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Statistics and Topological Inference

O! it is pleasant with a heart at ease,
Just after sunset, or by moonlight skies,
To make the shifting clouds be what you please . . .

Samuel Coleridge

Our central goal in this book is to explain how to use topological data analysis as a
tool for scientific inference in biology. In the previous chapter, we described a strat-
egy for assigning topological invariants to experimental data presented as a finite
metric space. Moreover, we have presented theoretical justification that in ideal
cases these topological invariants encode information about the shape underlying
the data. But when trying to understand how to extract answers to specific scientific
questions from the shape of real experimental data, many methodological questions
immediately arise.

1. How confident can we be that the results of TDA applied to sampled data
correctly reflect something about the underlying process generating the data?

2. How stable are the results of TDA in the face of noise and differing choices of
parameters?

3. What does a particular value of a topological invariant tell us about the shape
of the data?

These questions are not unique to this setting, but arise pervasively in data
analysis. But the last of these questions is particularly acute in the context of topo-
logical data analysis. The geometric significance of clustering is fairly clear; the
data breaks up into groups which are made up of similar points. This is not to say
that it is always easy to make use of clustering for inference, but we feel like we
understand the information about the shape of the data that it provides. In contrast,
suppose that you compute the homology of a data set at scale 0.75 and discover
that H6 has rank 15. What then?
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3 Statistics and Topological Inference 171

In this chapter, we describe answers to the three questions above using statisti-
cal techniques to analyze topological invariants computed from data. It is easy to
engage in self-deception with incautious use of statistical techniques. As a conse-
quence, our focus is on trying to understand how to sensibly and reliably use these
tools to analyze data.

3.1 What Can Topological Data Analysis Tell Us?

In order to understand the use of statistics in topological data analysis, it is useful
to draw a contrast with the basic approaches in classical statistics. Consider the
most fundamental problem.

1. We are given a finite collection of samples {x1, . . . , xn} ⊂ R which have been
drawn independently from a Gaussian with mean μ and standard deviation σ.
The probability density function of this distribution is

ρ(x) =
1√

2πσ2
e
− (x−μ)2

2σ2 .

2. We know that the data has come from some Gaussian, and we want to estimate
μ and σ.

This is a parametric problem; we know the answer lies in a family of unknown
distributions in which each member is described by a collection of numbers. To
recover the distribution, we would estimate μ and σ using the sample mean

μ̂ =
1
n

∑
i

xi

and the sample variance

σ̂2 =
1

n − 1

∑
i

(xi − μ̂)2,

which are unbiased estimators of the mean and variance of the underlying
distribution.

Deep theoretical results provide confidence in this procedure. The law of large
numbers tells us that as n increases, the sample mean converges to μ in a suit-
able sense. Since μ̂ depends on the particular sample, it will vary, and the central
limit theorem describes the distribution of μ̂; specifically, it tells us that this quan-
tity itself has a Gaussian distribution. We can summarize the information we
obtain about μ̂ in terms of a confidence interval; this is an interval [a, b] ⊂ R,
defined in terms of the samples, that contains the true parameter value with a
specified probability. For example, the 95% confidence interval for the mean of



172 Part I Topological Data Analysis

a Gaussian is centered around μ̂ and has width that depends on the standard
deviation σ.

In general parametric settings, we cannot always assume that the underlying dis-
tribution is Gaussian or that we know a closed form expression for the distribution
of the parameter we are estimating. As a consequence, in practice we often form
confidence intervals using the bootstrap: this procedure estimates the distribution
of the parameter by repeatedly generating samples (with replacement) from the
given samples and computing the test statistic from them.

Sometimes we do not want to assume that we know a parametric family of distri-
bution that generated the samples; this is the domain of non-parametric statistics.
Even in these cases, the law of large numbers and central limit theorem tell us
a great deal about how to estimate various summary statistics of the underlying
distribution. For example, the law of large numbers tells us that the empirical
distribution on a sample {xi}, which assigns probability to each value propor-
tional to its frequency, converges to the underlying distribution. For more general
summary statistics, the bootstrap remains a powerful way to estimate confidence
intervals in this setting. Another possibility is to try to describe the distribution
using density estimation; for example, we could solve the optimization problem of
fitting the observed samples to a mixture of Gaussians and regard this result as an
approximation of the underlying distribution.

In topological data analysis, we have access to many fewer tools. As we dis-
cuss below, it is very hard to algorithmically specify the underlying geometric
object, even if we assume it is a manifold, except under very restrictive hypothe-
ses. This implies it will be hard to recover it as well. Moreover, for distributions
on general metric spaces, we do not necessarily expect many of the analogues of
classical statistics to hold. And writing down parametric distributions is generally
difficult. As a consequence, statistical inference in topological data analysis imme-
diately focuses on estimating distributions of summary statistics, often generated
by persistent homology barcodes.

In the literature on topological data analysis, there is often an implicit (and some-
times explicit) view of topological inference as a process in which some sort of
underlying geometric “ground truth” can be recovered. In a setup where we have
access to samples which we regard as coming from a probability distribution on an
underlying space, there are a number of ways of formalizing what we mean.

1. A first goal might be simply to recover the persistent homology of the underly-
ing space (or rather, the support of the sampling distribution) from computation
of persistent homology of the samples, the empirical persistent homology.

2. A more sophisticated version of the preceding goal would be to recover infor-
mation about both the persistent homology of the underlying space and the
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probability measure generating the samples. For instance, a natural way to pro-
ceed is to try to recover the persistent homology of the level set filtration. Given
a suitable probability density ρ on A ⊆ Rn, the super level sets

Γρ(z) = {x ∈ A | ρ(x) > z}
induce a filtration as z varies.

3.1.1 Persistent Homology and Sampling

We begin by considering the first question above: can we recover the persistent
homology of the underlying space from the empirical persistent homology? An ini-
tial consistency check, described in Section 3.4, is that with large enough samples
we can always recover the persistent homology of the support of the probabil-
ity distribution from the empirical persistent homology (Figure 3.1). The basic
observation is simply that with sufficiently many samples, even regions of low
probability density will be well sampled.

However, in practice we will usually not know how many samples are enough;
the feature scale of the underlying object is often unknown and even when we have
some estimates of the scale, experimental realities may limit the number of data
points available. Thus, we need to understand the behavior of the empirical persis-
tent homology as it converges, i.e., when we do not necessarily assume the number
of samples is large. The kind of situation we might worry about is represented in
Figure 3.2; an anomalous sample leads to misleading results.

Thus, we need to understand sampling variability and decide how to assemble an
estimate that aggregates the empirical persistent homology from different samples;
for example, we might hope to build a confidence region for the population value
of the parameter. Figures 3.3 and 3.4 indicate sampling variability in persistent
homology at different sample sizes. We study questions of convergence properties
and confidence intervals for estimates in Section 3.5. Thinking about summaries of
collections of barcodes raises interesting questions about what it means to compute
the “average” barcode or to think about the variance or spread of a collection of bar-
codes; we will discuss these issues throughout the chapter, notably in Sections 3.3
and 3.6.

Summarizing collections of empirical barcodes is an interesting endeavor from
another perspective: we might regard the probability distribution generating the
samples as itself worthy of investigation, and so want to have an invariant or col-
lection of invariants for persistent homology which explicitly encodes information
about the distribution. For example, Figure 3.5 illustrates that different distributions
on the same underlying space can result in very different barcodes at small sample
sizes.
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Figure 3.1 As the sample size increases, the persistent homology of the sample converges to the persistent homology of the support of the
distribution, in this case the underlying space.
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Figure 3.2 These samples were all generated from a uniform distribution on
nested circles, and underneath we graph the PH1 barcode. The barcode on the
left is consistent with our expectations. But in the sample in the middle (which
was a particularly anomalous sample among the many we generated), the two bars
are very short and do not coexist, and on the right, there is only a single bar.

In the limiting cases where we have many samples, regions of low probability
mass can make the same contribution to the topology as regions of high probability
mass. And we might not regard this insensitivity to the density as a feature!

A closely related question is to understand the impact of noise in the data. One
might expect the empirical persistent homology to behave well with respect to
noise. After all, part of the original intuition behind persistent homology is to make
homology computations robust to perturbation by integrating information across
various feature scales; and this intuition is confirmed by Theorem 2.4.10, the stabil-
ity theorem for persistent homology. And indeed, persistent homology is relatively
stable in the face of noise concentrated around the real data; see Figure 3.6 for an
example.

However, even in this case, the barcode has an increasing number of short “noise
bars.” The difficulties are exacerbated when we deal with data coming from a low-
dimensional space embedded in a higher dimensional Euclidean space; then the
noise is often the same dimension as the ambient space, which can lead to very
complicated topological signals arising from the noise. These considerations moti-
vate the study of the topology of “random” geometric complexes, which we review
in Section 3.7.
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Figure 3.3 Sampling variation when the sample size is small relative to the feature scale can result in large variation in the resulting
barcodes.
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Figure 3.4 As the sample size increases, the empirical barcodes are increasingly clustered around the “true” value.
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Figure 3.5 Independent identically distributed samples of fixed size from different probability distributions on the same space can result in
very different barcodes.
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Figure 3.6 Increasing amounts of Gaussian noise centered around the underlying object cause the barcode to be filled with small spurious
bars.
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An even more serious problem is that not all noise is concentrated around the
data. And the stability theorem has basically nothing to say about the presence of
arbitrary outliers (i.e., noise points that are far from the data points). Adding a sin-
gle point to a metric space (X, ∂X) can perturb it in the Gromov-Hausdorff distance
arbitrarily (recall Example 2.4.6). And we can perturb PHi arbitrarily by adding
“synthetic i-spheres” far away from the points of X. For instance, when i = 1, we
can add 4 points at the vertices of a square with side-length k; this adds an interval[

k
2 ,

k
√

2
2

)
. Using more points, we can control the size of the interval and introduce

additional intervals. (See Figure 3.7 for an example of the effect of outliers.)
This kind of instability is a well-known problem that arises even in very basic

statistical inference.

Example 3.1.1. Consider computing the mean of a set of points {x1, . . . , xn} ⊂ R.
Specifically, let us take {1, 2, 3, 4, 5}; we find the mean is 1+2+3+4+5

5 = 3. Now change the
point 5 to 1050. To first approximation, the mean is now very close to 1049. Put another way,
given a set {x1, . . . , xn}, one can make the mean any arbitrary value by suitably modifying
a single data point! (See Figure 3.8 for a picture of this phenomenon.)
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Figure 3.7 Adding a small number of points to create a circle far away from the
real data can make a significant change in the barcode; a tiny number of “bad
points” creates a noticeable third bar.
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Figure 3.8 A small amount of outlying probability mass can have a large effect
on the mean but cannot affect the median very much.
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Traditionally, this phenomenon is the purview of robust statistics [251]; the mean
is not robust. In contrast, the median is the classic example of a robust replacement
for the mean. Changing 5 to 1050 does not affect the median of {1, 2, 3, 4, 5} at all.
(More generally, one needs to change at least 50% of the points in order to achieve
arbitrary change in the median.) The situation with persistent homology turns out to
be even worse, since whereas the mean is stable with respect to small perturbations
of the distribution, barcodes of samples are not.

There are various ways to try to make persistent homology invariants more
robust. One possibility is to simply preprocess the data to remove “outliers”; when
there are a small number of points that are very far away from the bulk of the
points, it is easy to identify them. A more principled way to do this is to consider
filtering the data by density; we discuss one approach to using density estimators
in Section 3.5.1, and we discuss the use of the density filtration with Mapper in
Section 3.9. Another version of this strategy involves subsampling; if the number
of outliers is small, most subsamples will not contain many outliers. We explain in
more detail in Sections 3.4 and 3.5 how to use these ideas to bound the impact of
parts of the data set with small probability mass. Finally, in Section 3.6, we discuss
how to use real-valued invariants of the data and techniques from robust statistics.

