest version, a NNI procedure is accepted if it
reduces the parsimony score. Pruning and regrafting is an idea along the same
lines where a subtree is cut and regrafted in one of the edges, creating a new
node (see Figure C.3). Tree bisection and reconnection (TBR) selects an edge and
removes it completely from the larger tree, generating two smaller subtrees. Then
one edge from each subtree is selected and two new nodes are introduced in each
of the edges and finally joined by a new edge (see Figure C.3). NNI, SPR and
TBR are operations in the space of trees, and different algorithms can be imple-
mented to make sure that local minima are avoided. These heuristic approaches are
commonly used in other phylogenetic techniques, like the likelihood methods we
discuss next.

C.2.2 Likelihood Methods

Likelihood methods optimize a likelihood function Ψ(S |T, L, M), that calculates
the probability of obtaining the observed sequence data S given a tree T with
branch lengths L and a model M that determines the probability of a particular
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mutation to occur. The advantage of probabilistic models is that they incorporate
realistic assumptions based on empirical data and they can be used to estimate
parameters. For instance, it is easy to incorporate the probability of back muta-
tions, different rates for transitions and transversions, and so forth, and estimate
the likelihood for those parameters. For instance, one can compute the probability
of a base to change after some particular time l (associated to a branch of length l
in the tree) and at a constant mutation rate μ to be p(l) = 3

4 (1− e−
4
3μl). The formula

can be easily adapted to allow different mutation rates across different bases, and
even different rates in different branches and genomic positions.

Most likelihood methods assume that the likelihood for a sequence is the prod-
uct of likelihoods for all positions (independence among sites): Ψ(S |T, L, M) =∏
Ψ(si |T, L, M), where si is the alignment data for genomic position i. For each

edge on the tree and site i, one can associate characters and compute the probability
for change (p(l)) or staying the same (1 − p(l)), where l is the length associated to
the edge. For a given tree T with edge length L, the likelihood for the observed data
S can be computed using the Felsenstein algorithm [173, 174].

However, the full solution to the likelihood problem requires that all different
tree topologies and branch lengths are explored, and as such finding the maximum
likelihood tree is NP-hard [115]. There are, however, good approximations that
adjust tree topology and branch lengths simultaneously. For instance, in [216] a
hill-climbing algorithm is proposed, that starts from a fast distance-based method
and modifies this tree to improve its likelihood at each iteration.

C.2.3 Bayesian Methods

Bayesian methods are based on a similar idea to likelihood methods, but instead
of estimating the probability of the observed data S given a tree, they estimate the
posterior probability P(T, L | S ) of a weighted tree (T, L) given the observed data S
[257]. The basic object here is a distribution on the space of all potential trees. The
whole distribution cannot be estimated analytically, but it is possible to sample the
distribution. Most of the implementations are based on variations of Markov chain
Monte Carlo (MCMC) approaches. The main idea is simple: one can take a tree
Ti, modify it to obtain a new tree T ′, and compute the ratio between the posterior
probabilities:

R =
P(T ′, L′ | S )
P(Ti, Li | S )

.

Using Bayes theorem, this can be shown to be equivalent to:

R =
P(S |T ′, L′)P(T ′, L′)
P(S |Ti, Li)P(T, L)

,
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where P(T, L) is the prior probability of observing a weighted tree (T, L).
Based on the posterior ratio R, we can decide whether or not to accept the modifi-

cation T ′. If so, we take the accepted tree as new starting point and we continue the
operation. This procedure generates a random walk on the space of trees sampling
a distribution that approximates P(T, L | S ). One of the most popular implementa-
tions is the Metropolis-Hastings algorithm [234]: we accept the new tree with a
probability min(1,R). If so, we define (Ti+1, Li+1) = (T ′, L′), and now we iterate.
Trees with higher posterior probability will tend to be sampled more frequently. In
the end, the result is a set of trees with high posterior probabilities; this allows us
to account for uncertainty. This set of trees can then be summarized in a consensus
tree if necessary.

Different implementations have been carried out, involving different pertur-
bations of the trees (for instance, the ones discussed above, NNI, SPR, TRD),
different evolutionary models (constant and non-constant rates, different rates for
different mutation types), variations on initial location in tree space, and many
others.

In some simple cases, Bayesian techniques have been reported to be more
accurate (the output tree topology displays evolutionary relationships closer to real-
ity) than parsimony or distance based methods, especially when analyzing highly
divergent taxa [256].

C.3 Distance Based Methods

Distance based methods reduce the complexity of the inference tree dramatically
by considering only the distances between the sequences S ; the problem is then
to reconstruct a weighted tree. As not all the information regarding particular posi-
tions is used, there is no attempt to reconstruct sequences attached to internal nodes
(ancestral states).

