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Basic Notions of Algebraic Topology

. . . geometry is the art of reasoning well from badly drawn figures;
however, these figures, if they are not to deceive us, must satisfy cer-
tain conditions; the proportions may be grossly altered, but the relative
positions of the different parts must not be upset . . .

Henri Poincaré

Modern algebraic topology arose in order to provide quantitative tools for study-
ing the “shape” of geometric objects without using distances. It assigns algebraic
invariants (e.g., numbers) to geometric objects in a way that depends only on the
relative, not absolute, positions of points. In this chapter, we motivate and introduce
the basic ideas of algebraic topology. This material provides a conceptual frame-
work for understanding the tools of topological data analysis and their application
to real data. We do not provide a complete treatment, and in particular we omit
proofs of the theorems. At the beginning of each section, we provide a reference to
a comprehensive source for the material.

Although algebraic topology is not yet a standard tool in genomics, the study of
shape is already ubiquitous – clustering techniques are widely used to analyze data
in all domains of molecular biology. For example, we can represent the expression
profile of genes in cancer patients as points in a high-dimensional Euclidean space.
Patients that have similar expression profiles will have points that are close together.
A clustering algorithm can then be employed to classify expression profiles of can-
cer patients and thereby illuminate some of the distinct molecular mechanisms
underlying the disease.

Recall that a clustering algorithm assigns to a finite collection of points X
equipped with a distance function ∂X a partition of the points of X, i.e., a collection
of subsets Ci ⊆ X such that

1. the {Ci} do not overlap, so Ci ∩C j = ∅ for all i � j, and
2. together the {Ci} cover all of X, so that

⋃
i Ci = X.
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24 Part I Topological Data Analysis

These subsets Ci are the clusters. Typically, clustering algorithms seek to gener-
ate partitions so that points within a given cluster are closer together than points in
distinct clusters.

A representative clustering algorithm, single-linkage clustering in Euclidean
space, takes as input a set of points X ⊆ Rn and a fixed ε > 0, and assigns points x
and y to the same cluster if there is a path of points

x = x0, x1, x2, . . . xk−1, xk = y

such that ||xi − xi−1|| < ε for 1 ≤ i ≤ k. (Here for x, y ∈ Rn, ||x − y|| denotes the
Euclidean distance between the points x and y, see Example 1.3.6.) In other words,
we connect points if they are closer than ε; clusters are groups of connected points.

The methodology of clustering is motivated by the same focus on relative infor-
mation as in algebraic topology. Specifically, clustering is a useful technique for
analyzing data in circumstances in which the data is very noisy, so relative infor-
mation is more reliable than absolute information. In fact, the connection between
clustering and algebraic topology is very close: as we shall see in Section 1.3.2,
single-linkage clustering has an interpretation in terms of a standard topological
invariant.

In contrast to clustering techniques, which typically work on a collection of sep-
arated points (referred to as a “point cloud”), algebraic topology has traditionally
concerned itself with continuous objects with infinitely many points which can be
arbitrarily close together, e.g., a sphere. A first question we might ask is “what is
the continuous analogue of the clustering algorithm described above?” Roughly
speaking, the answer to this question will be as follows: a “cluster” should consist
of all points which can be connected by a smooth path.

In order to make sense of this, we need a precise definition of a geometric
object and of a smooth path through a geometric object. In the continuous set-
ting, this is done using the notion of a topological space. The study of basic
properties of topological spaces is typically referred to as point-set topology.
We begin by giving a little background about sets and then reviewing the con-
cept of a metric space, which provides a rich source of examples of topological
spaces.

Guide for the Reader

Our expositional choices in this chapter (and in this part of the book more
broadly) are motivated by our belief that in order to safely use mathematical
tools, it is important to understand where they come from and how they fit into
a broader ideological context. As a consequence, we have not adopted the maxi-
mally streamlined approach (which might start directly with simplicial complexes)
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to mathematical background. Instead, we have endeavored to “start from the
beginning,” and give a rapid but thorough introduction to the ideas of algebraic
topology.

On the other hand, we are aware that the volume of material below might pose
challenges to the energy of readers who have less math background. For someone
interested in a minimal path through this section, we might recommend skipping
to Section 1.8 and reading prior material as necessary to proceed. Strictly speaking,
only Sections 1.8 through 1.12 are required for the rest of the book. Nonetheless,
we hope that there are some readers from biology who find the broader introductory
material useful.