3.1.2 Topological Inference

In contrast to the relative success of procedures for trying to recover information
about the persistent homology of the underlying space, we cannot hope in gen-
eral to identify the homotopy type of the underlying space. Any effort to identify
topological spaces runs up against the fact that there is no algorithmic classifica-
tion of topological spaces up to homeomorphism or homotopy type; the problem
is provably uncomputable in dimensions ≥ 4, even if we restrict attention only to
manifolds. (See [550, §4.1] for a nice review of these results.)

Theorem 3.1.2. The problem of determining whether two manifolds M and N
of dimension ≥ 4 presented as finite simplicial complexes are homeomorphic is
undecidable.

This result is proved by constructing a manifold whose fundamental group π1(M)
encodes the word problem (recall Example 1.6.22 and Remark 1.6.23). Weakening
homeomorphism to homotopy equivalence does not help.

Corollary 3.1.3. The problems of determining whether two manifolds M and N of
dimension ≥ 4 presented as finite simplicial complexes are homotopy equivalent or
weakly homotopy equivalent are undecidable. (Even the problems of determining
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whether a given manifold is homeomorphic or homotopy equivalent to a fixed
manifold Z are undecidable.)

Worse, as the allowable diameter grows, there are exponentially many possible
homeomorphism types of manifolds arising as submanifolds of Euclidean space of
dimension greater than 2 [533, §1.2]. Similar bounds hold for the number of possi-
ble homotopy types. As a consequence, it is not in general plausible to parametrize
hypothesis classes of spaces except when imposing strong restrictions or using
coarse invariants. Moreover, the explicit sample bounds for recovery of persistent
homology (from Section 2.2 above and Section 3.5 below) are exponential in the
intrinsic dimension of the data.

Even if we restrict ourselves to the seemingly easy problem of distinguishing
spheres of different dimensions (i.e., S 50 versus S 51), basic results about con-
centration of measure in high-dimensional Euclidean spaces imply that under an
oblivious sampling model (i.e., when samples are drawn independently of one
another) most of the mass on a sphere S n is concentrated around a radial region
which is homeomorphic to S n−1. This shows that this problem requires an expo-
nentially large number of points [533, §1.3]. More generally, as we discuss below
in Section 4.6, it is very difficult to successfully estimate the dimension of very
high-dimensional manifolds.

These constraints place sharp limits on the kind of geometric inference that we
can expect. We have basically three options: work with low-dimensional topo-
logical features of the data and perform exploratory data analysis, work with
low-dimensional data where exact topological inference is reasonable, or treat the
results of topological data analysis as signals about shape that are potentially unin-
terpretable except as input to statistical inference or machine learning procedures.
In more detail, TDA provides the following.

1. A methodology for exploratory data analysis via description and visualization
of low-dimensional shape information. Arguably the most widely used TDA
technique is Mapper, and indeed the standard usage pattern for Mapper is to
search for meaningful clusters in the data which can then guide further exper-
iments. We discuss this at a high level in Section 3.9. In the second part of
the book, we will explain many examples of this approach, including appli-
cations to tumor classification and cell differentiation (see Sections 6.7, 7.3,
and 7.4).

2. Exact information about data that truly does lie in low-dimensional topological
spaces. In these cases, topological data analysis can be interpreted to provide
specific geometric information about the data and is often applied in a “hypothe-
sis testing” framework. For instance, in dimension 1, specific hypotheses about
the process generating the data are reasonable, and analogues of parametric
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statistics make sense. We will discuss an example of this kind of approach in
phylogenetics in Section 5.2, where persistent H1 is used to detect divergence
from the “tree hypothesis” for evolutionary data and estimate recombination
rates.

3. Robust “topological signals” to use as features for classification, inference,
and supervised learning algorithms. Although many topological features cannot
be interpreted directly (e.g., “H15(X) is approximately 39”), they still con-
vey discriminative information about the data. Ideally, this approach permits
integration of information from topological data analysis with other sources
of information (e.g., standard parametric statistical models). Two examples of
this approach that we will discuss are surface recognition via the persistent
homology transform (see Section 3.8 for a general discussion and Section 9.3
for specific applications) and the use of persistent homology information to fit
parameters for population genetics models (see Section 5.7).

We now explain how to integrate topological data analysis with suitable
statistical techniques in order to carry out these three kinds of analyses.

3.2 Background: Geometric Sampling and Metric Measure Spaces

At the most basic level we access geometry through a metric. Therefore, we want to
work with metric spaces equipped with probability measures that are compatible
with the metric. We do this using the machinery of metric measure spaces. This
framework makes it possible to extend intuitive and familiar ideas from ordinary
statistics in Euclidean space to a very broad class of geometric objects.

3.2.1 Metric Measure Spaces

To express the compatibility of metric and probability measure in a precise fashion,
we work with the notions of measurable spaces and measures. A measurable space
is a set along with a collection of subsets to which we can assign “area.” A measure
on a measurable space is a rule for assigning area, i.e., a theory of integration. We
rapidly review these definitions here; we recommend [56, 57] for more in-depth
treatments.

Definition 3.2.1. For a set X, a σ-algebra is a collection Σ of subsets of X such
that

1. ∅ ∈ Σ,
2. given a countable set {Ui} such that Ui ∈ Σ, then the union

⋃
i Ui is also in Σ,

and
3. if U ∈ Σ, then the complement X \ U is in Σ.
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As we noted above, these closure properties are motivated by the perspective
that the elements of a σ-algebra have area; for instance, given a collection of sets
that have area, we should be able to measure the area of their union. Given an
arbitrary collection S of subsets of X, the σ-algebra generated by this collection is
the smallest σ-algebra containing S ; roughly speaking, we simply add all missing
unions, intersections, and complements.

Example 3.2.2. The most important example of a σ-algebra is the Borel σ-algebra
associated to a topological space X; this is just the σ-algebra generated by the collection
of open sets of X. (Equivalently, it is generated by the collection of closed sets of X.)

In fact, when (X, ∂X) is separable (i.e., contains a countable dense subset; recall Defini-
tion 1.2.14), then the Borel σ-algebra is generated by the collection of open balls {Bε(x)}
as ε varies over R>0 and x over the points of X.

Definition 3.2.3. A measurable space is a pair (X,Σ) consisting of a set X and a
σ-algebra Σ.

Example 3.2.4.

1. Let X be a countable set; the power set of X forms a σ-algebra, which we refer to as the
counting σ-algebra. This σ-algebra is generated by the points x ∈ X.

2. Euclidean space Rn with the σ-algebra generated by the boxes (a1, b1) × · · · × (an, bn)
is a measurable space.

3. More generally, any topological space is a measurable space with the Borel σ-algebra.
4. It turns out to be technically advantageous to equip Euclidean space with a more

sophisticated σ-algebra, the Lebesgue σ-algebra. This is an enlargement of the Borel
σ-algebra; it includes more measurable sets, in order to force every subset of a set of
measure zero to be measurable. (This enlargement is referred to as the “completion” of
a σ-algebra.)

Functions between measurable spaces are defined in analogy with continuous
functions.

Definition 3.2.5. Let (X,Σ) and (X′,Σ′) be measurable spaces. A map of sets
f : X → Y is a measurable function if f −1(A) ∈ Σ for all A ∈ Σ′. A measurable
function is a measurable isomorphism when f is an isomorphism of sets and f −1

is also a measurable function.

Measurable spaces support the computation of area; a measure space is
a measurable space that has been equipped with a specific area function, a
measure.
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Definition 3.2.6. A measure μ on a measurable space (X,Σ) is a function

μ : Σ→ R≥0

such that

1. μ(∅) = 0, and
2. for Xi ∈ Σ such that Xi ∩ X j = ∅ for all i and j,

μ

⎛⎜⎜⎜⎜⎜⎜⎝ ∞⋃
i=1

Xi

⎞⎟⎟⎟⎟⎟⎟⎠ = ∞∑
i=1

μ(Xi).

A basic theorem that allows us to construct measures is that for a σ-algebra
generated by a collection of subsets S , it suffices to define the measure on the sets
in S . This result is closely related to the construction of the Riemann integral. (See
Figure 3.9 for an example of the process.)

Example 3.2.7.

1. For a finite set X with the counting σ-algebra, the counting measure on X assigns to
each subset A ⊆ X the cardinality of A, i.e.

μ(A) = #A, A ⊆ X.

This can be regarded as the measure determined by setting each point x ∈ D to have
measure 1.

2. For Rn with the box σ-algebra, the standard measure is determined by assigning to each
rectangle its area, i.e.,

μ([a1, b1] × . . . × [an, bn]) =
∏

i

(bi − ai).

Figure 3.9 In favorable cases, the measure of an arbitrary region is bounded by
the area of inner and outer covers by generating sets; the actual area is given by
taking limits as the inside sum increases and the outside sum decreases. In general,
the inner measure is defined in terms of the outer measure of the complement.
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Given a measure μ on X, we can integrate any measurable function f : X → R
over a region A ⊆ X as follows. Assuming temporarily that f ≥ 0, we set∫

A
f dμ = sup

B1∪B2∪...B�=A
Bi∩Bj=∅,i� j

∑
i

(
inf
x∈Bi

f (x)

)
μ(Bi).

Here the sup is computed over all decompositions of A into finitely many disjoint
subsets {Bi} (in particular, � will vary). If f takes both positive and negative values,
we define the integral in terms of the expression above for the positive part and
negative part separately and take the sum.

We are most interested in probability measures, for which we require that
μ(X) = 1. An important class of examples of probability measures are determined
by probability density functions. Given a probability measure μ and a measurable
function f , the integral

∫
X

f is called the expectation of X.

Definition 3.2.8. Let μ be a measure on (X,Σ) and f be a measurable function
f : X → R so that μ({z | f (z) < 0}) = 0. Then there is an induced measure on X

ν(A) =
∫

A
f dμ, A ⊆ X.

We say that the measure ν has density f with respect to μ.

Remark 3.2.9. It is standard to describe measures via probability densities when
working with a basic reference measure for integration, e.g., the Lebesgue measure
on Rn or the counting measure on a finite set. In the following discussion, we will
sometimes omit specification of the measure when working with densities.

When (X, ∂X) is a metric space, we can now use the topology induced by the
metric and the Borel σ-algebra to express compatibility of metric and measure. A
Borel measure is a measure with respect to the Borel σ-algebra.

Definition 3.2.10. A metric measure space with a probability measure is a metric
space (X, ∂X) that is complete and separable, equipped with a Borel probability
measure μX . The support of a metric measure space is the subset supp(X) of X
consisting of points x for which every neighborhood U of x satisfies μX(U) > 0.

Remark 3.2.11. More generally, we can consider metric measure spaces where
the measure is not a probability. We will not use such examples in this chapter,
however.
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Definition 3.2.10 provides a theoretical framework for describing data sampled
from some kind of geometric object.

Our working hypothesis throughout this chapter is that we have data
presented as samples from an underlying metric measure space (X, ∂X , μX).

Example 3.2.12.

1. A finite metric space (X, ∂X) with the normalized counting measure

μ(A) =
#A
#X

, A ⊆ X

is a metric measure space.
2. For any subset A ∈ R and a measure μ (not necessarily a probability measure) such that

μ(A) < ∞, A becomes a metric measure space via the uniform measure

μ′(S ) =
μ(S )
μ(A)

, S ⊆ A.

3. More generally, the standard probability distributions on R and Rn equip them with the
structure of metric measure spaces. For example, R with a Gaussian density gives rise
to the Gaussian measure when integrated with regard to the Lebesgue measure.

4. Manifolds also provide natural geometric examples of metric measure spaces – any
compact Riemannian manifold M is a metric measure space under the volume mea-
sure [144]. Samples from the volume measure on a manifold have the property that any
small region has a number of points proportional to its volume; this is a version of the
uniform distribution.

5. Given any metric measure space (X, ∂X , μX), any measurable subset A ⊂ X is itself a
metric measure space, where

μA(V) =
μX(V)
μX(A)

for V ⊂ A.

We can describe finite independent identically distributed (i.i.d.) samples as
follows.

