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Topological Data Analysis beyond Genomics

In this last chapter we will briefly introduce several recent interesting applications
of TDA to diverse biological problems beyond the genetics and genomics work we
have focused on in this book. In the first part of this chapter we will explain how
TDA can be used to study ordered data, referred to here as series data. Series data
is frequently found in many biological applications; for instance, when studying
the evolution of a biological organism or population, where data is ordered in time,
or when looking at genomic data along a chromosome, where data is ordered by
chromosomal location. Examples of time series data with periodic patterns can
be found in the cell cycle, or the phenotypic changes in immune genes following
infection and recovery [501].

Next, we will discuss TDA techniques for studying graphs, or networks. Net-
works are standard representations of complex biological systems with different
components interacting. For example:

1. The set of interactions between different proteins within an organism is tra-
ditionally represented by a graph where nodes represent proteins and edges
physical interaction.

2. Transcriptional networks are captured by graphs, where nodes represent genes
or transcripts and edges represent how the expression of one relates to the
expression of the other.

3. In neuroscience, neurons and their interaction are usually encoded by a graph.
The central problem in neuroscience focuses on how the neuronal system cap-
tures information about the world; a key question is to how to study this problem
using the structure of the interaction graph.

As graphs are pervasive representations of biological data and the simpli-
cial complexes that arise in TDA are generalizations of networks, it is perhaps
unsurprising that there are interesting TDA approaches to extract and quantify
global properties of biological networks.
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424 Part II Biological Applications

Next, we describe some natural sets of applications for TDA in medical imag-
ing. For example, magnetic resonance imaging (MRI) is a non-invasive technology
that is used to test for many diseases and to obtain data on the real-time activity
of living organisms. The output is a function from the three physical dimensions
of space (and time if dynamic information is being captured) to the real num-
bers. Filtrations of this function can be studied using TDA methods and one
hopes to relate these topological features to biologically or clinically interpretable
characteristics.

Finally, we briefly mention some recent applications of TDA in the context
of infectious diseases: first, models of networks of infectious disease spread in
a population; second, how organisms respond to infectious diseases.

Our goal in this chapter is to provide a very brief overview of examples of TDA
techniques applied to a variety of biological problems beyond the main scope of
the book. Our treatment is of necessity superficial, and in particular by no means
should be viewed as comprehensive. (We apologize now for work which is omitted;
our choices here are not intended to reflect a judgement about the most interesting
work.)

9.1 Topological Study of Series Analysis

Time series analysis is an old discipline aiming at extracting patterns and sum-
maries from data arising from weather measurements, financial markets, signal
processing, and many other systems. Biological processes are not an exception. In
many biological problems data is naturally ordered along a well-defined physical
or biological dimension. For example, the position of genes along a chromosome
specifies an ordering. Another set of examples come from the time course of a
biological process (Figure 9.1).

The first applications we will describe here are time series analysis of expres-
sion data. There are a large variety of biological systems that display interesting
time dependent expression profiles. For instance, periodicity is observed in cir-
cadian regulation, the cell cycle, and the life cycle of malaria [6], among many
other examples (Figure 9.2). Genes are regulated according to different tempo-
rally orchestrated transcriptional programs, and discovering information about this
time dependence can inform theories of how these programs are organized. Several
techniques have been used to study time series expression and recently some imple-
mentations using ideas from topological data anlysis have appeared. Cohen-Steiner
and colleagues [118, 140] proposed a measure of similarity of expression profiles
of different genes based on comparing the persistence diagrams arising from level-
set persistence (recall Example 2.3.4) applied to a function from time to expression
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Figure 9.1 Changes in transcription are observed in multiple biological processes. (A) Time series data is ubiquitous in biological processes:
for example, response to transitory external stimuli, changes between two different states (in development, for instance), or cyclic changes
as observed in the cell cycle or circadian rhythm. There are many interesting biologically interpretable patterns of potentially infinite
types. (B) Qualitative phenomena include pulses (a single spike associated to stimuli), sustained changes, periodic changes, among many
other examples. (C) An example of a fundamental cyclic process: the cell cycle, where DNA replicates and a mother cell divides into
two daughter cells. Source: [35]. Reprinted by permission from Springer Nature: Springer Nature, Nature Reviews Genetics, Studying and
modelling dynamic biological processes using time-series gene expression data, Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon, 13.8
(2012): 552–564. c© 2012.
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Figure 9.2 Expression of different genes in the malaria parasite life cycle. Left: Genes can be ordered by the time of expression. Right: Using
PCA (see Section 4.2 for a brief overview) one can observe a cycle in gene expression reflecting the parasite (Plasmodium falciparum) life
cycle. Time series data (expression of P. falciparum genes at different time points) was analyzed using the fast Fourier transform (FFT) and
enrichment of different cell processes. The higher PCA components replicate the cycle of P. falciparum replication. Source: [6].
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levels. Perea and Harer [404] proposed a method based on a common strategy in
time series analysis, applying a sliding window. As we explain below, they regard
the sliding window as a map from the time series data to point cloud data, and then
explain how to use topological properties of this point cloud to study the periodic-
ity of the original time series data. (There has also been interesting recent work by
Khasawneh and Munch [291] on stochastic delay differential equations.)