Several distance functions can be constructed from a set of sequences. The
simplest one is the Hamming distance dH , which is the fraction of bases that
differ between two sequences. The Hamming distance considers all substitutions
equally likely and it does not consider the probability that for long times there
could be mutations in already mutated positions. A natural way to assign a dis-
tance that takes into account the possibility of back mutations is estimating μt
by the fraction of bases changed after a time t if the mutation rate is μ, which
we can compute by inverting p(l) = 3

4 (1 − e−
4
3μl). This defines the Jukes-Cantor

distance:

dJC = −3
4

log(1 − 4
3

dH).



Molecular Phylogenetics 461

The Jukes-Cantor distance is just a transformation of the unit interval into
the positive numbers. When dH → 0, dJC ∼ dH , i.e. when they are near zero
both distances are similar. But when two random sequences with four bases are
aligned and there is an equal number of the four bases, only one quarter of the
bases will be the same. Then dH → 3/4 and dJC → ∞. More complicated
models incorporate different rates of transitions and transversions, and different
frequencies of nucleotides. For instance the K80 model [298] considers that all
bases are equally frequent but that there are different rates for transitions and
transversions. If p is the fraction of transitions (like the Hamming distance but
only counting transitions) and q the fraction of transversions, the K80 distance is
defined as:

dK80 = −1
2

log(1 − 2p − q) − 1
4

log(1 − 2q).

If the frequency of the four nucleotides is different from 25%, Jukes-Cantor can
be modified to the Tajima-Nei distance:

dT N84 = −β log(1 − dH

β
)

where β =
∑

i f 2
i , and fi is the frequency of the nucleotide i. Further generalizations

include different rates for each mutation and different frequencies per nucleotide.
Now assume the whole data is reduced to a distance metric. How can we infer

a weighted tree from this metric? One of the oldest methods is the least squares
method, proposed in 1967 by Fitch and Margoliash [177]. The basic idea is to find
the weighted tree that minimizes the sum of the squares of differences between the
distances between two sequences and the sequence in the tree (sum of branches
connecting the two leaves dT

i j, also called patristic distance):

s =
∑
i, j

(di j − dT
i j)

2.

The method requires exploration of all topologies; unsurprisingly, the method is
NP-complete [135].

Agglomerative or clustering methods are usually much more convenient and
faster, generating a solution in polynomial time. The main idea of these methods
is to start from the pair of closest sequences that are linked. Then eliminate the
columns and rows from these sequences and introduce a new one where distances
are computed using a particular rule. Now, the distance matrix contains one fewer
column and row. By iterations, one quickly arrives at a single element. The most
popular algorithm of this type is neighbor-joining (NJ) [442], which proceeds as
follows.
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1. First calculate the matrix Ti j = (m − 2)di j − ∑
k dik − ∑

k d jk, where m is the
number of sequences.

2. Find the leaves with lowest Ti j, i and j.
3. Define a new leaf k, and join i and j with k.
4. Compute distances to the new node from the leaves being joined:

dik =
1
2

di j +
1

2(m − 2)

⎛⎜⎜⎜⎜⎜⎝∑
s

(dis − d js)

⎞⎟⎟⎟⎟⎟⎠ .
5. Compute distances to the other leaves from the new node k,

dks =
(dis + d js − di j)

2
.6. Replace the joined neighbors with a new node, using the recomputed distance.
And restart the algorithm.

The NJ algorithm generates a tree in polynomial time, and generates the right
tree if the distance matrix satisfies the four point condition. However, in more
general cases, it could lead to strange results such as negative branch lengths.

C.4 Phylogenetic Networks

As we have seen in Chapter 5, phylogenetic trees fail to capture reticulate events
including recombinations and reassortments in viruses, horizontal gene transfer
in bacteria, and meiotic recombination and species hybridization in eukaryotes.
Phylogenetic networks aim to represent these events as a generalization of a tree
with external nodes representing the observed data and a graph, with cycles rep-
resenting incompatibilities. Like phylogenetic trees, phylogenetic networks can be
constructed from sequences or distances. We will briefly mention a few methods
that we have discussed in this book.

A common approach to capture reticulate events is to use split networks. Split
networks represent incompatible splits, but the interpretation in terms of biological
processes that could generate these splits is obscure. For example, it not easy to tell
if an incompatible tree was generated by recombination, back mutations, or a hori-
zontal gene transfer event. Nor can one determine how many events generated the
incompatibility, whether just one reticulate event is enough to generate an incom-
patibility, how the number of incompatibilities scale with recombination rates, etc.
The lack of interpretability of split representations constitutes a serious obstacle to
a wider adoption of these representations for the biological community.