Definition 3.2.13. Let (X, ∂X , μX) be a metric measure space. The product mea-
sure μ⊗n

X makes the metric space (
∏n

i=1 X,
∏n

i=1 ∂X) into a metric measure space,
where
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μ⊗n
X (A1 × A2 × . . . × An) = μX(A1)μX(A2) . . . μX(An),

A1 × A2 × . . . × An ⊆
n∏

i=1

X = X × X × . . . × X.

Thus, an i.i.d. sample of size n from (X, ∂X , μX) can be described as a draw from
the distribution μ⊗n

X .
We will be interested in measures induced by the application of functions

(e.g., persistent homology). To be precise about this, we need the notion of the
pushforward of a measure.

Definition 3.2.14. Let f : (X, ∂X) → (Y, ∂Y) be a measurable function between
the Borel measure spaces X and Y . Then given a probability measure μX , the
pushforward measure f∗μX on Y is specified by the formula

f∗μX(A) = μX( f −1(A)),

for A a measurable set in Y .

Another useful way of generating new measures is by combining old ones.

Definition 3.2.15. Let μ and ν be finite Borel measures on Rn. Then the
convolution μ ∗ ν can be defined as

μ ∗ ν = +∗(μ × ν),
the pushforward of the product measure along the addition map + : Rn × Rn → Rn.

Explicitly, the convolution is given by the formula

(μ ∗ ν)(A) =
∫
Rn

∫
Rn

1A(x + y)dμ(x)dν(y),

where 1A is the indicator function for the measurable set A ⊂ Rn. Convolution
with a Gaussian affords a useful general technique for smoothing distributions
with complicated local structure; the width of the Gaussian controls the degree
of smoothing.

Finally, we note that it is frequently useful to have a notion of size for real-valued
functions on a metric measure space. To this end, we quickly recall the definition
of the Lp and L∞ norms.

Definition 3.2.16. Let (X, ∂X , μX) be a metric measure space and let f : X → R
be a measurable function such that

∫
X

f pdμ < ∞. Then the Lp norm of f for 1 ≤
p < ∞ is
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|| f ||p =
(∫

X
| f |pdμ

) 1
p

.

When p = ∞, we define

|| f ||∞ = inf{k ∈ R | μ({x ∈ X | f (x) > k}) = 0}.

Remark 3.2.17. When X is a finite set and μX is the counting measure (i.e., the
measure that assigns probability mass 1

|X| to each point), these norms reduce to the
pth root of the sum of pth powers and the max, respectively.

Remark 3.2.18. Geometric sampling on non-Euclidean metric measure spaces
can be very subtle, even when dealing with the volume measure on a compact
Riemannian manifold [144]. For example, consider the problem of sampling from
the surface of the sphere S 2 ⊆ R3. In this case, there is a natural parametrization
of the points of the sphere arising from spherical coordinates (r, θ1, θ2). A naive
approach is to use the spherical coordinates to sample: sample uniformly θ1 and θ2

from [0, 2π] and [0, π] respectively and consider the map σ : [0, 2π] × [0, π] → R
specified by

x = sin(θ2) cos(θ1)

y = sin(θ2) sin(θ1)

z = cos(θ2).

Denoting by U the uniform distribution on [0, 2π] × [0, π], we have the pushfor-
ward σ∗U which is supported on S 2 ⊆ R3. However, σ∗U is concentrated at the
poles and is not the distribution associated to the area form. In this case, we can
simply sample uniformly in a cube around the origin in R3 \ {0}, discard points fur-
ther than 1 from the origin, and divide by the norm. More generally, one needs to
use either rejection sampling or Markov chain Monte Carlo (MCMC) techniques.
These methods can be applied to general manifolds, provided one has access to an
explicit and computationally tractable parameterization; of course, this is often a
serious problem.

3.2.2 The Fréchet Mean and Variance of a Metric Measure Space

Most practical applications of statistics involve the use of summary statistics. As
such, it is natural to look for notions of mean and variance that apply in the gen-
eral context of metric measure spaces. The standard approach to this problem is
the theory of the Fréchet mean and variance of a probability measure μ on a met-
ric measure space (e.g., see [487] for an introduction to this theory). Although it
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turns out that this theory is not particularly useful in barcode space (as we explain
below), we nonetheless quickly review it here since understanding the pathological
behavior of the Fréchet mean motivates the techniques used in practice. We restrict
our attention to probability measures μ satisfying a finiteness condition.

Definition 3.2.19. Let (X, ∂X , μX) be a metric measure space. Then the Fréchet
variance as a function of z ∈ X is the integral

vμ(z) =
∫

X
∂X(z, x)2dμ(x).

We will assume that vμ < ∞. Then the Fréchet mean is defined as follows.

Definition 3.2.20. The Fréchet mean is the set

eμ = argmin
(
inf

z
vμ(z)

)
⊆ X,

i.e., the values z ∈ X that achieve the infimum.

When dealing with a finite sample {x1, x2, . . . , xn} from (X, ∂X , μX), the Fréchet
mean and variance of the underlying distribution are approximated using the
empirical measure which assigns probability 1

n to each point in the sample. See
Figure 3.10 for a simple example.

It is not at all clear that the Fréchet mean exists for general metric measure
spaces; in practice, we rely on the following result.

Theorem 3.2.21. Let (X, ∂X , μX) be a metric measure space. If μX has compact
support (e.g., if X is compact), then the Fréchet mean exists.

Figure 3.10 The Fréchet mean (green) of a finite sample (red) from the uniform
distribution on a sphere is the point on the sphere that is the “centroid” of the
sample.
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More generally, the Fréchet mean can be shown to exist as long as the “tails” of
μ decay sufficiently rapidly. (See [285] for a precise statement.)

The general theory of the Fréchet mean and variance provides laws of large
numbers; given finite samples from μ equipped with the empirical measure, the
Fréchet means of the samples converge to the Fréchet mean of μ.

Theorem 3.2.22. Let (X, ∂X , μ) be a metric measure space. Let {Zk} be a collection
of i.i.d. samples Zk ⊂ X drawn according to μ, such that |Zk| → ∞ as k → ∞. Let
μk denote the empirical measure on Zk. Then almost surely eμk → eμ (i.e., the
probability of convergence is 1).

The problem of understanding the convergence of derived quantities of distribu-
tions for increasing finite samples suggests that we should put a topology on the set
of probability measures. We now turn to a discussion of how to construct metrics
on probability distributions and on metric measure spaces.

3.2.3 Distances on Measures and Metric Measure Spaces

In order to state Theorem 2.4.10, the stability theorem for persistent homology
of finite metric spaces, we used a metric on the set of isometry classes of finite
metric spaces. To state the analogous stability theory describing the interaction of
sampling and persistent homology, we will use a metric on the set of isomorphism
classes of compact metric measure spaces. Recall that the Gromov-Hausdorff met-
ric is defined in terms of a metric on subspaces of a fixed metric space, the
Hausdorff metric. To define a metric on metric measure spaces, we will start with
a metric on probability measures on a fixed metric space.

To motivate this definition, we quickly explain the notion of weak convergence
of probability measures. For a metric space (X, ∂X), let P(X) denote the set of Borel
probability measures on X.

Definition 3.2.23. Let (X, ∂X) be a metric space. A sequence {μn} ⊂ P(X) weakly
converges to μ ∈ P(X) if for all bounded continuous functions f : X → R,∫

X
f dμn →

∫
X

f dμ.

The idea of weak convergence is that a sequence of distributions converges when
the average value of any function f converges; i.e., weak convergence means that
the expectation of any random variable converges. This notion of convergence is of
particular importance because it is the kind of convergence that arises in the central
limit theorem.
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Warning 3.2.24. Weak convergence is very different from requiring that the
measure of each set converge!

Since convergence of sequences can be defined in terms of a metric (recall Def-
inition 1.2.7), it is natural to look for a metric that controls weak convergence.
We now introduce several such metrics that are useful in topological data analysis,
starting with the Prohorov distance.

Definition 3.2.25. Let (X, ∂X) be a metric space equipped with two Borel mea-
sures μ1 and μ2. Then we define the Prohorov distance between μ1 and μ2

to be

dPr(μ1, μ2) = inf{ε > 0 | μ1(A) ≤ μ2(Bε(A)) + ε and μ2(A) ≤ μ1(Bε(A)) + ε},
where A varies over all closed sets in X and

Bε(A) = {z ∈ X | ∃ a ∈ A, ∂X(z, a) ≤ ε}.

To understand what the Prohorov distance means, it can be convenient to use
an alternative formulation. For this, we need the notion of a coupling, which is a
probability distribution θ on X×X such that θ(A×X) = μ1(A) and θ(X×B) = μ2(B)
for arbitrary measurable subsets A, B ⊆ X.

Lemma 3.2.26. Let (X, ∂X) be a metric space equipped with two Borel measures
μ1 and μ2. Then we can compute the Prohorov distance as

dPr(μ1, μ2) = inf
C

inf{ε > 0 | C{(x, x′) ∈ X × X | ∂(x, x′) ≥ ε} < ε},
where C varies over all couplings.

Roughly speaking, two measures are within ε in the Prohorov metric when there
is a matching of the space with itself such that on a region of probability mass 1− ε
matched points are within ε and can vary arbitrarily on the remainder.

Proposition 3.2.27. The distance dPr is a metric on P(X, ∂X), the space of prob-
ability measures on X. If X is complete and separable, then given a sequence of
probability measures {μi} that converges to a measure μ in dPr, μi weakly converges
to μ.

A complete and separable metric space is called a Polish space. In general,
Polish spaces are a good setting for probability theory: not only is weak conver-
gence metrizable, but in addition certain pathologies with product measures do not
arise.



3 Statistics and Topological Inference 193

Example 3.2.28.

1. Let μ1 and μ2 be distributions determined by δ-functions, i.e., μ1 has mass 1 on a point
x1 and μ2 has mass 1 on a point x2. Then

dPr(μ1, μ2) = min(∂X(x1, x2), 1).

2. Let (X, ∂X , μX) be a metric measure space and Y ⊂ X have measure > 1 − ε. Then μX

regarded as a distribution on Y has Prohorov distance < ε from μX .

In fact, there are many metrics on P(X) that metrize weak convergence [195].
Optimal transport theory suggests the use of the Wasserstein or “earth-mover” met-
ric [517]. Here, the rough idea is to imagine distributions modeled by piles of dirt;
the Wasserstein distance is the minimal amount of energy (dirt times distance) that
must be expended to transform one distribution into another.

Definition 3.2.29. Let (X, ∂X) be a compact metric space equipped with two Borel
measures μ1 and μ2. For p ≥ 1, the p-Wasserstein distance between μ1 and μ2 is

dWp =

(
inf
C

∫
X×X

∂X(x, y)pdC(x, y)

) 1
p

,

where C varies over all couplings.

Any of the Wasserstein distances metrize weak convergence of probability mea-
sures on metric spaces with bounded diameter (i.e., where the maximum distance
between x1, x2 ∈ X is bounded).

Lemma 3.2.30. The distance dWp is a metric on P(X, ∂X), the space of proba-
bility measures on X. Let (X, ∂X) have bounded diameter. Then given a sequence
of probability measures {μi} that converges to a measure μ in dWp, then μi weakly
converges to μ.

Example 3.2.31.

1. Let μ1 and μ2 be distributions specified by δ-functions; μ1 has mass 1 on x1 ∈ X and μ2

has mass 1 on x2 ∈ X. Then dWp (x1, x2) = ∂X(x1, x2).
2. Let μ1 and μ2 be empirical distributions on finite subsets {xi} ⊂ X and {x′i } ⊂ X such

that |{xi}| = |{x′i }|. Then the Wasserstein distance can be computed as

dWp = min
θ : {xi}→{x′i }

⎛⎜⎜⎜⎜⎜⎜⎝∑
i

(∂X(xi, θ(xi)))
p

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

,

where θ varies over all bijections.
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Remark 3.2.32. It is common in information theory and Bayesian statistics to
measure the difference between distributions μ1 and μ2 in terms of the Kullback-
Leibler divergence. Taking p and q to be probability mass functions on a discrete
space X where q(x) = 0 =⇒ p(x) = 0, the Kullback-Leibler divergence is
computed as ∑

x∈X

p(x) log
p(x)
q(x)

,

where we interpret the contribution of a term with p(x) = 0 to be 0. (An analogous
definition can be given in the setting of measure spaces, but setting it up is suffi-
ciently complicated that we do not pursue it here; see [195] for a discussion, where
it is referred to as relative entropy.)