Finally, we turn to an application to data that uses the natural ordering in
genomics coming from the position along a chromosome. As we saw in Chap-
ter 6, chromosomal aberrations (deletions, amplifications and translocations) are
very common events in most tumors. The number of copies of particular chromo-
somal regions is a function of the ordering of genes. Arsuaga and colleagues have
also proposed a sliding window approach to study copy number aberrations in can-
cer [19, 21]. The sliding window, moving across the chromosome, provides a map
from the copy number data to point cloud data; hierarchical cluster structure in this
point cloud data, as measured by the zeroth Betti number, reflects changes in copy
number structure. This approach can be used to identify copy number changes in
tumors and to compare the profile of these changes across different tumors.

9.1.1 Time Series Analysis of Gene Expression Data

Biological processes are dynamic, changing at different time scales. For instance,
we could be interested in tracking the expression of a particular gene that is
involved in the cell cycle. As we saw in Chapter 6, the cell cycle is one of the
fundamental processes altered in cancers, and looking at how proteins differen-
tially altered the cell cycle in cancer cells could provide therapeutic opportunities.
Another example is the circadian rhythm, which regulates fundamental biological
processes in a daily cycle. These biological processes can be studied by measure-
ments x(ti) taken at different times {ti}; this is popularly called a time series. There
is an extensive literature on general methods for time series analysis [102, 226],
but of particular interest in this chapter is the identification of periodic signals in
gene expression data.

Time series expression data presents some distinctive features that make it dif-
ferent from finance or weather time series: it is usually collected for a few cycles,
the sampling can be sparse and uneven, there is not usually a characteristic shape
(such as a sinusoidal curve), there is significant biological variability and, last
but not least, there is a potentially significant amount of experimental noise. All
these features make time sampling of genomic data particularly interesting and
challenging.

Since the first high-throughput expression experiments at the beginning of the
century, there has been a plethora of methods applied to extract signals from time
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series expression data. These methods usually rely on standard techniques used
and developed in other fields, for example Lomb-Scargle periodograms developed
for astrophysics [202, 333]. We will briefly summarize some of the most common
techniques used for time series analysis to study biological genomic/transcriptomic
data.

● Spectral methods. Spectral methods express signals in terms of the fre-
quency domain (e.g., via Fourier analysis). A basic and widely used method
is direct application of the fast Fourier transform (FFT) algorithm, which trans-
forms discrete data into Fourier components. A particularly useful technique
when working with uniformly spaced time-sampled data is to approximate the
spectrum by the periodogram:

s(ω) =
Δt
N

∣∣∣∣∣∑N−1

n=0
x(tn)e2πinω/N

∣∣∣∣∣2
where Δt is the time interval between two observations and N is the total num-
ber of observations. Periodic signals can be identified as sharp peaks in the
periodogram.

Fourier analysis has been widely applied to study cell cycle genes from
expression data (e.g., [537]). Fourier analysis in connection with permutation
tests was implemented in [136] and applied to yeast cell cycle data and other
species [272].

However, the FFT is suboptimal for sparse and non-uniformly sampled data.
The Lomb-Scargle periodogram [333, 448] is a Fourier type of analysis able to
infer spectral properties from sparse and irregular sampling at times tk [202]. For
a fixed frequency ω, a time delay τ is defined as a solution to the equations

tan 2ωτ =

(∑
k

sin 2ωtk
)

(∑
k

cos 2ωtk
) .

