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Dimensionality Reduction, Manifold Learning, and
Metric Geometry

A map is not the territory it represents, but, if correct, it has a similar
structure to the territory, which accounts for its usefulness.

Alfred Korzybski

Although topological data analysis is new, the idea of studying data by analyzing
shape is classical. The original forms of this kind of analysis (regression, princi-
pal components analysis (PCA), and multidimensional scaling (MDS)) make the
assumption that the data lies on a linear subspace in Rn. In contrast, TDA makes
minimal assumptions about the underlying metric measure space generating the
data. On the one hand, this means that we can apply TDA to data sets where
we have no reason to expect linear structure. On the other hand, strong geomet-
ric assumptions have many benefits. For example, assuming that the data lies on a
k-dimensional subspace of Rn characterizes the problem as searching for a linear
transformation θ : Rn → Rk such that {θ(xi)} retains something about the structure
of {xi}. Assuming linearity

1. provides coordinates for describing the data and predicting where new data
points might lie,

2. allows the application of standard statistical inference methods, and
3. makes it straightforward to perform dimensionality reduction by constraining

the value of k. For example, even if we believe that the data lies on a plane
of dimension � > 3, it can be useful to project into R2 or R3 for visualization
purposes.

Linear models are arguably the most frequently used tools in applied mathe-
matics; however, the assumption of linearity is often unreasonable. As a result,
there has been a lot of recent work generalizing these methods to algorithms that
operate under the assumption that the data has been sampled from a compact
manifold M ⊆ Rn of much lower dimension than n. These algorithms, loosely
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236 Part I Topological Data Analysis

referred to as dimensionality reduction or manifold learning, then seek to infer
a parameterized representation of the data in terms of a coordinate system for a
manifold. It is interesting to point out that in many biological applications we do
not expect the data to lie on a manifold. For instance, the intrinsic dimension of
transcriptomic data is related to active transcription programs (see Chapter 7). The
number of these programs, relative to the intrinsic dimension, is not expected to be
constant.

Although the manifold assumption is usually unrealistic for genomic data,
dimensionality reduction has been successfully applied in various ways to ana-
lyze real biological data. For example, most applications of clustering in genomic
analysis use dimensionality reduction as a preprocessing step (e.g., the frequent
application of t-SNE), which is becoming standard in single cell analysis, see Chap-
ter 7. More interesting from our point of view is the fact that some of the most
successful genomic applications of Mapper have used coordinates from PCA as
filter functions.

In the first part of this chapter we give a rapid overview of manifold learning and
dimensionality reduction, starting with the classical techniques and moving on to
recent generalizations. There is a vast literature on this subject, and we cannot hope
to do more than give a flavor of these techniques. Our goal is to convey the central
ideas underlying these approaches to analyzing data. Roughly speaking, the basic
strategy of most manifold learning techniques is to take the k-nearest neighbors of
a point x and use the vectors specified by the line segments from x to its neighbors
as an approximation for the tangent plane at x. Global optimization then sews these
local approximations together to produce a low-dimensional representation of the
data. In a sense that can be made precise, the efficacy of these approaches depends
on the fact that the Laplace-Beltrami operator on the manifold (which describes
heat flow) can be approximated from finite samples by a certain graph Laplacian
matrix.

In Figure 4.1, we indicate the results of different manifold learning representa-
tions on data that lies on a plane in R3; all of them recover coordinates for the plane.
In Figure 4.2, we show a plane that has been rolled up – although the plane is flat,
the embedding is twisted and so cross-cutting connections are potentially a problem
(recall Section 2.2). Here, there is a noticeable difference in performance between
classical techniques that assume linearity and manifold learning algorithms that do
not.

In contrast to these cases, we will explore our running example of nested circles
(which are not linear at all), and also consider nested arcs. In this context, manifold
learning algorithms do a much worse job at recovering meaningful parametriza-
tions. These simple experiments highlight the ways that topological data analysis
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Figure 4.1 When the data lies on a plane inR3, all algorithms successfully recover
a representation of the original data.

Figure 4.2 When the data lies on a rolled-up sheet, classical algorithms like PCA
and MDS perform very poorly, whereas manifold learning techniques successfully
capture the intrinsic shape of the data.
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can be useful, even in situations where the data does lie on a low-dimensional man-
ifold. Of course, in general, we do not necessarily expect such a hypothesis to hold.

However, in genomics there is an even more specialized geometric assumption
that is frequently warranted. When working with data generated by evolutionary
processes, it is standard to assume that the data can be organized into a phylogenetic
tree. A phylogenetic tree is typically represented as a metric tree; recall from Exam-
ple 1.2.4 that this is a graph with no cycles and weighted edges, where the metric
is computed as the sum of the weights along the shortest path between two points.

In the second part of this chapter we give an overview of mathematical frame-
works for dealing with phylogenetic trees. Again, this is a vast area of research with
many excellent books; Felsenstein’s text is a classic exposition [172]. We begin by
giving a quick treatment of how to infer a phylogenetic tree from genomic data pre-
sented as a finite metric space; see Appendix C for a more detailed review. We then
explain celebrated work of Billera, Holmes, and Vogtmann [55] that shows that
phylogenetic trees can themselves be organized into a metric space; we will later
see in Chapter 5 that the associated metric geometry (see Section 4.7.3) supports
clinically significant analysis.

4.1 A Quick Refresher on Eigenvectors and Eigenvalues

Almost all of the dimensionality reduction techniques we will describe in this sec-
tion involve computation of the eigenvectors of a matrix formed from the data
points. Although we have assumed that the reader has familiarity with basic linear
algebra, in this section we briefly review the relevant definitions. In the following,
we always work with real vector spaces.

Definition 4.1.1. Let A be an n×n matrix. An eigenvector v for A with eigenvalue
λ is a non-zero vector v ∈ Rn such that

Av = λv.

The first key observation is that for symmetric matrices A (i.e., matrices such
that A = AT ), eigenvectors with distinct eigenvalues are orthogonal.

Proposition 4.1.2. Let A be a symmetric n × n matrix and let v1, v2 ∈ Rn be
eigenvectors with distinct eigenvalues λ1 � λ2. Then v1 is perpendicular to v2.

This suggests that we can think of eigenvectors for different eigenvalues as giv-
ing a preferred alternative set of coordinates for Rn which are adapted to the linear
transformation represented by A. We do not always have enough eigenvectors to
form a basis for all of Rn, however.
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Proposition 4.1.3. An n × n matrix A has at most n distinct eigenvalues and at
most n linearly independent eigenvectors. When there are exactly n independent
eigenvectors, they form a basis.

It is standard to sort the eigenvectors by the size of the associated eigenvalues;
when we talk about the “top k” eigenvectors, we mean those with the k largest
eigenvalues.

4.2 Background on PCA and MDS

A classical example of dimensionality reduction is principal component analysis
(PCA). The idea here is, given a set of points {x1, x2, . . . , xm} in Rn as data, to find
an “optimal” linear projection θ : Rn → Rk, for k < n. Here is an outline of the
algorithm.

1. We normalize to center the data and define

x̃i = xi − μ, where μ =
1
n

∑
i

xi.

2. We then form the covariance matrix

C =
1
n

∑
i

x̃i x̃i
T .

3. We compute the top k eigenvectors {v1, . . . , vk} of C to use as our basis.
4. These eigenvectors span a hyperplane (subspace) of Rn that is isomorphic to
Rk; the projection θ : Rn → Rk of the data is precisely the orthogonal projection
onto this plane followed by a choice of identification of the plane with Rk.

5. We can also regard θ as producing vectors in Rn; adding back μ yields
approximations yi = θ(x̃i) + μ of each xi.

This process chooses the basis which maximizes the variance captured by the
representation; the eigenvector v1 with the largest eigenvalue is the single direction
which captures the maximal amount of information about the variance in the points,
the plane spanned by {v1, v2} is the plane with the most variance, and so forth.
Interestingly, we can also characterize the output of PCA as the projection that
minimizes the error function

E =
m∑

i=1

∂Rn(xi, yi)
2.