The Kullback-Leibler divergence has many interesting properties, but it is not a
metric; it is neither symmetric nor satisfies the triangle inequality.

The Wasserstein distance and the Prohorov distance are related, in the sense that

dP(μ1, μ2)2 ≤ dW1(μ1, μ2) ≤ (diam(X) + 1)dP(μ1, μ2)

(and dW1 (μ1, μ2) ≤ dWp(μ1, μ2) ≤ CdW1 (μ1, μ2) for a suitable constant C) [195]. We
can convert the Prohorov and Wasserstein distances into metrics on isomorphism
classes of compact metric measure spaces. The approach is to use an analogue
of the technique that converts the Hausdorff distance into the Gromov-Hausdorff
metric on isometry classes of compact metric spaces.

Definition 3.2.33. Let (X, ∂X , μX) and (Y, ∂Y , μY) be compact metric measure
spaces. The Gromov-Prohorov distance is defined as

dGPr((X, ∂X , μX), (Y, ∂Y , μY)) = inf
φX ,φY ,Z

dPr ((φX)∗μX , (φY)∗μY ) ,

where here φX : X → Z and φY : Y → Z are isometric embeddings into a metric
space Z.

Definition 3.2.34. Let (X, ∂X , μX) and (Y, ∂Y , μY) be compact metric measure
spaces. The Gromov-Wasserstein distance is defined as

dGWp((X, ∂X , μX), (Y, ∂Y , μY)) = inf
φX ,φY ,Z

dWp((φX)∗μX , (φY)∗μY),

where (φX , φY , Z) is as in the previous definition.

Lemma 3.2.35. The Gromov-Prohorov and Gromov-Wasserstein distances are
metrics on the set of isomorphism classes of compact metric measure spaces.
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Remark 3.2.36. Although we do not review this here, there is very interesting
work on the details of the topology induced on the set of isomorphism classes of
metric measure spaces by these metrics [207, 346, 347].

3.3 Probability Theory in Barcode Space

The foundation of any statistical approach to persistent homology is the notion
of a probability distribution of barcodes. The set B of barcodes is a metric
space under the bottleneck distance dB (Definition 2.4.8) or the p-Wasserstein
distance dWp (Definition 2.4.9). Therefore, B endowed with the Borel σ-algebra
becomes a measurable space: we can work with the collection of Borel proba-
bility measures on B. Proposition 3.2.27 shows that the Prohorov metric on the
set of Borel probability measures metrizes weak convergence of probability mea-
sures when the underlying metric space is complete and separable. We begin
this section by constructing subspaces of barcode space that are complete and
separable.

3.3.1 Polish Spaces of Barcodes

A first thought is to consider the set of finite barcodes. It is easy to see that this
barcode space is separable for either the bottleneck or Wasserstein distance; an
arbitrary “bar” [a, b), with a, b ∈ R, can be approximated arbitrarily well by choos-
ing rational approximations a′ for a and b′ for b. However, the set of finite barcodes
is not complete.

Example 3.3.1. Consider a sequence of barcodes {Xi} where X0 = ∅ and Xi is obtained
from Xi−1 by adding a disjoint bar [0, 1

n ). That is,

Xi = {[0, 1), [0, 1/2), [0, 1/3), . . . , [0, 1/i)}.
Working with the bottleneck distance, it is easy to check that {Xi} is a Cauchy sequence
(recall Definition 1.2.9),

dB(Xi, X j) ≤ 1
max(i, j)

,

as the distance between Xi and X j is bounded by the longest bar present in X j and not in
Xi (assuming that j > i). But {Xi} does not converge to any element of B; the sequence is
clearly converging to a barcode with infinitely many bars! (See Figure 3.11 for a picture of
this sequence.)

Instead, we can consider countable barcodes, although certain finiteness condi-
tions are still required.
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1
1/2 1/3

1/4 1/5 1/6

Figure 3.11 By adding shorter and shorter bars, this sequence eventually con-
verges to a barcode with infinitely many bars!

Definition 3.3.2. Let B denote the subspace of B consisting of those barcodes
such that for all ε > 0, the number of bars of length > ε is finite. We regard B as a
metric space with the bottleneck metric (recall Definition 2.4.8).

When working with the p-Wasserstein metric, it turns out that we need to use a
slightly different finiteness condition.

Definition 3.3.3. Let BP denote the subspace of B consisting of those barcodes B
for which

dWp(B, ∅) < ∞.
We regard BP as a metric space with the p-Wasserstein metric (recall Defini-
tion 2.4.9).

These finiteness conditions rule out phenomena like that exhibited in Exam-
ple 3.3.1: we can now show that B and BP are complete metric spaces [60, 352].

Theorem 3.3.4. The metric spaces (B, dB) and (Bp, dWp) are complete and
separable.

In order to summarize distributions in B and Bp, we need to define summary
statistics. In light of the discussion in the preceding section, one might hope to use
the Fréchet mean and variance. Unfortunately, the Fréchet mean of a distribution
of barcodes is not that useful in practice.

1. Computing the Fréchet mean is computationally expensive. An algorithm for
computing an approximation to the Fréchet mean for finite sets of barcodes
equipped with the empirical measure is given in [511]; however, the algo-
rithm involves gradient descent (and so only finds local minima of the variance
expression) and the rate of convergence is not well understood.

2. The Fréchet mean of a distribution μ is not necessarily unique; barcode space
is positively curved [511], which means that unique geodesics do not connect
all points; see Section 4.7.3. (In fact, most pairs of points are not connected by
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unique geodesics, in a precise sense.) In particular Fréchet means may not be
unique.

3. The Fréchet mean is very unstable; small perturbations in the sample distribu-
tion can cause the mean to jump around. To handle both this and the preceding
problem, the paper [367] proposes using a distribution-valued variant of Fréchet
means. Nonetheless, computation is still basically intractable.

As a consequence, the Fréchet mean and variance of distributions on barcode
space are primarily of theoretical interest; in Section 3.6 below, we discuss various
practical summary statistics.

3.3.2 Sampling and Hypothesis Testing in Barcode Space

We now describe our formalization of sampling problems in persistent homology
using the analysis of the barcode space above. Specifically, we work with the
following assumptions.

Hypothesis 3.3.5.

1. The data consists of independent samples from a metric measure space
(X, ∂X , μX).

2. For any k, the function assigning the kth persistent homology barcode to a sam-
ple {x1, . . . , xn} ⊂ X drawn from μX is a measurable map. (For example, in the
case of the Vietoris-Rips complex, the stability theorem for persistent homol-
ogy (Theorem 2.4.10) implies that persistent homology is continuous and hence
measurable.)

3. Therefore, taking the product measure μ⊗n
X on Xn and then computing persistent

homology, we obtain an induced measure PH∗μ⊗n
X on B. This distribution rep-

resents the distribution of barcodes associated to PHk computed from samples
of size n.

A standard statistical approach would now be to assume that the distribution μ on
(X, ∂X) is parametrized by values (z1, z2, . . . , zk). We might then hope to compute a
joint density function in terms of a likelihood function. In this way, in principle, one
could use a maximum likelihood method to estimate the parameters. However, in
general, these kinds of statistical procedures are not really feasible, as we explained
above in Section 3.1.2. The problem is that without stringent constraints there is
no reasonable way to come up with sensible “topological hypotheses,” for the fol-
lowing basic reasons. Theorem 3.1.2 and Corollary 3.1.3 show that the problem of
specifying a topological hypothesis is ill posed. Only in certain special cases (e.g.,
the data is known to be low dimensional or known to be contractible) is it at all
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reasonable to imagine producing a guess about the underlying topological type of
the process generating the data or a parametric distribution for sampling from this
topological space.

Even in the situation where a specific topological hypothesis is reasonable, it is
often a challenging problem to provide an efficient algorithm for sampling from the
null hypothesis. There are not natural parametric families of distributions for most
metric spaces (X, ∂X). Even in the case of a manifold, the most naive approach to
specifying a distribution involves choosing coordinate charts and sewing together
distributions on each chart – parametric inference and sampling is complicated in
this setting. As an example of the difficulties, recall from the discussion in Sec-
tion 3.2 above (notably Remark 3.2.18) that even correctly sampling from the
volume measure on a compact Riemannian manifold defined by specific systems of
equations requires some care. It is possible to compare the homology of observed
data against samples generated from some standard random distribution on a com-
pact geometric region bounding the empirical support. See Section 3.7 below for
discussion of recent progress on theoretical understanding of the resulting distri-
butions of barcodes; of course, simulation can also produce empirical estimates of
these distributions. But more general topological hypotheses are out of reach except
under stringent hypotheses about the dimension or complexity of the underlying
space.

As a consequence, we focus on how to reliably estimate barcodes from sam-
ples and how to produce tractable features from barcodes. We can now reformulate
more precise versions of the questions from the introduction to this section; we
pose the problems in terms of how to estimate the persistent homology of a met-
ric measure space (X, μX) from a sample {x1, x2, . . . , xk} and use this estimate for
inference. (For expositional convenience, we assume that supp(μX) = X.)

1. If k is large enough, does the sample faithfully represent the persistent homol-
ogy of the underlying space X? To be precise, if we take a sequence of finite
samples S n of increasing size from a metric measure space (X, ∂X , μX), does the
sequence {PHk(S n)} converge to PHk(X)?

2. Under the conditions for which the first question has a positive answer, how fast
is the rate of convergence? Can we construct confidence intervals controlling
the expected error in the estimate PHk(S n)?

3. Analogously, if our points are sampled from a density ρ on A ⊆ Rn, can we
recover the persistent homology of the level set filtration associated to the super
level sets

Γρ(z) = {x ∈ A | ρ(x) > z}.
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Can we understand the rate of convergence and construct confidence intervals?
4. Given a collection of barcodes generated by samples of size k, how do we

produce summaries of these barcodes? The discussion in Section 3.3 above sug-
gests that the Fréchet mean is not useful in practice. A related question is how
to produce numerical summaries that can be used as input to standard machine
learning algorithms.

5. In the presence of noise, how can we ensure reliable estimation of barcodes?
The stability theorem for persistent homology (Theorem 2.4.10) implies that if
the noise is concentrated in the Gromov-Hausdorff metric, we can expect good
behavior. But suppose the noise consists of “outliers” that are far from the data.
How can we ensure that the estimates of persistent homology are not arbitrarily
disrupted?

3.4 Stability Theorems for Persistent Homology of Metric
Measure Spaces

We begin with analogues of the stability theorem in the context of metric mea-
sure spaces. We describe two related approaches to such a theorem. First, we
consider distributions of samples. The idea is to consider the induced distri-
butions on barcode space associated to the empirical persistent homology of
subsamples of a fixed size (Figure 3.12). For samples of size n, we define the asso-
ciated distributional persistent homology of a metric measure space (X, ∂X , μX) as
follows.

Figure 3.12 The distribution of barcodes is induced by taking many samples of a
fixed size and computing their persistent homology.
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Definition 3.4.1. For n and k, we define the distributional persistent homology

Φn
k(X, ∂X , μX) = (PHk)∗(μ⊗n

X ),

the distribution on B induced by pushforward along PHk of the product measure on
the Cartesian product Xn.

In practice, we approximate Φn
k by sampling many blocks of size n and comput-

ing the empirical distribution; as the number of blocks approaches ∞, the law of
large numbers guarantees that these approximations converge to the underlying dis-
tribution Φn

k . We might also subsample these blocks of size n from a larger sample
from μX; see Figure 3.13 for an example of this.

In order for Φn
k to recover the persistent homology of X, the size n must be

sufficiently large so that the samples can capture topological features of X; selecting
n large enough requires information about the feature scale. However, even when n
is too small, we can regard Φn

k as containing geometric information about the data,
because of the following stability theorem [60].