Then the periodogram at the frequency ω is equal to:

s(ω) =
1
2
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∣∣∣∣∣2∑N−1

k=0
(cosω(tk − τ))2

+
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k=0
xn sinω(tk − τ)

∣∣∣∣∣2∑N−1

k=0
(sinω(tk − τ))2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
The Lomb-Scargle periodogram has been used in several biological applications
with incomplete data or time series sampled at different time points [422, 441],
including the cycle of malaria [202], circadian rhythms in plants [271], and
phenotypic behavior in animals [286], among many others. For instance, in ref-
erence [202] it was used to study the expression of Plasmodium falciparum (the
agent causing malaria) genes, during infection. The Lomb-Scargle periodogram
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analysis showed higher sensitivity than the Fourier transform in the identification
of periodic signals, mostly in day and two day cycles.

● Wavelets. The Fourier transform decomposes the temporal data as a sum of
orthogonal sinusoidal representations; this is typically used for identifying peri-
odic patterns in data. Wavelets provide an alternative decomposition in terms
of an orthogonal basis of multiresolution functions (wavelets) ψ j,k(t) localized
around a time-frequency region parametrized by the k and j indices; the basis
elements are scaled and shifted versions of a generating “mother wavelet.” The
wavelet basis allows us to express any function as follows:

x(t) =
∑

j,k
c j,kψ j,k(t)

where c j,k are the coefficients. (There are many different choices of wavelet
bases, including Haar and Daubechies wavelets.)

Wavelets have been used to study clusters in gene expression along the
genome [509], regulatory networks from time-varying expression data [189,
295, 475], and functional MRI data [446].

● Reference curve comparison. Fourier analysis decomposes data into sinusoidal
signals, but the data that we are interested in could have different shapes. For
instance, we can be interested in identifying narrow peaks indicating the expres-
sion or activity of a particular gene in a narrow time window. If we have a
particular time dependence in mind, regression analyses could provide useful
insight. Partial least squares regression (PLS) has been used to identify genes
with periodic expression along the cell cycle in Saccharomyces cerevisiae [275].
In that work, the authors were interested in the identification of periodic sig-
nals with a common period (cell cycle) but where different genes obtained the
highest expression at different times of the cell cycle. That was modeled by a
function A sin (ωt + φ), where ω = 2π/T is the frequency associated to the cell
cycle. Every gene received an amplitude and a phase, representing the variability
along the cell cycle and the cell cycle phase. The same procedure can be used for
a non-sinusoidal family of curves, such as the ones shown in panel B of Figure
9.1, using PLS to find the parameters corresponding to each family member.

The Jonckheere-Terpstra trend test [278] is a non-parametric statistical test for
comparing two alternative hypotheses regarding the medians of populations; the
null hypothesis is that the medians are the same, and the alternative hypoth-
esis is that the ordered populations have increasing medians. This is closely
related to the Kendall τ statistic for analyzing rank correlation. JTK CYCLE is
an algorithm based on these statistics that compares data to a set of hypothesized
user-defined group orderings [258]. The algorithm has been extensively applied
to study different aspects in different systems of circadian rhythms includ-
ing expression profiles, chromatin changes, metabolic changes and changes in



430 Part II Biological Applications

microbiota among many others [132, 258, 303, 496]. An advantage of these
methods is that since they are rank based, they are robust invariants and hence
resistant to corruption by outliers (recall the discussion from Chapter 3).

● Stochastic processes and correlograms. A stochastic process is a set of ordered
random variables x(ti). There is an extensive literature on the study of time series
analysis using stochastic processes [102]. Here, we will briefly mention autore-
gressive models (AR) of order p as a common type of stochastic model used in
time series analysis. The main idea behind these models is that the value of the
observation at time ti depends on a linear combination of the previous p-values
{xi−k} for k = 1, . . . , p, in other words:

x(ti) =
∑p

k=1
ckxi−k + εti

where ck are some real coefficients and εti is an error term, typically assumed to
be Gaussian distributed. These are a generalization of Markov processes; in fact,
AR(1) models are precisely Markov processes.

A generalization of AR is given by the moving average process (MA), where
the value of the observation depends on a linear combination of q independent
random processes εi with zero mean and equal (finite) variance:

x(ti) =
∑q

k=1
cqεi−q

The most general models contain a sum of p terms from an AR model and q
terms from an MA model; these are usually called (p, q) ARMA models.