That is, PCA produces the points {yi} which minimize the reconstruction error
among all projections onto a k-dimensional subspace.
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In fact, another classical approach to dimensionality reduction is to take min-
imization of E as a point of departure. Metric multidimensional scaling (metric
MDS), takes as input a finite metric space (X, ∂X) and computes an optimal
embedding of X into a Euclidean space Rk. Here the optimality criterion is to
preserve the original metric data as much as possible, i.e., to minimize an analogue
of E. Specifically, in MDS we search for a map θ : X → Rk that minimizes

E =
∑

xi,x j∈X

(
∂X(xi, x j) − ∂Rk (θ(xi), θ(x j))

)2
.

We do this as follows.

1. Let D denote the matrix with entries Di j = ∂X(xi, x j).
2. Set

H = I − 1
n

eeT and Z = −1
2

HDH,

where as usual I denotes the identity matrix and e is the vector with all entries
1. (This step centers the results; since the minimizing embedding is not unique
as distances are preserved by translation, we need to impose such a constraint
to get a specific output.)

3. The embedding that minimizes E is then given by finding the eigenvectors {v j}
of Z. Specifically, the embedding θ(xi) ∈ Rk is specified by normalizing so that
||v j||2 = λ j, making a matrix with the eigenvectors {v j} as columns, and taking
the ith row.

When the metric space (X, ∂X) arises as a subspace of Rn, then it turns out that
PCA and metric MDS coincide.

Theorem 4.2.1. Given {x1, x2, . . . , x�} ⊂ Rn and k < n, the results of metric MDS
and PCA embedding {xi} into Rk are isometric.

However, metric MDS has the advantage that it can be applied to arbitrary met-
ric spaces, i.e., metric spaces that are not subspaces of Rn. Moreover, posing the
problem as minimizing the embedding error function E allows us to consider vari-
ants which minimize different error functions. For example, work on “antigenic
maps” describing genomic and phenotypic variability in the flu virus uses an MDS
variant [467]. Of course, changing E can result in substantially more difficult
optimization problems.

These procedures are very widely used in data analysis because they are in gen-
eral easy to compute and (especially when k is chosen to be 2 or 3) result in
convenient visualizations of the embedded data. However, these algorithms can be
very unstable in response to perturbations of the data (although there is a growing
literature on robust variants of MDS and PCA, e.g., [89]), especially when noise
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processes vary in different directions (e.g., see [411]). Under assumptions that the
signal is low rank, variants known collectively as sparse PCA do a good job at
recovering a sparse basis to describe the signal [552]. Sparsity of the data can also
result in serious distortions; this is a particular problem in single-cell expression
data. For a more extensive discussion of this problem and its relation to random
matrix theory, see [15]. Another issue is that the optimal choice of k is a pri-
ori unknown. In practice, one often looks for an “eigenvalue gap,” i.e., a natural
splitting of the eigenvalues into a group of “large” eigenvalues and then a collec-
tion of much smaller eigenvalues. However, this procedure requires a threshold for
deciding where the gap is, and is in general more of an art than a science.

A more serious issue from our perspective is the fact that when the data cannot be
isometrically embedded as a Euclidean subspace of Rn, PCA and MDS simply do
not work particularly well to capture the intrinsic geometric structure. In Figure 4.3,
we see that for a single curved ribbon in R3, PCA captures the intrinsic geometry
with some distortion. But in Figures 4.4 and 4.5, for more complicated geometric
objects (the union of two ribbons and a sphere in R3, respectively), PCA does not
recover the intrinsic coordinates along the circle but rather just embeds a flattening
of the circle in Euclidean space.
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Figure 4.3 When the data lies on a single curved ribbon, the embedding into R2

exhibits distortion arising from the curvature.
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Figure 4.4 When the data lies on nested ribbons, the embedding is further
distorted by the proximity of the two components.
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Figure 4.5 When the data lies on the standard sphere S 2, the embedding flattens
the sphere and distorts the distances along an arbitrary axis.
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Remark 4.2.2. When using the eigenvectors from PCA to describe the data,
one possible source of difficulty in interpretation arises from the fact that the
relevant linear combinations might include negative terms. In many applications,
subtraction of basis vectors does not make sense. For example, many genomics
applications of dimensionality reduction are interpretable only for positive com-
binations of terms. In this context, an algorithm called “non-negative matrix
factorization” (NMF) is often used. In contrast to PCA, NMF is an iterative
optimization procedure. See [319] for a classic rigorous discussion.

4.3 Manifold Learning

Suppose that we are given data points {x1, . . . , xm} ⊆ Rn, but we no longer assume
that they admit a nearly isometric embedding as a hyperplane (i.e., an affine linear
subspace). As we explained in Section 2.2, even when the points {xi} are produced
by sampling from some embedding γ : M → Rn of a compact Riemannian mani-
fold M, the distance ∂Rn(γ(xi), γ(x j)) may not be very representative of the intrinsic
distance ∂M(xi, x j). For example, as Figure 4.2 indicates, even when the manifold
in question is homeomorphic to a plane, PCA and MDS can perform very poorly.

Consider the case of a line segment γ : [0, 1]→ R2 which is very twisted. Clearly,
the distance along the curve γ([0, 1]) is poorly approximated by the Euclidean dis-
tance, especially near kinks. However, when γ is sufficiently smooth, there exists a
feature scale at which Euclidean distances and intrinsic distances agree up to small
error. In the work described in Section 2.2, this observation was leveraged to justify
an algorithm for recovering the homology (and in fact homotopy type) of M. Here,
we are interested in recovering coordinates on the manifold. This is a meaningful
and potentially subtle question even in the case where M is contractible, and in fact
most manifold learning algorithms focus on the case where M is contractible but
the embedding γ : M → Rn is twisted.

Manifold learning approaches ultimately rely on the fact that in favorable cases
the manifold structure can be reconstructed by considering the “short distances” as
reliable indicators of the intrinsic distance and ignoring the “long distances.” One
way to express this idea is to hypothesize that the basis determined by the k-nearest
neighbors of a point z give a good approximation of the tangent plane to M at z.

4.3.1 Isomap

An early and prominent manifold learning algorithm is Isomap, which simply
applies MDS to an empirical approximation of the intrinsic metric [495]. The
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procedure works as follows. We assume we are given data points {x1, . . . , xn} ∈ Rn.
We fix a scale parameter ε and a target dimension parameter k.

1. Form the weighted graph G with
● vertices the points {xi}, and
● edges (i, j) with weight wi j = ∂Rn(xi, x j) when ∂Rn(xi, x j) ≤ ε.

2. We now form a new metric space X′ with points {x1, . . . , xn} but distance given
by the graph metric on G. Recall from Example 1.2.4 that this means that the
distance between two vertices is the length of the shortest path in the graph. The
graph metric can be efficiently computed, for example via Dijkstra’s algorithm
(e.g., see [125, 24.3]).

3. Finally, we use MDS to embed this new metric space into Rk as above,
producing points yi = θ(xi).

When the points {xi} are sampled from a convex subset M ⊆ Rm embedded
isometrically into Rn, k ≥ m, and ε is in the right range, Isomap can recover almost
exactly the coordinates for M. (Here recall that a subset A of Rn is convex if for
x1, x2 ∈ A, the line between x1 and x2 is entirely contained in A. In particular, this
implies that A is contractible.) The recovery guarantees follow from the fact that for
sufficiently dense sampling from a Riemannian manifold and suitable ε, the graph
metric computed in the second step of the procedure approximates the underlying
distance [51].

In Figure 4.6, we see that for a single curved ribbon in R3, Isomap does recover
the intrinsic distances, with a small amount of distortion. But in Figures 4.7 and 4.8,
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Figure 4.6 When the data lies on a single curved ribbon, Isomap does a good job
of recovering the intrinsic coordinates.
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Figure 4.7 When the data lies on nested ribbons, Isomap collapses the two
components to single lines.