Theorem 3.4.2. Let (X, ∂X , μX) and (X′, ∂X′ , μX′) be metric measure spaces. Fix
n and k.

dPr(Φ
n
k(X, ∂X , μX),Φn

k(X′, ∂X′ , μX′)) ≤ ndGPr((X, ∂X , μX), (X′, ∂X′ , μX′)).

Interestingly, this bound is tight (and the n is unavoidable). One way of under-
standing the role of n is that as n increases the invariants become finer and finer
and better approximate the support of the measures, which can be far apart even
though the Gromov-Prohorov distance of the metric measure spaces is small. The-
orem 3.4.2 implies that the distributional invariants Φn

k are robust invariants, in the
sense that changing X on an ε-probability mass arbitrarily can perturb Φn

k by at
most nε. One can also formulate a Gromov-Wasserstein version of this result.

However, note that there is some subtlety to the behavior of these invariants in n;
having a smaller n can make the results less sensitive to outliers since fewer noise
points turn up in any given sample. On the other hand, smaller n means less reso-
lution for detecting actual topological features of the data. Compare Figures 3.14
and 3.15.

Of course, as we have discussed, working with distributions of barcodes directly
is difficult, and so in practice we will rely on ways of approximating these by dis-
tributions on R; we will describe ways to do this in Section 3.6. Before moving
on, we note two pragmatic benefits to using distributional invariants: the parame-
ter n can be chosen to accommodate the computational power available, and the
computation of Φn

k can be evidently parallelized with linear speedup.
We now turn to another approach to a probabilistic stability theorem which is

similar in spirit to Theorem 3.4.2. We suppose we are given a data set X embedded
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Figure 3.13 In practice, we might subsample from a large sample from the underlying distribution.
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Figure 3.14 Samples of size 100 are quite clean, showing just two long bars (although note the way the bars move around relative to one
another).
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Figure 3.15 Samples of size 200 have more stability in the position of the two long bars but also have a lot more short noise bars.
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in Rn. Recall from Remark 2.3.5 that the filtered complex associated to the Čech
complexes on X can be alternatively described in terms of the filtration imposed by
the distance function. Specifically, let C be a compact subset of Rn. The distance
function D : Rn → R is defined as

D(x) = inf
z∈C ∂R

n(x, z).

The sublevel sets {x | D(x) ≤ ε} as ε varies are precisely the filtration imposed
by the geometric Čech complexes of C. (When working with a finite metric space
(X, ∂X), the inf is replaced by the minimum.)

Estimating the persistent homology of the filtration for X ⊂ Rn via samples
from some distribution on X is very sensitive to outliers. The work of [104, 108]
proposes to handle this by replacing the distance function D (which captures the
distance to the support of X) by a generalization that incorporates the measure on
X. This generalization is referred to as the distance to a measure. For a continuous
distribution, we have the following definition.

Definition 3.4.3. Let (X, ∂X , μX) be a compact metric measure space. Let Fx(t) =
μX({z | ∂Rn(x, z) ≤ t}). Then for 0 < m < 1 we define the distance to a measure to
be

δμX ,m(x) =

√
1
m

∫ m

0
F−1

x (u)2du,

where here

F−1
x (u) = inf

t
{t | Fx(t) ≥ u}.

Here m is a resolution parameter that is a measure of the feature scale; choice
of suitable values of m is once again an issue in practical use. The idea of the
parameter m is that we are averaging density-biased approximations to the distance
over a range controlled by m. Along these lines, for finite samples, the distance to
a measure has a much simpler expression.

Lemma 3.4.4. Given a finite sample Y = {x1, x2, . . . , xn} ⊆ X, the distance to a
measure function for the empirical distribution on Y for m is

δm(x) =

√
1
k

∑
zα∈Nk(x)

∂Rn(zα, x)2,

where here k is the smallest integer ≥ mn and Nk(x) denotes the k nearest neighbors
of x in Y.

Notice that when m is very small, the distance to a measure function is very
close to the distance function D. The advantage of the distance to a measure is that
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it is Wasserstein stable, in the sense that the L∞ norm distance is bounded by the
2-Wasserstein distance. Specifically, we have the following theorem.

Theorem 3.4.5. Suppose that μ1 and μ2 are two probability measures on Rn. Then
for mass parameter 0 < m < 1, we have

||δμ1,m − δμ2,m||∞ ≤
1√
m

dW2 (μ1, μ2).

In turn, the bottleneck distance between the persistence diagrams associated to
the distance filtrations on these two functions is bounded by the L∞ norm.

Corollary 3.4.6. Suppose that μ1 and μ2 are two probability measures on Rn.
Then for mass parameter 0 < m < 1, we have

dB(Pδμ1 ,m
, Pδμ2 ,m

) ≤ ||δμ1,m − δμ2,m||∞ ≤
1√
m

dW2(μ1, μ2).

As a consequence, we can conclude that the persistent homology estimate asso-
ciated to the distance to a measure filtration is robust to outliers having low
probability mass. (See Figure 3.16 for an example demonstrating robustness in
the face of outliers.)

Furthermore, one can show [108] that the distance to a measure is statistically
well behaved in the sense that a uniform law of large numbers applies to establish
that it can be approximated by finite samples. Moreover, there are natural con-
fidence intervals describing how well it is approximated by empirical estimates.
Another interesting aspect of the distance to a measure is that, since for small m
it approaches the ordinary distance function to X, in principle it can be used for
geometric inference. On the other hand, computing the distance to a measure is
difficult in practice due to problems associated to estimating level sets. See [79] for
recent work that provides better algorithms and also extends the methodology to
arbitrary metric spaces.

We now turn to the issue of understanding the way that the empirical persistent
homology converges to the persistent homology of the underlying space.

3.5 Estimating Persistent Homology from Samples

Suppose we take a sequence of finite samples S n of increasing size from a met-
ric measure space (X, ∂X , μX). It is straightforward to see that in fact {PHk(S n)}
does converge to PHk(supp(μX)) almost surely, provided that X is bounded:
Lemma 1.2.20 shows that for any compact metric measure space (X, ∂X), there
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exists a finite ε-net Xε for each ε > 0. If we were given a sequence {Xn} such that
as n→ ∞, Xn is an 1

n -net,

{Xn} −→ X

in the Gromov-Hausdorff metric and so

{PHk(Xn)} −→ PHk(X)

in the barcode metric. The point now is that for any ε, there exists an n sufficiently
large so that any sample of size > n is with high probability an 1

n -net. This implies
the following result.

Theorem 3.5.1. Let (X, ∂X , μX) be a metric measure space. Let {S n} be a sequence
of finite samples drawn from μX such that |S n| → ∞. Then almost surely PHk(S n)
converges to PH(supp(μX)) in the barcode metric (or Wasserstein metric).

Theorem 3.5.1 focuses attention on the rate of convergence of {PHk(S n)}. The
key issue is to analyze the number of samples needed to obtain an ε-net with high
probability (for some fixed ε). Such estimates require knowledge of the feature
scale; we need to be able to compute how likely we are to sample in a ball around
any given point. Estimates for compact Riemannian manifolds were given by
Niyogi-Smale-Weinberger [384] (as explained in our discussion of Theorem 2.2.1),
and elaborated on and extended by [170]. We describe the problem in the frame-
work of the latter, which is more general and is expressed explicitly in terms of the
language of confidence regions.

A confidence region is the multivariate analogue of the basic statistical notion of
a confidence interval, which we now review. Returning to our example of estimat-
ing parameters of a Gaussian, we suppose that we have a sample {x1, . . . , xn} from
a Gaussian distribution with mean μ and standard deviation σ. As discussed above,
to estimate μ we compute the empirical mean μ̂ from the samples. We know that as
n increases, it is very likely that μ̂ will be a good approximation of μ. One way to
make that precise is to talk about a confidence interval.

Definition 3.5.2. A confidence interval [a, b] with confidence level α for the
parameter θ is specified by two random statistics a and b such that the probability
that θ ∈ [a, b] is α.

For example, we know that μ̂ is distributed according to the t-distribution
around μ with parameters determined by σ̂, and using this fact we can derive the
confidence interval for μ [

μ̂ − cσ̂√
n − 1

, μ̂ +
cσ̂√
n − 1

]
,
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where c is chosen such that the probability in the tail of the distribution larger than
c has mass 1−α

2 .
We now turn to the analogous notions for persistence diagrams. Associated to a

specific c, the confidence set around a barcode B is a subset of the set of barcodes
within a distance c of B. We can visualize this as the union of squares with side-
length 2c is centered at each point of the persistence diagram. Points where the
bounding box intersects the diagonal can be interpreted as noise. (Alternatively,
we can put a band of width (

√
2)c around the diagonal.) See Figure 3.17 for an

example.
To define a confidence set with probability α, we need to find c such that the

true parameter is within c of the empirical barcode with probability larger than α.
To formulate this, it turns out to be useful to talk about asymptotic confidence sets,
defined as follows.

Definition 3.5.3. Fix a reference barcode B and denote by B̂n the empirical bar-
code computed from a sample of size n. For 0 < α < 1, the asymptotic 1 − α
confidence set is the collection of regions determined by a (usually decreasing)
sequence cn > 0, where

lim sup
n→∞

Pr(dB(B, B̂n) > cn)) < α.

(Recall that lim sup denotes the limit of the supremums of the remaining terms in
the sequence.)

Figure 3.17 The confidence interval around the persistence diagram (in blue) is
given by the boxes; a band around the diagonal contains “noise.”
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As one would expect, the rate of convergence (i.e., how large n has to be in order
to obtain sufficiently small cn) depends on the details of the density and the feature
scale of the underlying manifold space. Going forward, we will assume that M is
a compact manifold of dimension d embedded in Rk (k > d), that the condition
number (recall Section 2.2) of M is positive, and that the samples are drawn from
a probability density on Rk which is supported on M, smooth, and bounded away
from 0.

Remark 3.5.4. More generally, it suffices for M to be a compact and rectifi-
able (piecewise smooth) subset of Euclidean space and to have a relatively weak
differentiability criterion for M.

To bound the convergence of the confidence intervals for persistence diagrams,
we define

ρ(x, t) =
Pr(B t

2
(x))

td
and ρ(t) = inf

x∈M
ρ(x, t).

Then ρ = limt→0 ρ(t) captures relevant information about the local variation in the
probability measure on M.

We now fix our space M ⊂ Rk and let P denote the persistent homology of the
sublevel sets of the function

∂M(z) = inf
y∈M

∂Rk (y, z).

(Recall from Remark 2.3.5 that this is a version of the Čech complex.) For a sample
of size n, let P̂n denote the empirical persistent homology, i.e., the persistent homol-
ogy of the sublevel sets of ∂M restricted to Pn. We have the following analogue of
Theorem 2.2.1.

Proposition 3.5.5. Under the hypotheses above,

Pr(dB(P , P̂n) > t) ≤ 2d

ρ( t
2 )td

e−nρ(t)td .

The associated confidence region is the collection of boxes of side length t centered
at the points of the persistence diagram Pn.

In particular, setting

tn =

(
4 log n
ρn

) 1
d

,
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we have that

Pr(dB(P , P̂n) > tn) <
2d−1

n log n
.

Making use of this result involves estimating ρ, which can be done using the plug-in
estimator

ρ̂n = min
i

Pn(B rn
2

(xi))

rd
n

,

where rn is a sequence of numbers approaching 0 and Pn denotes the empirical
measure for the sample {x1, x2, . . . , xn}.

There are a number of other methods of obtaining similar confidence inter-
val estimates that are of broader interest; we turn to discussion of those in the
remainder of the section.

3.5.1 Estimating Persistent Homology by Density Estimation

Another approach to computing the persistent homology from samples of a den-
sity in Euclidean space is to use standard techniques for density estimation to
approximate the support of the density (e.g., see [429] for a modern theoretical
analysis). Given a suitable probability density ρ on Rd, the problem of estimating
the superlevel sets

Γρ(z) = {x ∈ Rd | ρ(x) > z}
is a classical question in statistics. The path-connected components of Γρ(z) have
long been studied in the context of unsupervised clustering and classification [229].