1.1 Sets

All of the mathematical objects we will study herein are built on top of sets.
Although the construction of rigorous axiomatizations of set theory is subtle and
complicated, we can get by with a fairly naive view of the foundations. An excel-
lent textbook that covers the material we use (and more) is Halmos’ Naive Set
Theory [224].

We will regard a set as simply an unordered collection of objects, referred to as
members or elements. We require that the elements of a set be unique. A finite set
has finitely many elements; otherwise, the set is infinite.

Example 1.1.1.

1. The empty set, denoted ∅, is the set with no elements.
2. The integers Z is the set {. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}; an element of
Z is a number. Similarly, the natural numbers N = {0, 1, 2, . . .}, the rational
numbers Q consisting of the fractions { p

q } where p and q are relatively prime,
and the real numbers R are sets. Note that rigorously constructing the real num-
bers as a set is complicated; although informally we are used to working with
them as decimals, the construction requires some machinery we will discuss
below.

3. The Euclidean vector spaces Rn are sets; the elements are the vectors (x1, x2, . . . , xn),
where each xi ∈ R.

4. The collection of possible bases in a DNA strand, {A,G,C,T }, is a set.
5. The expression vectors from a collection of samples from a cancerous tumor form a

set, e.g., a set of vectors {(30, 50, 10, . . .), (10, 16, 29, . . .), . . .}, where each element is
a vector and each entry in an element of the set is an expression value at a particular
position on a gene.

6. In general, a finite set can be specified as a list of elements, e.g., {a, b, 4}, which has
elements a, b, and 4. These elements could be specified by a condition, e.g., the set of
people named “Harold” in New York.
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7. In contrast, “tall people in Boston” does not describe a set; the term “tall” is not an
adequately specific description by itself. On the other hand “living people over six feet
tall in Boston” is a well-defined characterization of a set.

There are several familiar constructions of new sets from old that will be of
particular relevance for our work. First, given a set X, we can form new sets by
taking only certain elements from X; we have seen examples of this above.

Definition 1.1.2. A subset Y of a set X is a set Y such that every element y ∈ Y is
an element of X. We write Y ⊆ X to denote a subset of X.

Second, given a finite set of sets {Xi} = {X1, X2, . . . , Xk}, we can form the set of
tuples.

Definition 1.1.3. Let {Xi} be a finite set of sets. The Cartesian product is the set
specified as ∏

i

Xi = {(x1, x2, . . . , xk) | xi ∈ Xi}.

Example 1.1.4.

1. Almost by definition, the standard xy-plane R2 can be identified with the product R×R,
2. and more generally

Rn �
n∏

i=1

R.

Given two sets X and Y , we can form the union

X ∪ Y = {z | z ∈ X or z ∈ Y}
and intersection

X ∩ Y = {z | z ∈ X and z ∈ Y}.
More generally, for a collection {Xi} of sets we can form the union ∪iXi or
intersection ∩iXi of all of them.

If S 1 and S 2 are sets, a function f : S 1 → S 2 is a rule that produces an element
of S 2 for each element of S 1. We often refer to functions between sets as maps or
maps of sets. Given two maps f : X → Y and g : Y → Z, the composite g ◦ f takes
x ∈ X to g( f (x)) ∈ Z.

Definition 1.1.5. A map of sets f : X → Y is defined as follows.
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surjection injection bijection

Figure 1.1 A surjective map hits everything. Injective maps take distinct elements
to distinct places. Bijective maps are both injective and surjective.

● Surjective or onto if for every point y ∈ Y , there is at least one x ∈ X such that
f (x) = y; that is, f hits all the points of Y .

● Injective or one-to-one if for any two points x, y ∈ X that are not the same,
f (x) � f (y); that is, no point of Y is hit more than once.

● Bijective if it is injective and surjective.

See Figure 1.1 for an illustration of these three properties of a map of sets.

Example 1.1.6.

1. The map f : R→ R specified by f (x) = x2 is not injective, since −2 and 2 both go to 4,
and it is not surjective, since no negative numbers are hit.

2. The map {a, b, c} → {d} that takes every element to d is not injective since a and b both
go to d, but it is surjective.

It is extremely useful to develop a criterion for considering sets “the same” that
is weaker than requiring that they be identical. For this, we introduce the notion of
the inverse of a function. Recall that the identity map idX : X → X is simply the
function defined to be f (x) = x.

Definition 1.1.7. The function f : X → Y has inverse g : Y → X if the composite
g ◦ f : X → Y → X is idX , the identity on X, and the composite f ◦ g : Y → X → Y
is idY , the identity on Y .