244 Part I Topological Data Analysis

2.5

0.0

–2.5
–2

0
2 2 0 –2

2.5

0.0

–2.5
–2

0
2 2 0 –2

2.5

0.0

–2.5
–2

0
2 2 0 –2

Figure 4.8 When the data lies on the standard sphere S 2 in R3, Isomap is not able
to recover the intrinsic distances and embeds a flattening of the sphere in R2.

for more complicated geometric objects (the union of two ribbons and a sphere in
R3, respectively), Isomap again fails to recover the intrinsic coordinates of the data.
These examples illustrate some of the problems with Isomap.

1. An intrinsic issue is that MDS presumes that M can be isometrically embed-
ded in Euclidean space; if it is not, the procedure seriously distorts the
coordinates [335]. As a consequence, M must be flat in the sense of hav-
ing zero curvature. Moreover, Isomap performs poorly on non-convex but
contractible subspaces of Euclidean space, e.g., a space in the shape of the
letter “Y.”

2. Given new data points, the Isomap embedding has to be recomputed; there is
no way to adapt an existing embedding.

3. A further issue in practice is that the algorithm is not robust to outliers and is
very sensitive to differences in density or the precise value of ε. (For example,
see [373] for discussion of these points.)

4. Finally, efficiency can also be a problem, especially for large numbers of
samples. These issues arise both from the substantial costs of computing the
graph metric and from the size of the resulting MDS problem. Some efforts to
approach this by subsampling have been studied, e.g., see [460] for a sparse
version of Isomap.

4.3.2 Local Linear Embedding (LLE)

A closely related approach is the local linear embedding (LLE) algorithm [439].
Once again, we assume we have data points {x1, . . . , xn} ⊂ Rn and we fix a target
dimension parameter k and a neighborhood size K.

1. For each point xi, we solve for weights wi j which minimize the expression

E(xi) =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎜⎝xi −
∑

j

wi jx j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

,
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subject to the constraints⎧⎪⎪⎨⎪⎪⎩wi j = 0 x j not a K-nearest neighbor of xi∑
j wi j = 1.

Roughly speaking, we are solving for weights that optimally reconstruct each
point xi from its K-nearest neighbors. The weights can efficiently computed via
least squares.

2. Embedding points {yi = θ(xi)} ⊆ Rk are computed so that

E =
∑

i

⎛⎜⎜⎜⎜⎜⎜⎜⎝yi −
∑

j

wi jy j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
2

is minimized. This problem can be solved by computing the top k eigenvectors
of the matrix corresponding to the associated quadratic form, subject to some
nondegeneracy constraints.

Broadly speaking, LLE has fairly similar qualitative properties as Isomap; this is
illustrated in Figures 4.9, 4.10, and 4.11. In practice, it turns out to work somewhat
better than Isomap on samples of non-convex contractible subsets M ⊆ Rk (e.g.,
regions with dents in them), and also has the advantage that the eigenvector prob-
lem involves a matrix that is always sparse, and hence it can be run on substantially
larger data sets than Isomap.
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Figure 4.9 When the data lies on a curved ribbon, LLE does a good job of
recovering the intrinsic coordinates and unfolding the ribbon.
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Figure 4.10 When the data lies on nested ribbons, LLE does a better job than
PCA or Isomap but still engages in serious distortion of the intrinsic metric.
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Figure 4.11 When the data lies on the standard S 2 in R3, LLE does not do a
good job of capturing the intrinsic distances and simply embeds a flattening of
the sphere.

4.3.3 Laplacian Eigenmaps

Isomap and LLE implicitly use the tangent plane of a manifold to perform local
reconstruction of points. A more explicit use of the manifold structure is to try to
exploit the existence of the Laplace-Beltrami operator, a map from functions on M
to functions on M which is computed as the divergence of the gradient; on Rn, this
takes the classical form

Δ f =
n∑

i=1

∂2 f

∂x2
i

.

The first technique to take this approach is the Laplacian eigenmaps algorithm due
to Belkin and Niyogi [45].

Once again, we assume we are given data points {x1, . . . , xk} ⊆ Rn and we form a
neighborhood graph that captures the “small” distances between points. Precisely,
we fix a width parameter σ and proceed as follows.

1. Form the weighted graph G with
● vertices in bijection with the points {xi}, and

● edges (i, j) with weight wi j = e−
∂(xi ,x j)

2

σ when ∂(xi, x j) ≤ ε.
2. We let D denote the diagonal matrix specified by Dii =

∑
j wi j and define

the graph Laplacian as L = D − W, where W is the matrix of edge weights
from G.

3. We solve L f = λD f for the top k eigenvectors, which determine the embed-
ding; we form the matrix with columns these eigenvectors, and the rows are the
embedded points {yi}. This procedure can be viewed as finding a solution to the
optimization problem of determining {yi} that minimize

E =
∑
i, j

(yi − y j)
2Wi j,

i.e., finding an embedding that penalizes nearby points xi and x j being sent to
distant points yi and y j.
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Here the basic technical underpinning is one of the fundamental insights of spec-
tral graph theory, namely that the graph Laplacian we describe above shares many
interesting properties with the Laplacian of a manifold [116]. Moreover, as a basic
consistency check, when the points {xi} are sampled from a compact Riemannian
manifold, as the number of points increase and σ decreases, the graph Laplacian
converges in a precise sense to the Laplace-Beltrami operator on the manifold [46].

As with Isomap and LLE, Laplacian eigenmaps is expected to work best on
convex subsets ofRn; like LLE, the eigenvector problems involved tend to be sparse
and so Laplacian eigenmaps can handle comparatively larger data sets. However,
as Figures 4.12, 4.13, and 4.14 indicate, Laplacian eigenmaps has distinctly worse
performance than either Isomap or LLE. We discuss the method due to its historical
importance and conceptual clarity.

Remark 4.3.1. A refinement of the Laplacian eigenmaps algorithm, called Hes-
sian eigenmaps [146], uses a discretized version of the Hessian matrix of second
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Figure 4.12 When the data lies on a single curved ribbon, Laplacian eigenmaps
does not unfold the ribbon properly.
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Figure 4.13 When the data lies on nested ribbons, Laplacian eigenmaps does
in fact manage to recover some aspects of the relationship between the ribbons,
although each one is compressed and distorted.
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Figure 4.14 When the data lies on the standard S 2 in R3, Laplacian eigenmaps
does not do a good job of capturing the intrinsic distances.



248 Part I Topological Data Analysis

partial derivatives. The advantage of using the Hessian is improved theoretical
guarantees: the Hessian eigenmaps algorithm can be shown to be asymptotically
correct for arbitrary connected subsets of Rn. Although in idealized situations Hes-
sian eigenmaps outperforms other manifold learning algorithms, in practice it does
not work well – estimating second derivatives is well known to be numerically
unstable.

4.3.4 Manifold Learning and Kernel Methods

There is a basic resemblance between all of the manifold learning techniques
described in the preceding subsections; at a high level, it appears that they are
relying on similar geometric ideas. It turns out that this connection can be made pre-
cise using a standard body of techniques for handling nonlinearity in data analysis,
kernel methods.

The basic idea is to choose a nonlinear embedding Ψ of the points {xi} into an
infinite-dimensional inner-product space H, and use the inner product and norm
on H to analyze the points. The idea is that Ψ will unfold the data so that linear
techniques applied to Ψ(xi} will reveal nonlinear structure in {xi}. For example,
kernel PCA performs PCA on the embedded points and is frequently applied in
conjunction with clustering algorithms.

Although it is easy to see that for a suitable nonlinear embedding, such tech-
niques would be very effective, a number of questions about how to implement this
procedure arise.

1. It is not clear how easy it will be to produce a suitable mapΨwithout possessing
a priori knowledge of the data, and

2. it is not clear that working directly in the infinite-dimensional space H is
algorithmically tractable.

The key insight that makes kernel methods effective is the observation that a
wide variety of algorithms (including clustering and PCA) can be computed with-
out explicit knowledge of Ψ or H provided one has access to a kernel K, which is
a map

K : X × X → R
such that

K(xi, x j) = 〈Ψ(xi),Ψ(x j)〉H ,
where the expression on the right denotes the inner product in H. This formulation
reduces the question to producing a kernel K which is algorithmically tractable
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and also encodes geometric information about X. The construction of such kernels
turns out to be much more tractable than producing Ψ.