One common assumption in stochastic processes is that the observations
x(ti) are derived (possibly after subtraction of global trends) from a stationary
stochastic process. A stochastic process is stationary if the joint distribution of
every set of variables x(ta) is the same as x(ta + τ) for all τ. In other words, the
process does not present any systematic change in mean, variance and higher
moments at different time points. Stationarity is a very strong assumption, and it
is usually only applicable after all trends (changes in mean, variances, periodic
components) are removed from the original data.

A useful function for studying stationary processes is the autocorrelation γ(τ),
defined as the covariance between x(ti) and x(ti+τ) divided by the value at τ = 0.
Using the data of a stationary process one can define [102]

r(k) =

∑N−k

i=1
(xi − x̄)(xi+k − x̄)∑N

i=1
(xi − x̄)2

where N is the total number of observations. The function r(k) is called the
correlogram and carries interesting information on the coefficients and memory
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of stationary stochastic processes. These models have been proposed for gene
clustering from time series of expression data [188, 418, 525].

● Compressibility. Most patterns in biological data do not have a predefined form;
the use of reference curve comparison could preclude the identification of some
relevant biological signal. One idea for capturing general regularity is to study
the compressibility of the data. One can define the algorithmic complexity of
a string of characters as the size of the shortest program that outputs the string
[304, 473]. These ideas were applied to yeast cell cycle expression data in [10].
First, the data were transformed to their rank value, for instance, 2.5, 2.7, −1.2,
23 will be transformed to 2, 3, 1, and 4. This corresponds to a permutation of 1,
2, 3, and 4. Then one looks at a function f from the permutations to the real num-
bers. For example, such a function could be the length of the longest increasing
or decreasing sequence (2 in our case), the number of local maxima (2 in our
example), the sum of the absolute values of the difference between consecutive
numbers (|2 − 3| + |3 − 1| + |1 − 4| = 6), etc. (Notice that some permutations
will be assigned the same value.) One way of describing the permutation p of
interest (e.g. 2, 3, 1, and 4) is to count the number of permutations with the same
image under f ; denote this quantity by M f . A bound on the compressibility can
be obtained by k( f ) = log Mt − log N − log M f , where Mt is the total number
of permutations and N is the number of different values the function f can take.
The main idea of the method of [10] is that simple functions can be used to iden-
tify interesting patterns as corresponding to highly compressible permutations.
Note that these patterns are not periodic.

● Biologically based time dependent models. In some cases, there are actual
models intended to describe the evolution of the biological system. For example,
transcription is a classical problem where different models have been proposed
that relate the activity of some genes (transcription factors) in the regulation
of other genes. Such models are usually represented in the form of a net-
work (e.g., Boolean or Bayesian networks or sets of first order differential
equations) [34, 296].

All these methods have tradeoffs [137]. If we are interested in looking for peri-
odic signals using a large collection of longitudinal data, we might be tempted to
try Fourier approaches. On the other hand, if we are studying a narrow localized
signal, we could try some of the simple wavelet methods. Stochastic methods are
useful if we have reason to believe that the hypotheses of the main methods (e.g.,
AR, MA, ARMA, etc.) hold in data; for instance, when the noise can be modeled
with a known distribution and there is a memory of a few previous values. In other
cases, we might have a suspicion of what kind of signal we should expect and we
can try to fit the expected curve directly to the data.
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Of course, in practice, especially when performing exploratory data analysis, we
do not expect to have a clear idea of what kind of information we are looking for.
The topological approaches that we will describe in the following section provide a
more general framework for identification of periodic patterns. At the moment it is
an open question which methods will be most informative when working with the
time series data arising in genomics. As transcriptomic data becomes more reliable
and abundant, we expect to have the opportunity to evaluate the performance of
these algorithms.

9.1.2 Time Series Analysis Using Topological
Data Analysis

A simple mathematical model of the expression values of a particular gene i evolv-
ing in time is simply a function ei : X → R, where X could be an interval [a, b]
(when considering a fixed time interval) or S 1 when looking at periodic systems.
Of course, in practice we expect to have access to the values of these functions at a
finite collection of times (i.e., points of the domain).