Notice that any bijective map f : X → Y has an inverse f −1 : Y → X where
f −1(y) is defined to be the unique element of X that has image y.

Definition 1.1.8. Two sets X and Y are isomorphic if there exists a bijection
f : X → Y . We often write X � Y and leave the functions f and g implicit.

We will refer to f as an isomorphism.
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Figure 1.2 An isomorphism between two finite sets can be described in terms of
a permutation.

Example 1.1.9.

1. Two finite sets X and Y are isomorphic if and only if they have the same number
of elements. See Figure 1.2 for an example of an isomorphism between two finite
sets.

2. The map R2 → R2 that takes (x, y) to (−x,−y) is an isomorphism; its inverse is itself.
3. The map N → Z that takes 0 to 0, 1 to 1, 2 to −1, and in general is specified by the

formula

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x = 0
x+1

2 , x odd

− x
2 , x even

is an isomorphism.

Elaborating on the observation that finite sets are isomorphic if and only if they
have the same number of elements, we can use isomorphisms to talk about the size
of infinite sets.

Definition 1.1.10. A set S is countable if there exists a bijection f : N → S ,
where N denotes the natural numbers {0, 1, 2, . . .}.

Countable sets are the smallest kind of infinite sets.

Example 1.1.11.

1. Clearly the set of natural numbersN is countable. The set of integers Z is also countable,
by the bijection given above in Example 1.1.9.

2. A little bit of work shows that the set of rational numbers Q is countable.



1 Basic Notions of Algebraic Topology 29

3. Famously, Cantor showed that R is uncountable, which means that it is bigger in
a precise sense than any countable set. More generally, Rn is uncountable for any
n > 0.

Two sets can be isomorphic in many different ways; for example, there are many
isomorphisms between any two finite sets of the same size. In general, composing
an isomorphism between two different sets X and Y with an isomorphism from Y
to itself will produce a new isomorphism from X to Y .

We will often want to work with sets “up to isomorphism.” Formally, we do this
using the fact that isomorphism of sets is an equivalence relation.

Definition 1.1.12. Let S be a set and let ∼ be a relation on S , i.e., a collection of
tuples (x, y) with x, y ∈ S . Given such a tuple (x, y), we write x ∼ y. Then ∼ is an
equivalence relation when the following holds.

1. For all x, y ∈ S , if x ∼ y then y ∼ x.
2. For all x ∈ S we have x ∼ x.
3. For all x, y, z ∈ S , if x ∼ y and y ∼ z, then x ∼ z.

Isomorphism of sets clearly satisfies these properties. The collection of all sets
isomorphic to X is called the isomorphism class of X; often we will be interested
in a set only up to its isomorphism class. However, we have to be a little bit careful
when formalizing the idea of an isomorphism class; the isomorphism class of a set
is usually not itself a set! Instead, it is a larger object, referred to as a class. The
issue is that Russell’s paradox shows that the “set of all sets” cannot exist: the set
of all sets would have to contain in particular the set that does not contain itself as
an element, and this is a contradiction. The paradox rules out certain appealing but
naive axioms about which sets can exist: in particular, certain constructions that
intuitively seem like they should produce sets in fact do not, but rather produce
larger objects.

1.2 Metric Spaces

It is very common to represent experimental data as a set of measurements, together
with a distance between every pair of measurements. For example, genomic expres-
sion data is often presented as a collection of arrays of the form {x1, x2, . . . , xk},
where xi ∈ R is a number representing the expression of the ith measured gene. The
distance between two expression vectors could be the standard Euclidean distance
or it could be a correlation function, depending on the specific situation. Mathemat-
ically, this kind of setup is captured by the notion of a metric space. There are many
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good treatments of metric spaces; Kaplansky’s Set Theory and Metric Spaces is a
particularly accessible elementary treatment [284].

A metric space is a set X equipped with a distance function, referred to as the
metric, that satisfies a few simple axioms encapsulating the salient features of the
usual Euclidean distance in Rn. Specifically, we have the following definition.

Definition 1.2.1. A metric space is specified by a pair (X, ∂X) where X is a set
and ∂X is a function

∂X : X × X → R
that assigns a non-negative real number to each pair of points of X such that the
following holds.

1. The metric ∂X detects whether two points are the same, in the sense that

∂X(x1, x2) = 0 ⇐⇒ x1 = x2.

2. The metric ∂X is symmetric in that

∀x, y ∈ X, ∂X(x, y) = ∂X(y, x).