Example 4.3.2.

1. A standard kernel is the radial basis function or Gaussian kernel

K(xi, x j) = e
− ∂X (xi ,x j)

2

2σ2 .

This kernel is standard in classification and clustering applications.
2. On the set of trees (acyclic connected graphs), an interesting kernel is the subtree kernel

which is defined as

K(ti, t j) = #{isomorphic subtrees of ti and t j}.
This kernel is frequently used in analysis of linguistic and phylogenetic data. (See [121]
for an early paper on kernel methods in natural language processing.)

3. On the set of strings, the (k,m) mismatch kernel is defined as

K(wi,w j) = #{substrings s1, s2 of wi and w j such that

|s1| = |s2| = k and s1, s2 agree up to m mismatches}.
This kernel has seen notable applications to protein matching [322].

It now turns out that many manifold learning approaches can be interpreted as
kernel PCA; notably, we can represent Isomap, LLE, and Laplacian eigenmaps
in this fashion [225]. For example, for a data set {xi}, Isomap is (up to scaling)
identical to kernel PCA for the kernel

K(xi, x j) =

(
−1

2
(I − eeT )D2(I − eeT )

)
i j

,

where D2 denotes the matrix of squared distances, and e denotes the vector with all
entries 1.

4.3.5 Discrete Harmonic Analysis

As we have seen, many manifold learning algorithms essentially involve an approx-
imation to the Laplace-Beltrami operator on a manifold via the graph Laplacian.
That is, one way to think about the underlying mathematics of manifold learning
is in terms of discrete approximations of heat flow on the underlying manifold. In
classical physics, the Laplace operator Δ arises in the heat equation, which in its
simplest form can be written

∂ f
∂u
= Δ f .
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The heat equation describes how the geometry of a manifold interacts with local
temperature information to control the diffusion of heat over time.

Elaborating on this perspective, work of Jones, Coifman, Maggioni and collab-
orators has produced a large body of work on discrete harmonic analysis in terms
of the heat kernel, the function that describes the infinitesimal flow. Two basic
observations in the mathematical setting are that:

● the heat flow on the manifold describes the geometry of the manifold, and
● harmonic analysis (a generalization of Fourier analysis) in terms of the basis

of powers of the heat kernel gives a good description of functions on the
manifold.

The idea of discrete harmonic analysis is to analyze data using discretized
approximations to the heat flow. Given the data represented as a finite metric space
(X, ∂X), we fix a rapidly decaying function K(xi, x j) : X × X → R. For example, a
standard similarity measure is given by

K(xi, x j) = e−
∂X (xi ,x j)

σ ,

where σ is a width parameter. We now proceed as follows.

1. Form the weighted graph G with vertex set in bijection with the points x ∈ X
and an edge (xi, x j) of weight wi j = K(xi, x j) provided that K(xi, x j) > 0.

2. Writing Dii =
∑

j wi j, define the (normalized) graph Laplacian to be

L = D−
1
2 (D −W)D−

1
2 ,

where Wi j = wi j. (Notice that there is a slight difference from the graph
Laplacian used in Section 4.3.3.)

The discrete version of the heat flow is given by the random walk on the graph,
sometimes referred to as the diffusion walk in this situation; this is a Markov pro-
cess on the vertices where the vertex at time t is selected from the neighbors of
the vertex at time t − 1 according to the edge weights. Precisely, the probability of
moving to vertex k from vertex i is

pki =
wki∑
j wk j

.

The random walk on the graph G above has transition probabilities determined by
D−1W. It is sometimes useful to make this walk symmetric (i.e., to ensure that
pki = pik); in this case, the transition probabilities for the symmetrized walk are
given by

T = I − L = D−
1
2 WD−

1
2 .
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Roughly speaking, the diffusion walk on the graph describes how a point mass
at a given point in the graph spreads out over time as it diffuses according to the
edge weights. In the limit as the number of points increases and σ decreases, the
diffusion walk converges to the actual heat flow on the manifold described by the
heat equation.

The key observation is now that harmonic analysis of T gives rise to geometric
descriptions of the data set. To explain, the eigenfunctions of the powers T t deter-
mine a metric on X; this is the so-called “diffusion distance” at scale t. Specifically,
if we denote the eigenvectors of T (regarded as an L2 operator) by {Ψk} and the
associated eigenvalues {λk}, the diffusion distance at scale t is given by

Dt(x, y)2 =
∑
k≥0

λ2t
k (Ψk(x) − Ψk(y))2.

Since T and its powers describe an ergodic Markov process, the eigenvalues λi

satisfy |λ0| = 1 and

|λ0| ≥ |λ1| ≥ |λ2| ≥ . . . .
Truncating the expression for Dt by removing eigenfunctions corresponding to
eigenvalues smaller than some threshold ε provides a tractable approximation.
Roughly speaking, the diffusion distance between two points is a measure of how
connected the points are; i.e., it reflects the probability of moving from x to y in the
diffusion walk.

Moreover, we can use eigenvectors of T to embed the data {xi} in Rk so as to opti-
mally preserve the diffusion distance; just as in the manifold learning algorithms
described above, we put the scaled eigenvectors λt

iΨi as the columns of a matrix
and take the rows to compute the embedding. This embedding is such that the
Euclidean distance between the embedded points is close to the diffusion distance
on G.

Furthermore, wavelet bases for functions on the data can be constructed using
powers of T ; this gives a geometric basis for representing functions. The diffu-
sion process can also be used to smooth data before applying machine learning
algorithms. See [119] for the original paper; more generally, Maggioni’s research
group has an extensive bibliography.

4.3.6 Other Manifold Learning Techniques

We have chosen to highlight manifold learning techniques that are conceptually sig-
nificant and of historical importance; however, this has subsequently become a very
active area of research. There are now many other techniques, each with slightly
different virtues, insights, and limitations. As a few examples, some interesting
methods include the following.
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1. Local tangent space alignment [519], which uses the nearest neighbors of
a point to estimate the tangent space locally and then performs a global
optimization to align these compatibly.

2. Maximum variance unfolding [532], which forms a neighborhood graph that
maximizes distance between far-away points by solving a semidefinite pro-
gramming (SDP) problem and then computes eigenvectors, and uses these as
the basis for an embedding.

3. Manifold charting [69], which solves for local neighborhood coordinate patches
for each point and then sews them together using a global optimization process.

4.3.7 Manifolds of Differing Dimension

An obvious extension of the setup for manifold learning is the case where the data
is generated from the union of manifolds of differing dimension. This situation is
the simplest case of the general problem of “stratified space learning” (see Exam-
ple 1.11.9). Of course, ad hoc adaptations of manifold learning techniques could
be used: for example, cluster points by some estimate of local dimensionality (so
that points in a cluster come from a subset of roughly constant dimension) and then
apply manifold learning techniques to each cluster separately.

However, it is reasonable to expect that more systematic approaches would be
superior. So far, there have been two main settings studied.

1. The data is assumed to lie on the union of hyperplanes of different dimensions;
i.e., M = ∪iR

ni , where each Rni is presented as embedded in an ambient space
Rm via a linear map γi : Rni → Rm [481].

2. The data is assumed to lie on a metric graph. Recall from Example 1.11.9 that
these are stratified spaces with a zero dimensional stratum for the vertices and
a one dimensional stratum for the edges. We discuss the special case of trees
further below in Section 4.7.1. See for example [106] for an approach to general
graphs using Reeb graphs.

(Although note that [48] studied the problem of clustering points into different
strata, using estimates of local homology.)

4.4 Neighbor Embedding Algorithms

In this section, we discuss a different approach to dimensionality reduction,
stochastic neighbor embedding (SNE) [242] and its more popular descendant
t-distributed stochastic neighbor embedding (t-SNE) [336]. One issue with many
of the manifold learning algorithms we have discussed so far is that they do
not work well when the data points are of non-uniform density. The stochastic
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neighbor embedding algorithms address this by constructing a similarity measure
between points that reflects the local density around each point. They are much
more explicitly probabilistic (and less geometric) in their design.