A first natural question is how to compare the expression patterns of two dif-
ferent genes i and j; in this model, we are comparing the functions ei(t) and e j(t).
One way to answer this question is to consider the sublevel set filtration of ei(t)
and e j(t) (recall Example 2.3.4); we consider the filtration of spaces induced by
considering the collection of sublevel sets f −1((−∞, a]), which are equipped with
evident inclusions

f −1((−∞, a])→ f −1((−∞, a′])
for a < a′.

The two functions ei(t) and e j(t) can then be compared by measuring the bot-
tleneck or Wasserstein distances between the persistence diagrams arising from
this filtration. The stability theorems for persistent homology in this context (recall
Theorem 2.4.12) now imply that these measures are fairly robust in the face of
sampling variation or noise in the data (Figure 9.3).

Sublevel set persistence and bottleneck distances were used in [118, 140] to
study clustering of genes by expression level over different developmental stages
in microarray data from the arabidopsis plant. Specifically, the data is structured as
vectors of expression levels for each gene, with entries corresponding to develop-
mental stages. In the same papers [118, 140], the authors used topological methods
for identification of periodic signals using expression values of 7500 genes across
17 time points within a single period of the formation of somites in mouse embryo.
In combination with a variety of other methods (e.g., Lomb-Scargle periodogram
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Figure 9.3 Persistence homology can be applied to filtrations from different
sublevel sets induced by a function.
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Figure 9.4 The sliding window approach is a very common strategy used in many
genomic analysis applications. Data corresponding to a window of constant size
n can be represented as a point in n dimensions. Sliding the window, one can
generate a point cloud data representing the series. TDA techniques can be then
applied to the cloud data to learn properties of the series.

and the cyclohedron method), this study found a new cyclic gene that regulates
the segmentation clock. Comparative analysis found the topological methods to
be competitive with other methods, although not obviously superior to the best
alternatives.

9.1.3 Topological Data Analysis of Sliding Windows

A different strategy of studying time series data is to study the point cloud data
generated by sliding windows (Figure 9.4). An illuminating analysis and devel-
opment of this method for periodicity detection was carried out by Perea and
Harer [404].

The basic idea is simple. Suppose we have a series of points {x1, x2, . . . , xn} ⊂ R,
where the subscript indicates the time label of the point. We think of these as the
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image of a function f : R → R on a collection of values {t1, . . . , tn}. We define a
window of size w starting at interval i as the collection of points

{ f (ti), f (ti+1), . . . , f (ti+w−1)} = {xi, xi+1, . . . xi+w−1}.
An idealized case is where ti = t1 + (i − 1)d, for some shift value d.

As an abstraction, imagine that we simply have a function f : R→ R, and when
fixing a window starting at value x we parametrize by M and τ and instead consider
the collection of points

{ f (x), f (x + τ), f (x + 2τ), . . . , f (x + Mτ)}.
Fixing M and τ, we can regard the window as specifying a curve

W( f )τ,M : R→ RM.

To understand what this looks like for a periodic signal, it is interesting to focus
on f (θ) = cos(Lθ) for some choice of period L ∈ N. An easy analysis shows that
the resulting closed curve traces out an ellipse and that the length of the minor axis
of the ellipse is maximized when the window size is close to the period!

This suggests the approach of computing the length of the longest barcode in the
persistence diagram for H1 as an estimate of the periodicity; we can in fact recover
the period exactly in this case. More generally, any suitably bounded function can
be expressed via the Fourier transform as a linear combination of periodic func-
tions; the stability theorem for persistent homology can then be used to show that
in the case where this signal is periodic, the longest barcode still recovers useful
periodicity information.

Based on this analysis, Perea and Harer propose the algorithm SW1PerS and
demonstrate applications to finding periodicity in gene expression from yeast
metabolic and cell cycles [405]. In simple tests, the algorithm compares well to
existing tests for periodicity (notably Lomb-Scargle). In particular, SW1PerS has
extremely good performance in the face of noise, performing better than Lomb-
Scargle in high noise regimes on signals where the magnitude decays over time
and where there are separated peaks.

9.1.4 Identification of Copy Number Alterations

Time series are not the only interesting ordered biological data sets. Chromosomes
present a natural one-dimensional ordering of genes. In cancer, chromosomal
regions are often amplified, deleted, and translocated. Regions that are recurrently
amplified could contain oncogenes, regions that are deleted could contain tumor
suppressors, and regions with translocations could give rise to gene fusions. For
instance, many tumors contain deletions in the 9p21.3 region containing a known
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tumor suppressor gene CDKN2A, or the region 17p13.1 containing the TP53
gene. A common approach for the identification of genes that could be impli-
cated in cancer is to assess recurrence of alterations across many different patients.
Most methods that have been proposed using copy number alterations in cross-
sectional samples propose a measure of recurrence and a statistic associated to
it [52, 508].