Clearer biological interpretations arise from a reticulate network, where each
loop is supposed to represent a reticulate event (recombination, gene transfer,
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reassortment, etc.). Ancestral recombinant graphs (ARGs), for instance, introduce
nodes that correspond to potential recombination.

C.4.1 Split Networks

Let X be a set. Then a split S 1 | S 2 is any partition of X into two non-empty sets:

● S 1 � ∅ and S 2 � ∅,
● S 1 ∪ S 2 = S ,
● S 1 ∩ S 2 = ∅.

A weighted set of splits (S, L) is a collection of splits {S i} together with a set
of weights {li ≥ 0}. In a tree, each edge provides a split: if we cut the edge, the
data splits into two non-overlapping subsets. More interestingly, trees provide a
set of splits {S i} that satisfy an extra condition – they are compatible. Two splits
S i = Xi |Yi and S j = Xj |Yj are compatible if and only if one of the intersections
Xi ∩ Xj, Xi ∩ Yj, Yi ∩ Xj, or Yi ∩ Yj is empty. A set of splits S is compatible if all
possible pairs are compatible.

Trees generate compatible sets of splits, and compatible sets of splits can be
represented by trees. A weighted tree (T, L) is in this way equivalent to a weighted
set of compatible splits (S, L). But splits that are not compatible generalize the
notion of a tree. A representation of incompatible splits is through a split network.
A split network represents a set (S, L) where each element of S labels a single
node, and each edge is labeled by splits, in such a way that removing the edges
corresponding to a split partitions the graph into two, where labeled nodes are split
correspondingly. In a split network one can use one or more edges to represent a
split, in such a way that the deletion of such edges generates the two elements of
the split (see Figure C.4).

C.4.2 Sequence Based Methods

We will briefly mention two sequence based network techniques that we described
in Section 5.10: median networks and ancestral recombinant graphs (ARGs).

Median networks. Median networks take as input a set of aligned sequences S ,
that we will assume have letters 0 and 1. First a simplification of S is performed
by taking a condensed representation that discards positions that are the same in
all sequences, and taking only one representative position for every set of positions
that displays the same pattern. Each of the representatives is assigned a weight βi

corresponding to the number of positions that are in the same class. Let us call the
set of representatives with weights the condensed representation, S ′. The median
operation takes any three binary sequences and computes another sequence that for
each character takes the median (the most common character in that position). For
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Figure C.4 A split network captures incompatible splits. Each taxon or sequence
is associated to a vertex. Each edge on the network is labeled by a a split, in such
a way that cutting the edges cuts the network into two, separating the labeled
vertices corresponding to the split.

instance, the median of 0000, 1100, and 0111 is 0100. Adding the median sequence
to the set and iterating the procedure until no new sequences are generated gives
the median closure. A network, the median network or Buneman graph, can be
constructed by taking as many nodes as binary sequences in the condensed repre-
sentation S ′ and edges connecting them if they differ by only one character. The
median network has nice properties as it is made of cubes of different dimensions
and it contains all trees with minimal parsimony scores. But typically the number
of nodes generated by the median operation is extremely large, and the biological
interpretation is extremely obscure. The reduced median (RM) network algorithm
and median-joining algorithm [31, 33] selects a subnetwork in the median network,
reducing significantly the complexity of the network. Generalizations to more than
two states sequences are called quasi-median networks.

Ancestral recombinant graphs (ARGs). Ancestral recombinant graphs con-
stitute the most interpretable of all phylogenetic networks. An ARG provides a
potential reconstruction of the history that gave rise to the data S through a series
of mutations and recombinations. For a full explanation of ARGs and extensions
using topological data analysis we refer the reader to Section 5.10.

C.4.3 Distance Based Methods

In distance based methods, we compute a distance between a set of sequences S ,
and we work exclusively with the distance matrix. These methods, as with phyloge-
netic trees, are fast and easily implementable, with the caveat that the interpretation
of cycles in the network is obscure.
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Split decomposition. In split decomposition, one takes advantage of the unique
decomposition of a finite metric space into a set of splits using the Bandelt and
Dress theorem [30]. The main idea of the Bandelt-Dress decomposition is that a
finite metric space can be decomposed into a sum of independent metrics associ-
ated to weighted splits plus a remnant. The weight of each split S 1|S 2, called the
isolation index, can be computed as follows:

αS =
1
2

min
i1, j1∈S 1
i2, j2∈S 2

(max(di1, j1 + di2, j2 , di1,i2 + dj1, j2 , di1, j2 + di2, j1 ) − di1, j1 − di2, j2 ).