4.4.1 Stochastic neighbor Embedding (SNE)

Let {x1, . . . , xm} ⊂ Rn denote the data and {y1, . . . , ym} ⊂ Rk denote a candidate set
of corresponding image points, for k ≤ n. Then we define

p j|i =
e
− ∂Rn (xi ,x j)

2

2σ2
i

∑
k�i e

− ∂Rn (xi ,xk)2

2σ2
i

and

qj|i =
e−∂Rn (yi,y j)2∑

k�i e−∂Rn (yi,yk)2 ,

where the variances σi are obtained by an optimization process we will describe
shortly and in the second equation we are fixing all of the variances to be identically√

2
2 . We set pi|i = qi|i = 0.

The idea behind SNE [242] is that good image points {y1, . . . , yn} have the prop-
erty that the difference between p j|i and q j|i is minimized, in the sense that we
minimize the summed Kullback-Leibler divergences via the cost function

C =
∑

i

∑
j

p j|i log
p j|i
q j|i

.

(See Remark 3.2.32 for discussion of the Kullback-Leibler divergence as a dis-
similarity measure on probability distributions.) Notice that ensuring these local
distributions are similar means that SNE is sensitive to variation in density; the
density around a point is explicitly represented in the cost function.

Remark 4.4.1. Recall that the Kullback-Leibler divergence is a dissimilarity mea-
sure but not a metric: it is not symmetric. In the context of SNE, this asymmetry
is a regarded as a feature – it serves to enforce a preference for preserving local
distances.

In practice, the SNE algorithm proceeds by solving for minimizing points {yi}
via a gradient descent procedure (often with diminishing amounts of noise added
as a form of simulated annealing) in order to find a good local minimum for C.
Convergence is often slow and depends critically on good choices of the vari-
ances σi, which we now explain how to obtain. In principle, differing choices of σi
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amount to enforcing variable numbers of neighbors used to do the local estimation
of the coordinates; this is expressed here via the use of the “perplexity,” which is
computed as

P = 2−
∑

j p j|i log2 p j|i .

Roughly speaking, P controls the number of effective neighbors that are used;
recall that this is a loose estimate of the local dimension. The desired perplex-
ity (typically in the interval [10, 100]) is a parameter, and we solve for values σi

which achieve the perplexity. The output of the algorithm can be fairly sensitive to
the choice of perplexity value.

4.4.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

In practice, a refinement of stochastic neighbor embedding is commonly used. One
of the problems with the original SNE procedure is that the gradient descent opti-
mization procedure is slow and it can be difficult to get it to converge. Another
problem afflicts the standard application of SNE to visualization. Specifically, in
order to use SNE to visualize data, one solves for embedded points {yi} in R2 or
R3. When there are even a moderately large number of points, the cost function
can cause compression of the points so that they all lie very close to the center of
mass, which makes the visualization hard to use. (This compression also defeats
clustering algorithms.)

To resolve these problems, van der Maaten and Hinton [336] proposed the vari-
ant algorithm t-SNE. This is quite similar to SNE, with the following modifications.

1. We symmetrize p j|i as follows:

pi j =
p j|i + pi| j

2
.

2. We define a symmetrized variant of q j|i as follows:

qi j =

(
1 + ∂Rm(yi, y j)2

)−1

∑
k��

(
1 + ∂Rm(yk, y�)2

)−1
.

In the original definition, the q j|i was defined using a Gaussian; this expression
replaces that with the Student t-distribution with one degree of freedom (i.e., a
Cauchy distribution), which has more weight in the tails.

3. Finally, the cost function is replaced with the alternative expression

C =
∑

i

∑
j

pi j log
pi j

qi j
.



4 Dimensionality Reduction and Manifold Learning 255

Once again, the cost function is optimized via a gradient descent procedure.
These modifications have a number of interesting consequences.

1. The use of a heavier tailed distribution in the embedding space means that
outliers have less impact on the overall results and the compression effects
around the center of mass are alleviated to some degree (although there are
still upper bounds on the number of points that can reasonably be embedded
before “clumping” occurs).

2. The adjusted formula for qi j also has the effect of substantially improving the
efficiency and quality of the gradient descent procedure.

Figures 4.15, 4.16, and 4.17 show that the t-SNE procedure can produce very
reasonable embeddings recovering local geometry; in particular, t-SNE arguably
performs best of the methods we have examined on the nested ribbons.

However, caution is required when interpreting the results of t-SNE. In contrast
to other dimensionality reduction methods, t-SNE does not directly depend on a dis-
cretization of the Laplace-Beltrami operator or approximation of the local tangent
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Figure 4.15 Especially at lower densities, t-SNE unfolds the ribbon to recover its
intrinsic coordinates.
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Figure 4.16 When the data lies on the nested arcs, t-SNE actually does a
reasonable job at recovering the intrinsic coordinates.
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Figure 4.17 When the data lies on the standard S 2 in R3, t-SNE does not do a
good job of capturing the intrinsic distances and instead flattens the sphere.
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planes. Put another way, it is more sensitive to different properties of the underly-
ing geometric object than other manifold learning methods. On the one hand, this
flexibility can be a real asset when working with data that does satisfy the mani-
fold hypothesis. On the other hand, the geometric properties of {yi} can be difficult
to relate to the geometric properties of {xi}. For example, when clustering points
after computing the t-SNE embedding in R2, inter-cluster distances do not reflect
global properties faithfully, and relative sizes of clusters are usually meaningless.
Moreover, there are no geometric theoretical guarantees about the ideal behavior
of t-SNE. We now turn to discuss an application highlighting best practice in using
t-SNE.

4.4.3 Reliable Use of t-SNE

A common usage pattern for t-SNE is to project into R2 and then apply a stan-
dard clustering method. This application of the algorithm has had some impressive
successes, as a method which adjusts for local density can reveal clusterings which
would not be evident using methods which impose a global constraint. A celebrated
application is the viSNE procedure [13], a tailored use of t-SNE, which has been
used for visualizing and classifying single-cell expression data, notably to distin-
guish healthy and cancerous bone marrow samples. We highlight the protocol here
as it provides an exemplary case study of how to robustly apply dimensionality
reduction.

The basic approach of viSNE applies t-SNE to embed gene expression data col-
lected from single-cell bone marrow samples, regarded as vectors in Rn with the
correlation metric, into R2 and then performs clustering on the embedded data. The
overall conclusion is that in this embedding, healthy bone marrow cells are close
together across samples and quite far from cancerous samples. This conclusion was
carefully validated.

1. The stability of each clustering was tested via standard cross-validation; some
data points were removed and deviation in the clusters was measured.

2. In order to handle the limits on the total numbers of points for embeddings in
R2, the algorithm was run repeatedly on subsamples from the data. The clusters
were compared to ensure that the analysis was robust to this subsampling.

3. To demonstrate more global stability, samples from different normal patients
were compared (and observed to be extremely similar in terms of the resulting
clusterings).

4. To ensure that the results were not artifacts of experimental procedure, differ-
ent experimental methods for obtaining the expression data were compared by
contrasting the resulting clusters.
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The procedures outlined above give very good confidence that the results of the
viSNE procedure are capturing real geometric information about the expression
data of bone marrow. In general, this example is a good model for an analytical
protocol for topological data analysis.

4.5 Mapper and Manifold Learning

In principle, one could use the coordinate charts provided by manifold learning
algorithms for all sorts of geometric inference about the data. In practice, dimen-
sionality reduction procedures are most commonly used as a preprocessing step
before applying some kind of clustering algorithm. From the perspective of TDA, a
very interesting extension of this approach is to use the output of manifold learning
algorithms as filters for Mapper.

Recall from Example 2.8.3 that using PCA coordinates of expression data as
a filter function for Mapper captured cell differentiation trajectories [431]. A rea-
sonable question to ask is what Mapper adds over standard manifold learning; to
answer this, we can directly compare the output of Mapper to the output of var-
ious manifold learning procedures. In Figure 4.18, we represent both the output
of Mapper and the raw outputs of PCA, MDS, and t-SNE for the differentiation
process.