Arsuaga and colleagues have proposed a method for the analysis of copy number
data using persistent homology [19, 142]. The idea is based on a sliding window
approach similar to the method used for studying periodic signals in time series
[404], but instead of using time as the ordering dimension they use the chromo-
somal position. A sliding window defines a map from the copy number data to a
w-dimensional space. In this case, the authors chose a three-dimensional window,
so the data can be viewed as point cloud data in three dimensions. If there are no
copy number alterations, one should expect that the data should fluctuate around
the expected number (two in the case of autosomes), so this will correspond to
fluctuations near the point (2, 2, 2) in the three-dimensional point cloud. However,
a deletion will change this number to one (heterozygous) or zero (homozygous),
changing the concentration point for the point cloud to (1, 1, 1) or (0, 0, 0). In the
same fashion, amplifications could be identified as changes in the point cloud data
to concentrate around other diagonal values.

The authors use the zero dimensional persistent homology (i.e., the dendrogram
representing single-linkage clustering) for the identification of regions containing
copy number alterations. To derive a statistical test, the resulting PH0 barcode was
compared to one generated by a non-tumor control. One should expect that con-
trols will become a single cluster at small values of the filtration value whereas the
tumor samples containing copy number alterations will cluster in several groups
at low filtration value and become a single connected component at larger filtra-
tion value. To assess the statistical significance, Arsuaga and colleagues propose
a statistic s = Σε(tε − cε)2, where tε and cε denote the average number of con-
nected components in the test and control data sets, respectively. An associated
null hypothesis (and p-value) was generated by random permutations of the data.
When applied to breast tumors from an independent study [249], the authors were
able to recapitulate known recurrent alterations and to identify some unreported
alterations.

The same approach could be used for the identification of regions of differential
gene expression. Using chromosomal position as ordering dimension, and expres-
sion of genes as a function, Arsuaga and colleagues [21] generated point cloud
data using a sliding window approach. Notice that expression of a gene is cor-
related to copy number information, i.e., highly amplified genes tend to be more
expressed, and deleted genes less expressed. The number of clusters as measured by
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H0 is associated to consistent changes in expression profiles across a chromosomal
region. Applying this approach to 251 breast cancer expression profiles from [353]
identified specific clustering profiles associated to different expression subtypes.

9.2 Topological Data Analysis in Networks and Neuroscience

Networks have become a common representation of many biological systems, rep-
resenting different scales of knowledge. For instance, protein-protein interactions
are summarized as networks where we can represent proteins in a living system as
nodes and their interactions as edges. Neurons in the brain and their interactions
provide another example of a biological system where some properties could be
loosely captured by networks. The architecture of the brain as captured by the inter-
connections between different regions provides another example. Researchers are
currently exploring the use of topological techniques to characterize the molecular,
neuronal, and architectural properties of the brain [98, 130, 201, 407, 424, 463].
The hope is that topological techniques will provide ways to summarize properties
of complex networks that generalize and extend the standard invariants based on
global statistical properties of local information (e.g., degree distribution, measures
of centrality of a vertex, or number of components).