For every split S one can define a split metric dS to be 0 if two elements are
in the same split and 1 if not. The Bandelt-Dress result decomposes the original
metric:

d =
∑

S

αS dS + r.

The simplest example of a residue metric corresponds to 5 points with distances
derived from a complete bipartite graph K2,3. For s sequences, the approach pro-
vides at most

(
s
2

)
non-zero weight splits. Remember that a tree is a set of compatible

2s−3 splits: if the set (S, L) is compatible then there is a single tree with edges cor-
responding to compatible splits and edge weights corresponding to split weights.
In particular, finite metric spaces that satisfy the four point condition correspond
to totally decomposable metrics and compatible splits, corresponding to the under-
lying tree. Focusing on the non-remnant part, this construction allows finite metric
spaces to be mapped to weighted splits that can be represented by a split network.
But in the case of non-compatible splits the split decomposition generalizes this
result.

Neighbor-net (NN). Developed in 2004 by David Bryant and Vincent Moulton
[75], this is an agglomerative distance based method that generalizes the neighbor-
joining algorithm we discussed before. Given a finite metric space, NN constructs
a collection of weighted splits and then represents the results using a split graph.
Like NJ, this is an agglomerative method that starts by selecting pairs of nodes, but
instead of replacing them immediately by a new node, it waits until it is paired a
second time. Then the three linked nodes become two nodes and the distance matrix
is reduced (see Figure C.5). The procedure continues until the number of nodes is
reduced to two or three. Being an agglomerative distance based method, the speed
and throughput is very high, similar to NJ. Like other split networks, the main prob-
lem is the interpretability of the results. A nice mathematical description of the NN
algorithm in terms of some discrete metric spaces, called circular decomposable
metrics, can be found in [329].
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Figure C.5 This figure illustrates how the neighbor-net algorithm works. It is an
agglomerative method that takes distance matrices as input. In (i) each node repre-
sents a single sequence. One first looks for closest neighbors; in (ii) the closest to
e is f and the closest to b is c. Other neighbors are identified in (iii); e has as neigh-
bors f and d. Two incompatible splits e f |abcdg and de|acd f g are represented and
d, e, and f are substituted by new nodes x and y. Source: [75]. Bryant, David, and
Vincent Moulton. “Neighbor-net: an agglomerative method for the construction of
phylogenetic networks.” Molecular Biology and Evolution, 2004, 21.2: 255–265,
by permission of Oxford University Press.

C.5 Suggestions for Further Reading

There are excellent books and reviews on phylogenetics for the reader who wants
to dive into this topic.

● Inferring Phylogenies, by J. Felsenstein [174] is a complete and clear exposition
on different approaches to phylogenetic trees which is highly recommended.

● Molecular Evolution and Phylogenetics, by Masatoshi Nei and Sudhir Kumar
[380] is a nice didactical overview on phylogenetic methods.

● The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analy-
ses and Hypothesis Testing, by Philippe Lemey, Marco Salemi and A. M.
Vandamme [443].

● ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and
Explicit Phylogenetic Networks, by Dan Gusfield [220] is highly recommended
to learn more about biologically interpretable phylogenetic networks.

● Phylogenetic Networks, by Daniel Huson, Regula Rupp and Celine Scornavacca
[262] is a nice clear survey on methods for inference of phylogenetic networks.

● Basic Phylogenetic Combinatorics, by Andreas Dress and colleagues [151] is a
nice mathematical introduction to the relationship between finite metric spaces,
split systems, and systems of quartets.
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C.6 Data and Software

There is a large number of software programs for phylogenetic inference. Here is a
very incomplete list of some of the most commonly used.

● PHYLIP: phylogenetic tree inference package by Felsenstein incorporating now
classical methods, such as maximum parsimony, distance based algorithms,
and maximum likelihood. It can be found at http://evolution.genetics
.washington.edu/phylip/general.html.

● PhyML [217] and RaxML [482]: two of the most commonly used likelihood
algorithms.

● Bayesian Evolutionary Analysis Sampling Trees (BEAST) [153]: a very com-
monly used Bayesian method for tree inference and parameter estimation.

● MrBayes: Bayesian posterior probability estimation for phylogenetic trees
[436].

● SplitsTree [260]: a very wide platform that provides a wide range of phy-
logenetic tree and network inference methods, including median networks,
parsimony splits, spectral analysis, split decomposition, and neighbor-net.

● Dendroscope [264]: provides a platform for visualizing trees and networks.

http://evolution.genetics.washington.edu/phylip/general.html
http://evolution.genetics.washington.edu/phylip/general.html