The results are informative.

1. Mapper is only very slightly better than MDS and t-SNE for estimating a cell’s
position along the differentiation trajectory.

2. However, the graphical representation of Mapper contains additional informa-
tive structure; the loops and flares in the resulting Mapper graph are biologically
relevant.

In general, we expect that this kind of fusion of topological data analysis
and dimensionality reduction will provide a useful technique for describing the
structure of genomic data.

4.6 Dimensionality Estimation

Recall that the basic operating assumption in dimensionality reduction is that the
data points {xi} ⊆ Rn lie on a geometric object that has much lower intrinsic dimen-
sion k than the ambient space. As such, a natural problem to consider is whether
we can directly determine the dimension of {xi} without actually computing a
description of the lower dimensional object.
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Figure 4.18 The differentiation timeline can be extracted from various manifold
learning techniques. Source: [431]. From Abbas H. Rizvi et al., Nature Biotechnol-
ogy 35, 551-560 (270). c© 2017 Nature. Reprinted with Permission from Springer
Nature.

There are several reasons why we might want to have efficient approaches to this
problem. Although the very idea of intrinsic dimension presupposes the data has
enough geometric structure to give rise to a notion of dimension, there are many
classes of objects that have a good definition of dimension which are not mani-
folds (e.g., fractals). Moreover, estimating the intrinsic dimension can provide a
sense of how good low-dimensional summaries can be; for example, projecting
a data set with intrinsic dimension 4 into R2 will typically result in much less
distortion than projecting a data set with intrinsic dimension 50 into R2. Finally,
understanding the intrinsic dimension gives us a sense of the number of sam-
ple points required to accurately estimate geometric features of the underlying
object.
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There are a number of ways to try to directly estimate the dimension of the points
{xi}; almost all of them consider the rate of growth of the number of points within
an ε-ball as ε increases. For example, the correlation dimension [205] of a set of
points {x1, . . . , xn} is computed by considering the curve produced by plotting

(x, y) =

(
log ε,

2
n(n − 1)

θε

)
,

where θε is the count of the number of pairs (xi, x j) such that ∂(xi, x j) ≤ ε, and per-
forming a regression to estimate the slope of this curve. The correlation dimension
has proven useful in handling estimation of dimension for geometric objects like
fractals that are not well described by more classical measures of dimension.

When working under the manifold learning assumptions, i.e., that the data is
given as points {xi} ⊂ Rn sampled from a k-dimensional manifold, a more geomet-
ric version of this idea can be applied. The basic observation is that when points are
sampled from a density ρ in Rk, the number of points expected in a ball of radius
ε centered around z is approximately ρ(z) times the volume of the ball. There-
fore, empirical estimates of the rate of growth of the count of sample points in
Euclidean balls of expanding radius can be used to estimate dimension. A very
clean form of this approach is given by the maximum-likelihood estimator of Lev-
ina and Bickel [327], which assumes a Poisson distribution for the data and is given
at the point x by the formula⎛⎜⎜⎜⎜⎜⎜⎝ 1

N(R, x)

N(R,x)∑
j=1

log
R

T j(x)

⎞⎟⎟⎟⎟⎟⎟⎠
−1

,

where N(R, x) is the number of points in the ball of radius R around x and T j(x) is
the distance from x to the jth point in this ball. To compute a global estimate, we
can average the likelihood estimators.

Remark 4.6.1. MacKay and Ghahramani observe that the estimator above has
substantial bias (even for low dimensions) which can be corrected by a slightly dif-
ferent approach to combining the points, namely again using maximum likelihood
estimation. This amounts to computing the following:

m−1 =

∑n
i=1

∑N(R,xi)
j=1 log R

T j(xi)∑n
i=1 N(R, xi)

.

Notice that this is very similar to the original approach; here we are just averaging
the inverses. Numerical experiments suggest this correction reduces both bias and
variance.
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Another interesting approach in the manifold setting, due to Little et al. [332],
combines local PCA estimates of the dimension at various scales. The idea is
around each data point z to choose k-nearest neighbors and perform PCA on
the vectors determined by the pairs of z and a nearest neighbor to obtain a
local estimation of the tangent plane. More precisely, we perform the following
algorithm.

1. For each point z, we compute the eigenvalues λ1(r), . . . , λK(r) of the covariance
matrix

C =
1
n

∑
i

xix
T
i ,

restricted to the data points xi ∈ Br(z), as r varies. (We assume that the data has
been centered.)

2. Ideally, we will see the magnitudes of the eigenvalues cluster into two groups,
i.e., there will be a substantial eigenvalue gap over a broad range of values of r.
We regard the smallest ones as noise. We then restrict attention to the region of
the eigenvalue curves (i.e., plots of the values of the kth eigenvalue as a function
of r) where the rate of growth of the noise eigenvalues is flat.

3. Of the remaining eigenvalues, we separate those having linear growth as a func-
tion of r from those having quadratic growth via a regression. The linear growth
eigenvalues are regarded as corresponding to eigenvectors in the direction of
the local tangent plane, whereas the quadratic growth eigenvalues are com-
ing from eigenvectors in the direction of the local curvature of the manifold.
The number of linear growth eigenvalues provides a local dimension estimate
at z.

4. Finally, we average the dimension estimates over all points z.

4.7 Metric Trees and Spaces of Phylogenetic Trees

In this section we explain an approach to the analysis of phylogenetic trees based
on endowing sets of trees with geometric structure. The importance of phyloge-
netic tree structures in biological sciences cannot be overstated; their use begins
with Darwin’s proposal of the tree as a metaphor for the process of species gen-
eration through branching of ancestral lineages [133]. Since then, tree structures
have become ubiquitous in biology for describing evolutionary relations: notably,
clonal evolution events that start from asexual reproduction of a single organism
(primordial clone), which mutates and differentiates into a large progeny (see the
left panel of Figure 4.19) [293]. Examples of these processes include single gene
phylogeny in non-recombinant viruses, bacteria that are not involved in horizontal
gene transfer events, and metazoon development from a single germ cell.
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Figure 4.19 Clonal evolution of an asexually reproducing organism. Left:
Through acquiring mutations and differentiation, the primordial clonal organism
gives rise to a large heterogeneous population, whose evolution can be described
with tree-like structures; here horizontal lines represent organisms, and symbols
on the line represent mutations. Right: Longitudinal sampling of a clonal popula-
tion permits the construction of phylogenetic trees that describe its evolutionary
history. Here, subpopulations are represented by different colors; subsampling of a
particular subpopulation is illustrated by the color of the branch in the tree, one of
the many trees that can be reconstructed from this population. Source: [545]. From
Zairis et al., Genomic data analysis in tree spaces, arXiv: 1607.07503 [q-bio.GN].

There are a number of basic mathematical and algorithmic questions that arise
in this context.

1. Given genomic data, how can we fit a “best” phylogenetic tree to this data that
optimally encodes the evolutionary relationships in the data?

2. Given two trees, how can we assess quantitatively how different they are? Given
a collection of trees, can we compute a “summary” or average tree?

3. More generally, how can we describe probability distributions on trees? (For
example, more sophisticated output of algorithms to answer the first question
might provide a distribution of trees.)

There is a tremendous body of work on the first question; in the first part of
this section, we focus on a purely metric method (neighbor-joining) that takes
as input a finite metric space and produces a corresponding metric tree. We
give a rapid but more comprehensive treatment of tree inference algorithms in
Appendix C.
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In the remainder of the section, we assume that our raw data has been turned
into phylogenetic trees, and describe an approach to the second and third questions
based on using the metric geometry (Section 4.7.3) associated to a specific metric
on the set of phylogenetic trees.

4.7.1 Inferring Trees from Metric Data

One way to formulate the problem of inferring a phylogenetic tree structure from
genomic data is to regard the data as a finite metric space (X, ∂X) and postulate that
the metric ∂X is a tree metric, i.e., the points correspond to the leaves of a tree and
the distance corresponds to the length of the shortest path in the graph. (Recall the
discussion of graph metrics from Example 1.2.4.)