9.2.1 Cellular Scales: Neuronal Activity

One of the central problems in neuroscience is how the ensemble of neurons can
efficiently capture and faithfully represent information about the world. Neurons
in physical proximity can exchange information across synaptic gaps, reflected in
their neuronal activity. The relationship between neuronal connectivity and activity
is highly nonlinear. Linear techniques do not suffice to correctly capture its struc-
ture. The visual cortex is a classical system in which to study the coding of external
physical stimuli into neurons. Singh and colleagues [463] used persistent homol-
ogy to study the population activity in the primary visual cortex. The invariants
derived from persistent homology in natural image stimulation were similar to a
spontaneously active cortex. Giusti and colleagues [201] proposed a method based
on TDA to extract nonlinear but monotonic relationships. The hippocampus has
been found to encode information about the physical environment through pyrami-
dal neurons. Different neurons in the hippocampus respond selectively to different
physical locations [390]. In [201], the method is shown to be able to recover geo-
metric information encoded in neuronal correlations (without using the external
stimuli); that is, they can recover place cell activity without hypotheses about the
stimuli or the receptive fields of the cells.
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Reimann et al. [424] explored the relation between neuronal architecture and
information processing by constructing directed graphs capturing the direction of
synaptic transmission. In particular, they summarized data as a directed graph
with nodes representing individual neurons and directed edges representing pre-
to postsynaptic neuronal connections. The response to external stimuli can be
modeled as time series data in the directed graph. Different aspects of the struc-
ture of these graphs can be quantified by identifying different objects at different
scales, from local (as indicated by the presence of cliques of neurons) to global
(as indicated by the existence of larger topological structures). (See Figure 9.5.)
Applying TDA techniques to computational reconstructions of neocortical circuits
in the brain of a rat, the authors were able to quantify the presence of these differ-
ent structures, including large numbers of high-dimensional cliques and “holes.”
This quantification of structural properties of neuronal networks hopefully pro-
vides a first step for understanding the association between brain architecture and
function.

9.2.2 Mesoscopic Scales: Brain Functional Networks

Cognitive processes usually involve the coordinated activity of different areas of
the brain. The relation between the activity of brain regions can be represented
by networks, and statistical properties of these networks can provide informa-
tion on the functional architecture. Functional imaging can provide information
on the activity of the brain at mesoscopic scales of thousands or millions of cells.
Petri et al. [407] proposed to use TDA techniques to study the statistical proper-
ties of homological cycles in these networks. To test these ideas, they compared
the resting state of 15 healthy volunteers receiving placebo or psilocybin, a psy-
choactive drug. A significant difference was observed in the homological features
between the two groups, suggesting that these rough descriptors capture relevant
structural properties of brain architecture. The brain architecture of structural con-
nectomes was also explored using topological techniques by Sizemore et al. [464];
in particular, they sought to identify densely connected groups of active regions.
Further, they proposed that these cliques were related to local fast processing.
Experimentally, they verified that these regions were consistent across a group of
eight individuals. Cassidy et al. [98] has applied TDA to compare the activity of
the brain using functional MRI (fMRI) in a variety of conditions. This approach
improves over standard correlation comparison methods, in the sense that when
applied to real data it produces much more sensible functional connectivity pre-
dictions. It involves a method to analyze network architecture using persistent
homology, accounting for potential artifacts due to spurious spatial and temporal
correlations.
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Figure 9.5 Representation from a slice of in silico reconstructed neuronal tissue.
In red, a clique formed by five pyramidal cells. Source: [424].

9.3 Topological Approaches to Biomedical Imaging

Imaging is one of the main non-invasive modalities for diagnosing and evaluat-
ing the progression of many diseases, including cancers. Solid tumors appear as
masses in various imaging technologies, notably including MRI. Tumors have a
shape and volume; these can be modeled as the topological and geometric proper-
ties of a three-dimensional object. Rough metrics on these masses (e.g., changes in
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volume) are used as a standard for prognosis and to evaluate therapeutic efficacy.
However, it has been found that other geometric invariants can provide interesting
clinical information. For instance, glioblastomas, the most common type of brain
tumors in adults, come in two types: one single mass or multiple masses (multifo-
cal/multicentric glioblastomas). That is, a glioblastoma is classified by whether it
has multiple path components. In [320], it was shown that these two types are asso-
ciated to different genetics: multifocal/multicentric tumors are strongly enriched in
point mutations in PIK3CA, a major oncogene, and are genetically highly heteroge-
neous with different lesions associated to different masses in the tumor (Figure 9.6).
This observation has important clinical implications, as multifocal/multicentric
glioblastomas have a worse prognosis and drug responses to different masses are
extremely heterogeneous.

The observation that simple geometric and topological properties of images (vol-
ume or number of path-connected components) can inform prognosis and drug
responses prompts the question of how image data relates to genetic and clinical
data. Ideally, one would like to systematically explore the map between genetic
and phenotypic data (as expressed in the image and in other clinical sources).

Figure 9.6 Glioblastomas can appear in a single mass (left), or several masses
(multifocal/multicentric glioblastomas) (right). This simple topological difference
is associated to specific mutations (PIK3) and worse prognosis. Source: [320].
Reprinted with permission of Springer-Nature: Lee, Jin-Ku, et al. “Spatiotem-
poral genomic architecture informs precision oncology in glioblastoma.” Nature
Genetics 49.4 (2017): 594–599.