From the perspective of persistence, a natural question is to try to estimate the
persistent homology of the level set filtration determined by the inclusions

Γρ(z2) ⊆ Γρ(z1)

for z1 < z2. A standard approach is to use a kernel density estimator; this is a
smoothed version of the empirical density. The specific choice of kernel function
employed is not important for our discussion, except for the following properties.
We require a function K : R→ R such that

1.
∫

K = 1,
2. the kernel has mean 0,
3. supx K(x) = K(0), and
4. K is Lipschitz for some constant �.

Typically we will think of a smooth symmetric kernel, e.g., the Gaussian kernel

K(t) = 1√
2π

e−
x2
2 .
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For a bandwidth parameter h (this controls the amount of smoothing), define the
measure

Kh(A) = h−d
∫

A
K(h−1t)dt.

Given the density ρ and associated measure P on Rd, we want to study the convo-
lution Ph = Kh ∗ P, which we regard as a smoothed version of P. Denote the level
set persistent homology of Ph by PHk(Ph).

We can form an empirical approximation as follows. The density of the
convolution is

ph(x) =
∫

M

1
hd

K

(
∂Rd (x, u)

h

)
dP(u),

and so the standard estimator given points {x1, . . . , xn} is given by

p̂h(x) =
1
n

n∑
i=1

1
hd

K

(
∂Rd (x, xi)

h

)
. (3.1)

We can now compute the persistence diagram associated to the level set filtration
determined by the estimated density p̂h, which we will denote by PHk(P̂h).

Remark 3.5.6. We note that this is estimating a somewhat different quantity
than the persistent homology of the support of ρ; instead, we are in some sense
directly estimating the homology of the support of ρ using the persistent homol-
ogy of the level set filtration. This increases the robustness of the result, due to
smoothing.

For simplicity, we assume that the support of the distribution P is contained in
the Euclidean box [−c, c]d ⊆ Rd. Standard arguments show that p̂h converges to ph;
this follows from Hoeffding’s inequality, for example. (And stronger statements
can be derived from tighter refinements of this sort of bound.) Translating this into
a statement about persistence diagrams, we obtain the following result.

Theorem 3.5.7. Under the hypotheses above, for fixed α and for any distribution
P supported on the box [−c, c]d

Pr(dWp(PHk(P̂h), PHk(Ph)) > δn) ≤ α
and where δn is a solution to the equation

2

⎛⎜⎜⎜⎜⎝4c�
√

d
δnhd+1

⎞⎟⎟⎟⎟⎠d

e
− nδnh2d

2K(0)2 = α.
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Figure 3.18 In the top panel, the 95% confidence interval contains the two bars for
both H0 and H1 (dots represent H0, triangles H1); this correctly separates signal
from noise. However, in the bottom panel, the 95% confidence interval suggests
that all of the H1 bars are noise.

As we can see in Figure 3.18, the confidence intervals computed in this fashion
are fairly conservative.

For data embedded in Euclidean space, density estimation can also be used to
eliminate outliers by smoothing to remove regions of low density. For example, this
was performed manually in the famous example of the Klein bottle in visual image
data [95], and is a standard data analysis tool [251]. Specifically, the persistent
homology associated to the level set filtration of a density estimator is robust in the
presence of outliers.

Let X ⊆ Rn denote the set of all points that might be returned by sampling,
including both data points and noise points, i.e.,

X = X′ ∪ Z, where Z ∩ X′ = ∅,
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where we regard X′ as real data and Z as noise. Assume that the distribution on X
we have experimental access to is

Ψ = εθ + (1 − ε)μ,
for 0 ≤ ε ≤ 1, where μ is supported on X′ and is the distribution we wish to
estimate. We make no assumptions about θ.

Denote by Pρ the persistence diagram associated to the level set filtration of the
standard density estimator of equation (3.1), for fixed width parameter h, applied
to empirical samples from a distribution ρ. The following lemma is now a simple
calculation [170].

Lemma 3.5.8. Let X ⊆ Rn be a subspace with probability densityΨ = εθ+(1−ε)μ.
Then

dB(PΨ,Pμ) ≤ Cε,

where C is a constant that depends on h.

This result implies that when ε is small and h is chosen appropriately, PΨ is a
good approximation to Pμ no matter what θ is, in particular, no matter how far away
from X′ the points of Z may be. Simple experiments in low dimensions validate this
result [170].

Although this result is very encouraging, the general problems with density fil-
tering remain – namely, choosing the width parameter requires either knowledge
of the feature scale of the underlying data or a lot of experimentation, and density
filtering is really only tractable for data embedded in Euclidean space or compara-
tively simple manifolds (see Figure 3.19). (Nearest neighbor density estimators do
not perform well for realistic numbers of sample points.)

We believe that density filtering could be an ideal application of multidimen-
sional persistence.

3.5.2 Estimating Persistent Homology by Resampling

Resampling is a standard technique for estimating confidence intervals around an
empirical estimate of some quantity by generating many new finite subsamples
from the given finite sample. Given n data points X = {x1, x2, . . . , xn}, there are two
distinct possibilities for resampling estimators.

1. Subsampling involves estimating confidence intervals from empirical quantiles
computed from subsamples {S i} of size k < n generated by drawing without
replacement from the empirical distribution on X (e.g., [412]).
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Figure 3.19 Using a density estimator provides a robust computation of the persistent homology.
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2. The bootstrap involves estimating confidence intervals from empirical quan-
tiles computed from subsamples {S i} of size k < n generated by drawing with
replacement from the empirical distribution on X (e.g., [54]).

We now discuss the use of these ideas to estimate persistent homology from finite
samples. We start with the first case above, subsampling. Results in this regime are
asymptotic and so stated in terms of the convergence of both n and k to∞. We first
work with the hypotheses of Proposition 3.5.5.

Remark 3.5.9. In the following discussion, to talk about asymptotic convergence
we use “big-O” and “little-o” notation.

1. To say that a sequence {xn} is o( f (n)) means that for every k ∈ R, there exists
an N ∈ N such that for all m > N, xm < k f (m).

2. To say that a sequence {xn} is O( f (n)) means that there exists a constant k ∈ R
and N ∈ N such that for all m > N, xm < k f (m).

Roughly speaking, the sequence is o( f (n)) if it grows strictly more slowly than
the function f whereas the sequence is O( f (n)) if it grows at most as fast as a
constant times f (n).

Let bn denote a sequence such that

bn → ∞ and bn = o

(
n

log n

)
.

Let N =
(

n
bn

)
, and denote by {S i} the collection of all N subsamples of size bn from

the given sample {x1, x2, . . . , xn}. Set

Ln(t) =
1
N

N∑
j=1

I(dH(S i, S ) > t),

where I is the indicator function and dH is the Hausdorff metric. For a given α ∈
(0, 1), let

cn = 2L−1
n (α).

The arguments of [412] then imply convergence of the subsamples to the underly-
ing metric space in Hausdorff measure and hence the following theorem providing
confidence regions.

Theorem 3.5.10. Under the hypotheses of Proposition 3.5.5, for large n (and
ρ > 0), we have

Pr(dB(P , P̂n) > cn) ≤ α + O

⎛⎜⎜⎜⎜⎜⎜⎝(bn

n

) 1
4
⎞⎟⎟⎟⎟⎟⎟⎠ .
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We can also apply the bootstrap; in this situation, the best results come from
considering the context of level set estimation from the density estimator. We work
with the hypotheses of Section 3.5.1.

Then we have the following theorem.

Theorem 3.5.11. Under the hypotheses of Theorem 3.5.7, we have that

lim
n→∞ Pr

(
dB(Ph, P̂h) >

qα√
n

)
≤ α.

Here qα is the 1 − α quantile and is described below. The estimated confidence
interval is then of width 2qα√

n
.

We can estimate the value qα as

q̂α = inf
q

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑
i=1

I(
√

n||p̂i
h − p̂h||∞ ≥ q) ≤ α

⎞⎟⎟⎟⎟⎟⎠ ,
where p̂i

h is the empirical probability density of the ith bootstrap subsample
and ||(−)||∞ denotes the L∞ norm. Figure 3.20 has an example of confidence
regions produced in this fashion; again, notice that these regions are quite
conservative.

Remark 3.5.12. It is also possible to show that resampling methods and the boot-
strap can be applied directly in barcode space; this is more challenging technically
due to the complexity of the metric geometry of B. The issue is that establishing the
asymptotic consistency of the bootstrap depends on obtaining control on the com-
plexity of the class of functions used to describe empirical processes. For example,
in R, one uses the indicator functions supported on intervals (−∞, t]. In barcode
space, bounding the complexity of natural function classes is difficult and requires
imposing further finiteness restrictions on the allowable barcodes.

3.6 Summarizing Persistence Diagrams

The results of Section 3.3 and Section 3.4 imply that it is possible in some circum-
stances to reliably estimate the persistent homology of a geometric object from
samples. However, as we have emphasized, it remains difficult to directly apply the
estimated barcode to inference. In view of this, a compelling approach is to study
associated features produced by a choice of measurable map
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Figure 3.20 In the top panel, the 95% confidence interval clearly contains one bar
and has a second at the edge for both H0 and H1; this correctly separates signal
from noise. However, in the bottom panel, the 95% confidence interval suggests
that all of the H1 bars are noise whereas both the H0 bars appear significant.

θ : B → Rn.

More generally, we might consider a measurable map

θ : B → V,

for a vector space V which has a compatible topology (e.g., induced by the norm
metric); V is regarded as equipped with the Borel σ-algebra. Then a distribution ρ
on barcode space induces a pushforward distribution θ∗ρ on Rn or V .

This methodology has two substantial concrete benefits.

1. Many standard techniques in classical statistics apply essentially immediately
to the distribution θ∗ρ on Rn or V . For example, summary statistics for θ∗ρ,
while not necessarily corresponding to any barcode, are now easy to compute
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and work with. Consistency and convergence rates for empirical estimates can
be quickly derived.

2. The resulting statistics can be used as input to visualization techniques or also
as features for machine learning, e.g., classification and clustering algorithms.
A particular advantage here is that such features can be combined with other
sources of information or statistics produced from the raw data.

We can summarize the benefits of this simplification approach in terms of the
following meta-theorem.

Theorem 3.6.1 (Meta-theorem of real projections from barcode space). For any
reasonable real-valued test statistic of barcodes, i.e., a suitable map B → Rn, all
the standard theorems and techniques of statistics and machine learning can be
applied to the pushforward of any distribution on B.

There is infinite variety in the choice of feature maps to apply; in the remainder
of this section, we discuss some representative examples.

3.6.1 Tractable Features from Persistence Diagrams

We begin by considering two simple and generic approaches for embedding arbi-
trary metric spaces in Rm: the distance distribution and landmark embeddings. Both
of these are easy to apply to distributions of barcodes, and yield distributions on
Euclidean space. Then, for example, the mean of the pushforward distribution is a
useful summary statistic.

The distance distribution is simply the induced distribution produced by com-
puting distances between points; the next definition makes sense since the metric
is always a measurable map on a metric measure space. See Figure 3.21 for a
simple example.

Definition 3.6.2. Let (X, μX , ∂X) be a metric measure space. The distance distri-
bution on R is defined to be the pushforward (∂X)∗μ⊗2

X of the distribution μ⊗2
X on

X × X along the function ∂X : X × X → R.

There are various elaborations of this example; for instance, one could consider
distributions of k × k distance matrices induced by samples of size k. (Distance
matrices as summaries of barcodes were studied in [97].)

Remark 3.6.3. In fact, a famous result of Gromov implies that a metric measure
space is uniquely characterized by such distance matrix distributions for all k, in



3 Statistics and Topological Inference 219

Figure 3.21 Left: The distance distribution for 1000 points sampled uniformly
from [0, 1]. Right: The distance distribution for 1000 points sampled uniformly
from S 1.

the sense that two metric measure spaces (X, ∂X , μX) and (Y, ∂Y , μY ) are isomorphic
if and only if the distance distributions coincide as k goes to∞ [212].