Definition 4.7.1. A phylogenetic tree with m leaves is a weighted, connected
graph with no circuits, having m distinguished vertices of degree 1 labeled
{1, . . . ,m} (referred to as leaves), and all other vertices of degree ≥ 3.

We refer to edges that terminate in leaves as external edges and the remaining
edges as internal. We will use the term tree metric to refer to the metric induced on
the leaves from the graph metric of the phylogenetic tree.

Of course, not every metric arises from a tree metric. Specifically, given a metric
space (X, ∂X), the metric ∂X is a tree metric if and only if it satisfies the four point
condition [82].

Lemma 4.7.2. A metric space (X, ∂X) is isometric to a tree metric space if and
only if for any u, v,w, x ∈ X, two of the three sums

∂X(u, v) + ∂X(w, x), ∂X(u,w) + ∂X(v, x), ∂X(u, x) + ∂X(v,w)

are equal and greater than the third.

But although this can be used as a test, it does not provide an algorithm for
producing a tree. A good solution to the tree inference problem then ideally has the
following properties.

1. When ∂X really is the metric corresponding to a tree metric, the algorithm
recovers a tree such that the associated metric is isometric to the input.

2. When ∂X is “close” to a tree metric in a suitable sense, the algorithm recovers
a tree T such that the associated tree metric is close to ∂X .

An influential method to do this is neighbor-joining [442], which recursively
constructs the output tree by selecting a pair of points, joining them as leaves com-
ing out from an internal vertex, and then repeating the process with the new vertex
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regarded as a leaf and the joined points removed, until all of the points are part of
the tree. More precisely, the algorithm works as follows. We assume we are given
as input a finite metric space (X, ∂X) such that |X| = n.

1. We initialize the output tree T to have a vertex for each point of X, each
connected to a central root and with no other edges.

2. Calculate the function

Q(xi, x j) = ∂X(xi, x j) − 1
n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
k�i

∂X(xi, xk) +
∑
k� j

∂X(x j, xk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .
3. Find the points xi and x j that minimize Q(xi, x j).
4. Define a new point z, and form T ′ from T by adding edges from xi and x j to

z, deleting the edges from xi and x j to the root, and connecting z to the root.
Define the edge weights as

wxi,z =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂X(xi, x j) +
1

n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
k�i

∂X(xi, xk) −
∑
k� j

∂X(x j, xk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠

and

wx j,z =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∂X(xi, x j) +
1

n − 2

⎛⎜⎜⎜⎜⎜⎜⎜⎝∑
k� j

∂X(x j, xk) −
∑
k�i

∂X(xi, xk)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

5. Form the discrete metric space X′ = X − {xi, x j} ∪ {z}, with

∂X′(xk, z) =
1
2

(∂X(xi, xk) + ∂X(x j, xk) − ∂X(xi, x j)).

6. If X′ consists only of {z}, terminate and return T ′. Otherwise, return to step 2
with T ′ and X′ in place of T and X.

First, the algorithm is sound, in the sense that when the metric ∂X actually is
a tree metric, the neighbor-joining algorithm recovers the tree. More interestingly,
it is fairly robust to noise; notice that neighbor-joining does not really require a
metric space as input, as the triangle inequality is never used. We have the following
consistency result [23].

Theorem 4.7.3. Let (X, ∂X) be a tree metric space and D : X × X → R a function
satisfying

|D(x, y) − ∂X(x, y)| ≤ 1
2

min
x1,x2∈X
x1�x2

∂X(x1, x2)

for all x, y ∈ X. Then neighbor-joining applied to D returns a metric space
isometric to (X, ∂X).
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Neighbor-joining turns out to work surprisingly well in practice; a theoretical
justification for this is given in [351]. Nonetheless, there are no global guarantees
about the behavior of the procedure for metric spaces far from trees; for instance,
in some cases neighbor-joining can produce negative edge lengths or exhibit other
perverse behavior.

Remark 4.7.4. A natural question to ask is how to determine whether a metric
space is far from being tree-like. One measure of the divergence from being a tree
metric is given by Gromov’s δ-hyperbolicity, which is a relaxation of the four-point
condition.

Persistent homology also gives an interesting approach to detecting whether a
metric space is a tree: metric trees are contractible and should have no homol-
ogy. Therefore computing PHk for any k > 0 yields information about divergence
from being tree-like. We discuss applications of this idea to population genetics in
Section 5.2.

4.7.2 The Billera-Holmes-Vogtmann Metric Spaces
of Phylogenetic Trees

For many applications, it would be very desirable to have a metric on the set of
phylogenetic trees. A distance function would permit quantitative comparisons. It
would also allow one to apply clustering algorithms to collections of trees (e.g.,
produced from samples from distinct patients). A metric would also provide some
of the foundations for dealing with probability distributions on phylogenetic trees
as well as summary statistics.

Billera-Holmes-Vogtmann (BHV) constructed a metric on weighted phyloge-
netic trees using the tools of metric geometry [55]. They defined a metric space
BHVm of isometry classes of rooted phylogenetic trees with m labeled leaves where
the non-zero weights are on the internal branches. The space BHVm is constructed
by gluing together (recall Section 1.5) (2m−3)!! positive orthants Rn

≥0 of dimension
n = m − 2, where

Rn
≥0 = {(x1, x2, . . . , xn) ∈ Rn | x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0};

each orthant corresponds to a particular tree shape, with the coordinates specifying
the lengths of the internal edges. A point in the interior of an orthant represents
a binary tree; if any of the coordinates are 0, the tree is obtained from a binary
tree by collapsing the internal edges with length 0. We glue orthants together such
that a (non-binary) tree is on the boundary between two orthants when it can be
obtained by collapsing edges from either tree geometry. Put another way, orthants
corresponding to two tree topologies are adjacent when they are connected by a
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rotation, i.e., one topology can be generated from the other by collapsing an edge
to length 0 and then expanding out another edge from the incident vertex.

The metric on BHVm is induced from the standard Euclidean distance on each
of the orthants.

1. For two trees t1 and t2 which are both in a given orthant, the distance
dBHVm(t1, t2) is defined to be the Euclidean distance between the points
specified by the weights on the edges.

2. For two trees which are in different orthants, there exist (many) paths connect-
ing them which consist of a finite number of straight lines in each orthant. The
length of such a path is the sum of the lengths of these lines, and the distance
dBHVm(t1, t2) is then the minimum length over all such paths.

For many points, the shortest path goes through the “cone point,” the star tree in
which all internal edges are zero. See Figure 4.20 for a picture of tree space.

As explained in [55, §4.2], efficiently computing the metric on BHVm is a
non-trivial problem. However, there exists a polynomial-time algorithm based on
successive approximation of geodesic paths [394].

Figure 4.20 Moduli space of phylogenetic trees describing clonal evolution. Col-
lections of trees can be mapped onto a geometric space, forming a point cloud.
Trees with the same topology will live in the same orthant, and crossing into an
adjacent orthant corresponds to a tree rotation (collapsing an edge to 0 and expand-
ing out a new edge). Points closer to the vertex of the cone have relatively little
internal branch length, while points near the base of the cone have little weight in
the external branches. Source: [545]. From Zairis et al., Genomic data analysis in
tree spaces, arXiv: 1607.07503 [q-bio.GN].
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The main result of Billera, Holmes, and Vogtmann is that the length met-
ric on BHVn endows this space with a (global) CAT(0) structure (see Defini-
tion 4.7.9 below). The fact that BHVn is a CAT(0) space means that points
are connected by unique geodesics (which realize the distance between them)
and there are unique centroids. As a consequence, it is reasonable to con-
sider geometric inference in this setting. Moreover, BHVn is clearly a com-
plete metric space and is separable, which means that it contains a countable
dense subset; any tree can be approximated by a sequence of trees in the
same orthant that have rational edge lengths. That is, BHVn is a Polish space
and so as discussed in Section 3.3 is a reasonable space on which to apply
the standard machinery of probability theory (see [247, 248] for work in this
direction). In some applications it is also useful to consider a projectivized vari-
ant of the tree space where the internal edges are constrained to have lengths that
sum to 1. We denote this subspace of Σn by PΣn and refer to it as the projective tree
space.