440 Part II Biological Applications

Crawford et al. [128] proposed to use the smooth Euler characteristic transform
(recall Section 3.8) to decompose tumor image data into a set of topological
features amenable to machine learning. The procedure starts by segmenting the
tumor image (i.e., identifying from the image data the tumor and reconstructing a
three-dimensional manifold [112]), then sectioning it using the smooth Euler char-
acteristic transform to extract a function of different directions that can be used for
subsequent functional machine learning analysis. Crawford et al. showed that topo-
logical information provides complementary information to other types of genomic,
transcriptomic, and volumetric data to predict overall survival in glioblastomas.
This work suggests an interesting approach of combining “omic” data with imag-
ing to better characterize the mechanisms of initiation and progression of tumor
growth; topological analysis appears naturally as a way of quantifying imaging
features.

Another interesting complex network studied using TDA is the blood vessel
system. In [489], Szymczak and colleagues proposed reconstructing the vascular
trees from three-dimensional images using persistent homology. The method was
applied to reconstruct coronary trees from computed tomography (CT) scan data
of the heart.

9.4 Spreading of Infectious Diseases

Networks have also been used to capture the spread of infectious agents, where
nodes represent infected individuals and direct infection is represented by edges.
Understanding the structure of these networks is one of the main objects of study
in epidemiology; such analysis provides information about the main routes of trans-
mission (aerosol, food, through other species, etc.), spread via local contact versus
long range contact (e.g., airline influence), how effective is the transmission of
infection, potential sensitive and resistant populations, and the efficacy of potential
ways of curtailing the spread. Taylor and colleagues [491] used TDA techniques
to study the mathematical structure of these graphs, their intrinsic dimensionality,
and their topological and geometric properties; they connected these invariants to
epidemiologically significant quantities.

Another application is the study of immune responses to infectious agents
[501]. It is well understood that different hosts will have very different responses
when exposed to the same infectious agents: some are resilient, others present
mild symptoms, and others could die. Torres et al. propose a phenotypic space,
the “disease space,” that captures the potential states of an infected host (Fig-
ure 9.7). Measuring physiological data (weight, temperature, different cell counts,
among others) at different states of infection, one can trace the trajectories of
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Figure 9.7 Left: Conjectured “disease space” capturing the potential phenotypic
states of a host infected with a pathogen. The normal state of an uninfected indi-
vidual is on the left. When it is exposed it is thrown out of this state. As the host
recovers, it goes back to the healthy state through a trajectory that does not track
back the previous states. Right: Mapper applied to physiological data from mice
exposed to Plasmodium chabaudi. Source: [501].

different hosts after exposure. It was observed that resilient hosts do not signifi-
cantly change states, while less resilient hosts are associated to large “loops” in
the disease space. These hypotheses were evaluated in mice exposed to Plasmod-
ium chabaudi (a murine analogue of the cause of human malaria) and in malaria
patients.

9.5 Summary

There are many exciting directions in the application of TDA methods to biolog-
ical data beyond genomics, and we expect more to be discovered in the coming
years. This work is clearly in its infancy, but already there have been interesting
and suggestive results.

● There is a great deal of biological data which comes as an ordered sequence;
time series data is a notable example, but not the only one.

● Topological data analysis methods provide a way to detect periodicity in ordered
signals, via a sliding window approach, that is competitive with the best standard
methods (and has different properties).

● TDA methods for analyzing graph structures have been profitably applied
to problems in neuroscience (studying neuronal connectivity and its corre-
lation with neural activity), epidemiology, and analysis of coronary artery
structure.
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9.6 Suggestions for Further Reading

● There are very good introductory books on time series analysis. A very ped-
agogical introduction is the book by J. Brockwell and R. Davis, Time Series:
Theory and Methods [74]. The book reviews spectral methods, autoregressive
and moving average processes, state-space models and forecasting.

● A review on time series analysis applications to transcriptomic and epigenetic
data is given by Z. Bar-Joseph et al. [35], with a summary of recent interesting
problems and standard bioinformatic tools for analysis.

● Regarding the TDA study of the sliding window approach to series data, we
recommend reading the work of J. Perea and J. Harer [404].

● For recent applications of TDA techniques to neuroscience, we recommend the
review by C. Curto [130].