Another possibility is to consider distances to a fixed collection of points.
Choose k landmark points {�1, . . . , �k}; these can be selected arbitrarily, or as points
of interest based on domain knowledge, or via a randomized algorithm biased to
choose a point far from the existing landmarks, etc.

Definition 3.6.4. Let (X, μX , ∂X) be a metric measure space and take a finite
subset {�1, . . . , �k} ⊂ X. Then the landmark embedding distribution on Rk is the
pushforward of μX along the function X → Rk specified by the formula

x �→ (∂X(x, �1), ∂X(x, �2), . . . , ∂X(x, �k)) .

Remark 3.6.5. The selection of landmarks introduces many new statistical prob-
lems. For instance, the choice of k introduces a rough notion combining dimension
and feature scale; the larger the dimension and the smaller the feature scale, the
more landmark points one needs. Moreover, questions of stability of the results in
the face of shifts in landmark points immediately arise. Currently, there are not
many theoretical results in this regime (e.g., recall the discussion of the properties
of the weak witness complex in Section 2.7). On the other hand, standard statisti-
cal tools (e.g., empirical confidence intervals for quantities computed from these
distributions) can be applied to handle such issues.

The landmark distribution is a first guess at how to embed a metric space
in Euclidean space. There is in fact an enormous literature on the problem of
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Figure 3.22 (a) The length of the longest bar, (b) the ratio of the endpoints of
the longest bar, (c) the number of bars of length over 4, and (d) the righthand
endpoints of each bar.

efficiently embedding a finite metric space in Euclidean space in a way which min-
imizes distortion (e.g., see [168] for a celebrated and essentially optimal result);
although there has not been much investigation so far of these techniques in TDA
(although see [455] for work that employs methods from this literature) we expect
that this will be a useful avenue of research.

There are also many specific invariants of barcodes that provide values in R
or Rn; we provide some representative examples. (See Figure 3.22 for a specific
example.) Note that a basic and important issue to consider for any such feature is
whether it is stable with respect to perturbation in the barcode metric.

1. For a barcode B we can define

gm(B) = |B(m)| − |B(m + 1)| and hm(B) =
B(m)

B(m + 1)

where B(k) denotes the kth largest interval in B.
2. Given a barcode B, we can consider the set of birth-times {xi} or the set of

death-times {xi} to provide a map to Rn, where n is a bound on the size of the
barcodes we consider.

3. Given a barcode B, we can consider a map to Z given by the number of non-zero
bars or the number of non-zero bars greater than some minimum length ε.

4. Given a barcode B, we can consider a map to Rn given by the set of lengths
{yi− xi} or the set of size ratios

{
xi
yi

}
; to make sense of this, we must again bound

the size of the barcodes and also sort the bars by length.

In [49], an explicit embedding of persistence diagrams in high-dimensional
Euclidean space is considered; the idea is to take a grid on the persistence diagram
and count barcode points within it. Unfortunately, this is not stable for certain kinds
of perturbations of the barcodes that are small in the bottleneck distance.
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3.6.2 Kernel Methods for Barcodes

The idea of kernel methods for machine learning involves embedding the data
points in some kind of infinite-dimensional vector space where standard machine
learning techniques apply. The trick is that rather than working with the embedding
directly, it turns out to be sufficient to understand the inner product between two
points in the embedded space; this is the kernel function. We say a bit more about
the specifics of this in Section 4.3.4. Here, we focus on explaining the construction
and definition of kernels for barcodes based on approximating a persistence dia-
gram with a sum of Gaussian functions [4, 425]. These sorts of approaches yield
kernels that are stable in the bottleneck and p-Wasserstein metrics on barcodes and
provide sensible feature vectors for machine learning.

In [425], the kernel at scale σ for persistence diagrams D1 and D2 is computed
by the formula

kσ(D1,D2) =
1

8πσ

∑
p∈D1
q∈D2

e
−∂(p,q)2

8σ − e
−∂(p,q̄)2

8σ ,

where q̄ denotes the reflection across the line x = y. Roughly speaking, we can think
of this as a approximation by positive and negative Gaussians. The basic idea is that
a persistence diagram can be approximated in function space as a sum of Dirac δ-
functions centered at the points. However, the resulting metric on functions does
not incorporate information about the proximity to the diagonal (i.e., bars of zero
length). So instead, the δ-functions are used to specify a diffusion equation with
the diagonal providing boundary constraints; the resulting solutions are Gaussians.

In contrast, in [4] a closely related approach was studied which uses weighted
positive Gaussians; the difference in weights permits more flexibility in focusing
on different features in the barcodes, and the use of positive Gaussians in some
circumstances can provide computational efficiency. Although this is not phrased
as a kernel method per se (but simply as a vector-space valued summary), it can be
applied to produce a kernel just as in [425].

Remark 3.6.6. We can regard the grid counting method of [49] as a discretization
of the Gaussian kernel description.

3.6.3 Persistence Landscapes

Another systematic approach to producing features from persistence diagrams is
provided by Bubenik’s persistence landscapes [76]. Suppose that we are given
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a barcode {[xi, yi)}, which we regard as a persistence diagram in R2. Changing
coordinates via the transformation

[x, y) �→
[ x + y

2
,

y − x
2

)
,

we can equivalently represent a barcode as the multiset {[ xi+yi
2 , yi−xi

2 )} in R2; we
will assume that all persistence diagrams are represented in this format for the
remainder of the section.

Next, define the piecewise-linear function

Λ(x,y)(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
t − x, t ∈ [x, x+y

2 ]

y − t, t ∈ ( x+y
2 , y]

0, otherwise.

Definition 3.6.7. Let B = {[xi, yi)} be a persistence diagram. The persistence
landscape is the collection of functions λk

B : R→ R for k ∈ N, defined as

λk
B(t) = λB(k, t) = kmax[xi,yi)∈BΛ[xi,yi)(t),

where kmax denotes the kth largest value, defined to be 0 if the set in question con-
tains fewer than k points. (We will often regard this collection as a single function
Λ : N × R→ R.)

See Figure 3.23 for an example of a persistence landscape. One advantage of
working with the persistence landscape is that for any fixed k this is a 1-Lipschitz
function, and the set of all such functions is a R-vector space with a metric induced
by a norm that is complete and separable. As a consequence, one can easily define
the mean landscape Λ̄ for a collection of barcodes {Bi}, which is simply computed
pointwise:
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Figure 3.23 Left: A persistence diagram. Right: The associated persistence
landscapes for k = 1 and k = 2.
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Λ̄n =
1
n

n∑
i=1

λBi(k, t).

The mean landscape is the average value of the largest bar contained in k intervals.
It is important to emphasize again that the mean landscape need not correspond to
any particular barcode.

In this context, there is both a law of large numbers and a central limit the-
orem; these say that the mean of the landscapes of samples converges to the
mean of the underlying distribution, and explain how fast this convergence occurs.
Moreover, the average persistence landscape weakly converges to a Gaussian pro-
cess (with a known rate of convergence) [76]. Specifically, we have the following
result.

Theorem 3.6.8. Provided that the expectation is finite,

Λ̄→ E(Λ),

where Λ̄n is the empirical mean of the first n sample landscapes and E(−) denotes
the expected value.

Theorem 3.6.9. Provided that the expectation and variance are both finite, then

√
n[Λ̄ − E(Λ)]

converges to a Gaussian random variable with the same covariance structure as Λ.
(Here recall that the covariance structure determines the width of each Gaussian
in the random variable.)

The following corollary allows us to perform inference.

Corollary 3.6.10. The random variable produced by applying any functional (i.e.,
function from the space of landscapes to R) also satisfies the central limit theorem.

Of course, a choice of a useful and informative functional depends on the data
and is not always evident. A simple approach is to use an indicator function for t
in an interval [−B, B] and k bounded by K.

Remark 3.6.11. In fact, we can prove a uniform version of the central limit theo-
rem and bound the rate of convergence. This implies in particular that the bootstrap
is asymptotically consistent and so can be used to estimate confidence intervals for
persistence landscapes; see [109] for results of this form involving the multiplier
bootstrap.
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Furthermore, landscapes satisfy an evident analogue of the stability theorem:
the L∞ distance between landscapes is bounded by the Gromov-Hausdorff distance
between point clouds.

A natural application of persistence landscapes to robust inference was studied
in [110], where they used the average persistence landscape of the samples inΦn

k as
a summary; this has the advantage of being easy to compute and study. In analogy
with Theorem 3.4.2, one can show that the average persistence landscape is Wasser-
stein stable. Moreover, explicit estimates of the bias of this estimator as a function
of the number of sample points can be obtained. (See Figures 3.24 and 3.25 for
examples of this approach.)
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Figure 3.24 Since the landscape is a real-valued function, the pointwise average
is easy to compute. The top two panels show the landscape for samples from two
circles plus a noisy circle far away and two circles without the noisy circle. The
bottom panels represent the effect of subsampling and averaging to remove the
effect of the noisy circle.
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Figure 3.25 Subsampling and averaging is also effective with noisy data where
the noise is concentrated around the underlying space.

3.6.4 Coordinates on Persistent Homology

A more principled source of real-valued invariants from barcodes comes from con-
siderations from algebraic geometry. Adcock, Carlsson, and Carlsson introduced
the idea of regarding subsets of barcode space as algebraic varieties and study-
ing their coordinate rings [5]. Coordinates on a barcode just means a collection of
functions from a space of barcodes to R. In [5], the basic idea is to use symmetric
polynomials in the start and endpoints of the bars, for barcodes with a fixed number
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of bars. (The symmetry of the polynomials is a consequence of the fact that we do
not care about the ordering of the bars within the barcode.)

Remark 3.6.12. This approach was extended to multidimensional persistence
in [465].

Unfortunately, these coordinates are not stable with respect to perturbation of the
barcode in the bottleneck or p-Wasserstein metric; this is clear, as very short bars
with large start and endpoints can affect these polynomials dramatically. To fix this
problem, Verovšek [283] (building on [94]) introduced ideas from tropical geome-
try to build stable coordinates. Tropical geometry studies a semiring structure on R
where addition of x and y is computed by max(x, y) or min(x, y) and multiplication
of x and y by x + y (ordinary addition on real numbers). This is a semiring in the
sense that we do not require every number to have an additive inverse.

The work of [283] showed that stable coordinates on barcode space could be
obtained from rational functions (i.e., fractions) in “polynomial” expressions on
the bar endpoints using the max-plus tropical structure. In [357], it is further shown
that these coordinates provide sufficient statistics suitable for parametric inference;
applications to reassortment in avian flu are discussed.

3.7 Stochastic Topology and the Expected Persistent Homology
of Random Complexes

In the preceding sections, we have discussed techniques to produce stable persis-
tent homology invariants of data despite the presence of noise. Another part of the
statistical aspect of the story is to quantify the effect of idealized noise by describ-
ing the expected persistent homology of a “random complex.” For example, such a
description yields a family of strong null hypotheses. However, despite the mathe-
matical interest and depth of theoretical work of this kind, in practice it is typically
more suitable to use Monte Carlo simulation to find empirical estimates.

As a consequence, our discussion is brief and we refer the interested reader to
the primary sources for precise theorem statements (see also Kahle’s survey [281]
and the article [61]).

In order to specify the problem, we need a model for generating random com-
plexes. Recall that the Vietoris-Rips complex is completely determined by its
1-skeleton (see Definition 2.1.6), which is a graph. Therefore, processes that
generate random graphs can also be regarded as producing random simplicial
complexes.

The most familiar model of a random graph is the Erdös-Renyi model, which
connects vertices with some fixed probability. However, although there is a
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substantial literature on random simplicial complexes from this perspective (e.g.,
see [64] for a classic exposition), this is not a sensible model of random sim-
plicial complexes in the geometric setting. The most relevant definition of a
random complex from this perspective arises from the definition of a geometric ran-
dom graph. (See [403] for an extensive treatment of the properties of geometric
random graphs.)