Remark 4.7.5. The space of phylogenetic trees turns out to appear in various
other contexts in mathematics; for instance, it is closely related to the moduli space
of algebraic curves [141]. Perhaps more relevantly, it appears in the context of
Diaconis and Sturmfels’ algebraic statistics [145] as a tropical Grassmannian [479]
(see also [395]).

4.7.3 Metric Geometry

Although metric spaces often arise in contexts in which there is no evident notion
of geometry, it turns out that under very mild hypotheses a metric space (X, ∂X) can
be endowed with structures analogous to those arising on Riemannian manifolds.
See [73, 83] for a comprehensive treatment of metric geometry. The basic approach
to this involves the notion of length of a path in a metric space.

Definition 4.7.6. Let (X, ∂X) be a metric space. Let I ⊂ R be an interval [a, b].
The length of a path γ : I → X is

L(γ) = sup
n∑

i=1

∂X(γ(xi), γ(xi−1)),

where the sup is taken over all collections a = x0 < x1 < . . . < xn−1 < xn = b.

We can define a potential distance function on (X, ∂X) by defining the distance
between x and y to be

inf
γ

L(γ),
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where the infimum is taken over all γ : [0, 1] → X such that γ(0) = x and γ(1) = y.
A metric space is a length space if this distance agrees with the metric. When the
infimum can be achieved, we have the notion of a geodesic metric space.

Definition 4.7.7. A metric space (M, ∂M) is a geodesic metric space if any two
points x and y can be joined by a path with length precisely ∂M(x, y).

Any Riemannian manifold is a geodesic metric space. But more generally, a
good notion of curvature makes sense in any geodesic metric space [11]. The idea
is that the curvature of a space can be detected by considering the behavior of
the area of triangles, and triangles can be defined in any geodesic metric spaces.
Specifically, given points p, q, r, we have the triangle T = [p, q, r] with edges the
paths that realize the distances ∂M(p, q), ∂M(p, r), and ∂M(q, r). The connection
between curvature and area of triangles is revealed by the observation that given
side lengths (�1, �2, �3) ⊂ R3, a triangle with these side lengths on the surface of
the Earth is “fatter” than the corresponding triangle on a Euclidean plane. To be
precise, we consider the distance from a vertex of the triangle to a point p on the
opposite side – in a fat triangle, this distance will be larger than in the correspond-
ing Euclidean triangle. (Thin triangles are defined analogously.) See Figure 4.21
for examples of thin and fat triangles.

Given a triangle T = [p, q, r] in (M, ∂M), we can find a corresponding triangle T̃
in Euclidean space with the same edge lengths. Given a point z on the edge [p, q],
a comparison point in T̃ is a point z̃ on the corresponding edge [p̃, q̃] such that
∂R2(z̃, p̃) = ∂M(p, z).

Definition 4.7.8. Let (M, ∂M) be a metric space. We say that a triangle T in M sat-
isfies the CAT(0) inequality if for every pair of points x and y in T and comparison
points x̃ and ỹ on T̃ , we have ∂M(x, y) ≤ ∂R2(x̃, ỹ).

Definition 4.7.9. If every triangle in M satisfies the CAT(0) inequality then we
say that M is a CAT(0) space.

Figure 4.21 Thin triangles have angles that add up to less than 180 degrees; fat
triangles have angles that add up to more. We can detect the curvature of the Earth
by observing that big triangles are fat.
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More generally, let Mκ denote a complete and simply connected two dimensional
Riemannian manifold with curvature κ; the classification results discussed above
show that there is a unique such manifold up to homeomorphism. The diameter of
Mκ will be denoted Dκ. A Dκ-geodesic metric space is one in which all pairs of
points p and q such that ∂M(p, q) < Dκ are connected by a geodesic.

Definition 4.7.10. A Dκ-geodesic metric space M is a CAT(κ) space if every trian-
gle in M with perimeter ≤ 2Dκ satisfies the inequality above for the corresponding
comparison triangle in Mκ.

Clearly, if κ′ ≤ κ, any CAT(κ′) space is also CAT(κ). More importantly, this
notion coincides with standard ideas about curvature in geometric examples: An
n-dimensional Riemannian manifold M that is sufficiently smooth has sectional cur-
vature ≤ κ if and only if M is CAT(κ). For instance, Euclidean spaces are CAT(0),
unit spheres are CAT(1), and hyperbolic spaces are CAT(−1).

As described, CAT(κ) is a global condition.

Definition 4.7.11. A metric space (X, ∂X) is locally CAT(κ) if for every x there
exists a radius rx such that Brx(x) ⊆ X is CAT(κ).

Example 4.7.12. For example, the flat torus (formed by taking the box [0, 1] × [0, 1]
and gluing together the edges {0} × [0, 1] to {1} × [0, 1] to make a cylinder and the edges
[0, 1] × {0} to [0, 1] × {1} to make a torus) is locally CAT(0) but not globally CAT(0).

Theorem 4.7.13 (Cartan-Hadamard). A simply connected metric space that is
locally CAT(0) is also globally CAT(0).

A remarkably productive observation of Gromov is that many geometric proper-
ties of Riemannian manifolds are shared by CAT(κ) spaces. In particular, CAT(κ)
spaces with κ ≤ 0 (referred to as non-positively curved metric spaces):

1. admit unique shortest paths joining each pair of points x and y,
2. have the property that all balls Bε(x) are convex and contractible for all x and
ε ≥ 0, and

3. have stable midpoints of shortest paths.

It is in general very difficult to determine for an arbitrary metric space whether
it is CAT(κ) for any given κ. Even for finite simplicial complexes where the metric
is induced from the Euclidean metric on each face, this problem does not have a
general solution.
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4.8 Summary

● A standard approach in data analysis is to search for low-dimensional structure
in high-dimensional data points using the geometry encoded in the interpoint
distances.

● Principal component analysis (PCA) takes a finite set of points in Rn (with the
assumption that these points admit an isometric embedding as a plane) and seeks
to find an optimal linear projection of the data into Rk for k < n.

● Metric dimensionality scaling (MDS) is another classical method which deter-
mines an optimal embedding of a finite metric space (X, ∂X) into a Euclidean
space. MDS is similar to PCA, but can be applied to arbitrary metric spaces.

● Isomap and local linear embedding (LLE) are two related algorithms that apply
MDS to empirical approximations of the intrinsic metric of a manifold. Isomap
and LLE differ slightly in their procedures. LLE is slightly more successful in
practice on non-convex contractible subsets of Euclidean space.

● Almost all manifold learning algorithms depend on approximating the local
tangent structure of the manifold from the data, typically by studying the spec-
trum of the graph Laplacian. Heat flow provides a conceptual framework for
describing these approximations.

● Neighbor embedding algorithms like stochastic neighbor embedding (SNE)
make different geometric assumptions and are effective in working with data
points of non-uniform density. A descendant of SNE, t-distributed stochastic
neighbor embedding (t-SNE), is an extremely popular choice in applications.

● As synthetic examples illustrate, classical dimensionality reduction and man-
ifold learning techniques work best under restrictive hypotheses about the
geometry of the data.

● The coordinates provided by manifold learning algorithms can be used as filters
for Mapper. This is an interesting avenue for combining TDA and geometric
dimensionality to provide a more flexible description of the underlying structure
of the data.

● Metric geometry is the study of geometric structures on metric spaces that are
similar to those that arise in Riemannian geometry.

● The space of phylogenetic trees may be endowed with geometric structure. This
structure provides the foundations for dealing with probability distributions and
summary statistics.

4.9 Suggestions for Further Reading

There is of course a tremendous literature on PCA and many different variants
of MDS; we particularly recommend Hastie, Tibshirani, and Friedman’s classic
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text [233] for a wonderful exposition in the context of classification and learning.
The area of manifold learning and the problem of working with non-Euclidean
manifolds embedded in Euclidean space is substantially more recent. A nice survey
of manifold learning techniques (discussed in a broader machine learning context)
is available in [50].