Definition 3.7.1. Let (M, ∂M, μM) be a metric measure space. Fix ε > 0. A geo-
metric random graph with k points is generated by sampling k points {xi} from
M according to μM and forming the graph with k vertices and an edge (i, j) if
∂M(xi, x j) < ε.

Example 3.7.2. The most frequently studied example is the case when M is the unit
cube [0, 1]n ⊆ Rn.

Definition 3.7.3. Let (M, ∂M, μM) be a metric measure space. Fix ε > 0. A geo-
metric random complex with k points is generated by sampling k points {xi} from M
according to μM and forming either the Vietoris-Rips or Čech complex associated
to ε and the finite metric space {xi}.

Although we have stated the definitions in full generality, most existing work
studies distributions supported either on Rn or in a few cases on a smooth compact
manifold embedded in Rn (e.g., see [62] for the latter).

Most current results (e.g., the work of Kahle) about geometric random com-
plexes consider the expected ranks of the homology groups β� as simultaneously
ε → 0 and k → ∞. The results are controlled by kεn:

1. in the sub-critical regime, kεn → 0,
2. in the critical regime, kεn goes to a constant, and
3. in the super-critical regime, kεn goes to∞.

We now summarize what is known in these various settings.

1. Sub-critical. There are various results on the expected Betti numbers [282].
Here the situation is sometimes referred to as “dust,” since there are many
disconnected components and so the most important contribution is to H0. This
is the easiest non-trivial regime to analyze.

2. Critical. There is an enormous amount of non-trivial homology, and [543]
provides detailed estimates on the expected rank of the homology for certain
distributions on Rd and weak and strong laws of large numbers describing con-
vergence.
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3. Super-critical. The complex is asymptotically contractible and so there is no
contribution to homology (and the analysis is basically trivial). This is analo-
gous to the emergence of the “giant component” in the classical results on the
behavior of random graphs.

A closely related but distinct perspective is provided by the work of Adler,
Bobrowski, and Weinberger [7]. They consider distributions with infinite support
on Rn, and observe that sufficiently large samples separate into

● the “core,” which is densely sampled and contractible, and
● the periphery, which “crackles” with homology.

This perspective is a variation on the results summarized above, insofar as the
core and periphery correspond to super-critical and critical regimes simultaneously
arising due to variation in the density.

The conceptual frameworks of “core” and “crackle” provide two kinds of
indications of the limits of certain approaches to topological data analysis:

● a large core will obscure the signal, and
● the crackle will generate spurious homology classes.

All of the work discussed so far has focused on understanding homology for
complexes with specific ε; only very recently has there been work extending this to
persistent homology [63]. Here, there is more similarity between the regimes, but
the scale of events differs. (See Figure 3.26 for a representative example.)

Notably, in the critical regime the longest bar in the barcode appears to satisfy
a “law of the iterated logarithm” describing its length, for certain distributions
on a cube (notably the Poisson distribution) and both the Čech and Vietoris-
Rips complexes. Such a bound gives a precise estimate for how fast the length

increases as the number n of sample points increases; roughly
(

log n
log log n

) 1
k for kth

homology. (This phenomenon is also mentioned in passing in the Adler-Bobrowski-
Weinberger work.)

3.8 Euler Characteristics in Topological Data Analysis

A reasonable conclusion to draw from the discussion of this section is that it
is advantageous to use the simplest possible topological invariants, e.g., low-
dimensional persistent homology. This perspective suggests consideration of the
Euler characteristic as a potentially interesting topological invariant which is robust
and easy to compute and yet rich enough to capture topological properties of the
underlying space.
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Figure 3.26 Persistent homology of points sampled uniformly from a unit square.
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To further motivate this focus, Weinberger has pointed out that the Euler char-
acteristic of a simplicial complex is locally testable [160]. Locally testable in this
case means that the Euler characteristic can be computed from a small number of
random samples from a simplicial complex, with high probability [204]. Specifi-
cally, fix ε > 0. A tester for the Euler characteristic chooses K(ε) random vertices
of the complex and has access to neighborhoods of size D(ε) around those vertices.
The tester then returns a guess χ′(X) for the Euler characteristic such that

Pr

(
χ(X) − χ′(X)
|X0| ≥ ε

)
≤ ε.

The existence of a tester is interesting because the functions K and D do not depend
on the size of the complex but only on ε! Weinberger proposes that local testability
is a good proxy for understanding when a topological invariant will be robust and
reasonable to compute for small samples [533].

Remark 3.8.1. Although more generally rational homology groups are known to
be locally testable [160], no such results are known for other coefficients.

There has been a great deal of study of the special case of the Euler characteristic
of Gaussian random fields. Let M be a smooth compact manifold and f a Gaussian
random field on M; then Adler and Taylor provide formulas describing the expected
Euler characteristic of the “excursion sets” f −1(u,∞). See [8] for an overview of
this work, and [9] for an interpretation in terms of persistent homology. These kinds
of results have had numerous applications in situations where smooth processes
of this sort arise, notably imaging. However, application of these techniques in
genomics is in its infancy, although searching for ways to apply them seems like a
productive endeavor.

A potentially promising direction for problems related to genomics comes from
the smooth Euler characteristic transform, a generalization of the persistent homol-
ogy transform [127]. We again assume we are working with a finite simplicial
complex M embedded in Euclidean space Rd. For a given direction v, let av and bv

denote the minimum and maximum values of x · v over the points of M. The Euler
characteristic curve in the direction v is now defined to be the function

[av, bv]→ Z

defined by t �→ χ(M(v)t). Let χ̄(M(v)) denote the average value of the Euler
characteristic curve in the direction v.
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Definition 3.8.2. The smoothed Euler characteristic curve for the direction v is
defined to be the function

FM
v (y) =

∫ y

−∞
(χ(M(v)x) − χ̄(M(v))) dx.

Observe that by construction this is a smooth piecewise-linear function with
compact support.

Definition 3.8.3. The smooth Euler characteristic transform is the function

SECT: S d−1 → L2(R)

specified by

v �→ FM
v .

Interestingly, when d ≤ 3, the SECT can be shown to be injective; this is a suffi-
cient statistic for describing the underlying distribution. Moreover, since the result
is a function in L2, just as in the case of the discussion of persistent landscapes, the
SECT can be used as input to standard statistical models and resampling techniques
can be used to obtain confidence intervals for predictors and summary statistics.
This approach has been used to generate clinically meaningful conclusions from
imaging data from glioblastoma tumors in [127].

3.9 Exploratory Data Analysis with Mapper

Because of the tremendous possible space of topological hypotheses, the frame-
work of exploratory data analysis is very well suited for TDA. That is, rather than
seeking to confirm specific hypotheses or test existing ideas about the data set, it is
often much more sensible to simply attempt to find structure in the data.

The Mapper algorithm (as discussed in Section 2.8) is particularly well suited
for this.

● The output of Mapper is a colored graph representing a multiscale clustering; it
is often possible to visually interpret the results.

● As Mapper requires choices about bin sizes and filter functions, varying these
allows us to explore structural properties of the data. For example, Mapper can
account for the measure on the data by using a density estimator as the filter
function.

Remark 3.9.1. Although Mapper output is not stable with regard to perturbation
of these choices, in the exploratory paradigm this is not as substantial a problem
as it might seem. One can use the same statistical tools normally used to assess
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the stability of the results of clustering, i.e., cross-validation. There are different
ways to do this, but all of them boil down to either partitioning or subsampling the
data and then comparing clustering results by counting pairs which end up chang-
ing depending on whether they are in the same or different clusters. But perhaps
more importantly, there is a strong sense in which instability is not as big an issue
in genomics as one might expect. Exploratory analysis will typically be validated
by further experiment. That is, in this kind of usage, predictions from TDA are
confirmed by a follow-up experiment before being regarded as a reliable discov-
ery. As such, the consequence of errors in inference due to instability is a wasted
experiment; this is in stark contrast to applications in machine learning such as, for
example, self-driving cars or clinical recommendations.

A common experimental application of Mapper is to explore various choices of
filter function and other parameters in order to find clusterings of the data such
that the clusters correlate strongly with other known properties of the data (e.g.,
clinically significant variables). More precisely, we have the following setup.

1. In addition to the data (X, ∂X), filter function, and cover, we have an additional
function θ : X → R.

2. We extend θ to a function with domain the Mapper complex by defining θ on a
point in the complex to be the average or median of the values of f along the
corresponding data points.

3. We want to identify regions in the Mapper complex where θ is unusually large.

Now we can apply permutation tests (i.e., randomly relabeling the points and
computing the values of the function θ) to determine the significance of an observed
value. To be precise, we carry out the following.

1. We generate a distribution on values of θ by randomly shuffling the values of θ
on X and recomputing the values on the points of the Mapper complex.

2. We then regard an actual value as significant if it is larger than 99% of the values
produced in this fashion, for example. (The specific cutoff for significance is a
parameter choice as usual.)

This procedure has been used in applications, for instance in the cell differenti-
ation example we described previously in Example 2.8.3. However, note that as is
usual with permutation tests, it can be expensive computationally to obtain confi-
dence intervals as opposed to simply p-values. Also, the stability of this procedure
does not yet have sound theoretical foundations in general, although in practice it
appears to be stable with respect to cross-validation.
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3.10 Summary

● This chapter provides tools with which we may formally discuss sampling
from geometric objects. We adopt the working hypothesis that we have data
randomly sampled from an underlying metric measure space (X, ∂X , μX) (see
Definition 3.2.10).

● In order to state probabilistic stability theorems, we need distances between
distributions and more generally metric measure spaces. Toward this goal, we
use the Gromov-Prohorov distance (see Definition 3.2.33) and the Gromov-
Wasserstein distance (see Definition 3.2.34).

● We can study probability measures on barcode space; Section 3.3 provides a
formal approach to probability theory on barcodes.

● Using metrics on distributions, Theorem 3.4.2 provides an analogue of the sta-
bility theorem of persistent homology (Theorem 2.4.10) in the context of metric
measure spaces. Another version of a probabilistic stability theorem is given by
Theorem 3.4.5.

● Section 3.5 provides a rigorous approach to this chapter’s overarching goal
of estimating persistent homology by taking sufficiently many samples from
a space in order to recover the persistent homology of the support of the
probability distribution.

● Summarizing distributions of barcodes turns out to be a challenging problem.
One possibility is to consider techniques that involve extracting real-valued
features from persistence diagrams.

● We may also approach this problem via kernel methods (see Section 3.6.2),
persistence landscapes (see Section 3.6.3) or coordinates on a barcode (see Sec-
tion 3.6.4); all of these methods map barcodes to a vector space where traditional
statistical methods can be applied.

● In addition to the study of techniques to produce reliable persistent homol-
ogy invariants despite the presence of noise, we are interested in considering
the effect of idealized noise itself through the persistent homology of random
complexes.

● Adaptation of the Euler characteristic is an attractive idea due to the advantages
of using simple topological invariants.

● The Mapper algorithm (see Section 2.8) is a useful tool for exploratory data
analysis. Section 3.9 outlines a procedure for the use of Mapper in applications.

The integration of topological data analysis with statistical methods is still in
its infancy. As the discussion in the next part of the book makes clear, the kinds
of techniques presented in this chapter have not yet made it into practice. Some
of this is due to the lack of consensus about the best way to handle some of the
issues that arise. But the lack of power of some of the tests (e.g., techniques for
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estimating confidence intervals) combined with difficulties in producing topologi-
cal summaries also provides a substantial impediment. We hope that the readers of
this book will feel particularly motivated to work to develop standards for statistical
practice in topological data analysis.

3.11 Suggestions for Further Reading

For background in probability theory, we recommend Billingsley’s textbook [57].
For discussion of probability theory in non-positively curved metric measure
spaces, Gromov’s book [212] and Sturm’s article [487] are very informative. How-
ever, in general, there are not yet any good survey articles or textbooks about
probability theory in the context of topological data analysis; as an exception,
Kahle’s survey article on random complexes [281] is comprehensive. For a review
of statistics, Wasserman’s books [526, 527] provide good introductions, and Freed-
man’s classic introduction to statistical modeling [184] teaches a healthy dose of
skepticism about the power of statistical inference.