3. The metric ∂X satisfies the triangle inequality:

∀x, y, z ∈ X, ∂X(x, z) ≤ ∂X(x, y) + ∂X(y, z).

The most interesting of these axioms is the triangle inequality. See Figure 1.3 for
pictures of triangles on the surface of a cylinder and a sphere; the triangle inequality
is evident. (Here the metric on these surfaces is computed by the length of shortest
path.)

Remark 1.2.2. Particularly in biological applications, we sometimes encounter
dissimilarity measures which are not quite metrics. For example, the Kullback-
Leibler divergence (see Remark 3.2.32) is not symmetric, the Gromov-Hausdorff
distance (see Definition 2.4.4) on the set of metric spaces can be zero for metric

a

a

b
b

c
c ≥ a + b

c

Figure 1.3 No matter how curved or distorted triangles in a metric space are, the
length of any side must always be shorter than the sum of the other two sides.
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spaces that are not identical, and many common dissimilarity measures (e.g., the
Bray-Curtis dissimilarity measure [70]) do not satisfy the triangle inequality. In the
first two kinds of examples, it is easy to construct a metric that captures the salient
properties of the dissimilarity function – for instance, by symmetrizing (making a
new metric ∂′X = min(∂X(x, y), ∂X(y, x))) or identifying points such that ∂X(x, y) = 0
when x � y. Fixing triangle inequality violations is more subtle (e.g., see [196] for
interesting recent progress).

Example 1.2.3. The most familiar and important examples of metric spaces are the
Euclidean spaces Rn; these are defined as the n-tuples {(x1, x2, . . . , xn) | xi ∈ R} equipped
with the standard distance metric

∂Rn ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) =
√

(x1 − y1)2 + (x2 − y2)2 + . . . + (xn − yn)2.

A natural family of examples of metric spaces come from metrics induced by
weighted graphs. Particularly interesting examples of graph metrics come from
trees with weighted edges; this kind of metric space will be important in work
on modeling evolutionary phenomena using phylogenetic trees, as we will see in
Section 5.2.

Example 1.2.4. A graph is specified by a set of vertices and a set of edges connecting
the vertices. A weighted graph has weights (nonnegative numbers) attached to the edges.
More precisely, a weighted graph is a tuple G = (V, E,W) with vertex set V , edge set
E ⊂ V × V , and weights W : E → R≥0.

Regarding this graph as undirected and stipulating that there are no edges with non-zero
weight from any vertex v to itself, the graph metric on a weighted graph is a metric on the
set of vertices of the graph. The metric is defined so that the distance between vertices v
and w is the minimal length of a path connecting v and w:

∂G(v,w) = min
v,z0,z1,...,zk ,w|zi∈V

⎛⎜⎜⎜⎜⎜⎜⎝W(v, z0) +
k−1∑
i=0

W(zi, zi+1) +W(zk,w)

⎞⎟⎟⎟⎟⎟⎟⎠ .
(See Figure 1.4.)

The metrics we have described so far are continuous, in the sense that distances
can in principle be any real number. But many interesting metrics are discrete. For
example, the Hamming distance, which is a metric on strings that counts the num-
ber of differences, takes values in the natural numbers. The Hamming distance is a
basic concept in information and coding theory.

Example 1.2.5. Fix an alphabet Σ, i.e., a set of symbols we will call letters. Let x and
y be words of length n with letters in Σ. Then the Hamming distance between x and y is
defined to be the number of positions at which the letters of x and y differ:
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Figure 1.4 The length of the shortest path between A and B in the weighted graph
gives the distance between them.

∂H(x, y) = #{i | xi � yi}.
For example, if Σ = {A,C,G,T }, then

∂H(ACGT, ACAA) = 2.

An important point to emphasize is that there can be many distinct metrics on
the same underlying set. For instance, in genomic data considered as words in
{A,G,C, T } there are, in addition to the Hamming distance, other well-motivated
biologically relevant distances (see Section 5.2). As another example, a common
distance metric used for gene expression data represented as points in Rn is the
Pearson correlation distance.

Example 1.2.6. For x, y ∈ Rn, define the Pearson correlation distance between x and y
to be

∂cor(x, y) = 1 −
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2(yi − ȳ)2

,

where x̄ = 1
n
∑n

i=1 xi and ȳ = 1
n
∑n

i=1 yi.

The existence of a distance function allows us to define many familiar notions
from calculus; we review these now, as this is the prototype for the definitions of
elementary topology. For instance, for each point x in a metric space and ε > 0,
we can specify the ε-neighborhoods of x to describe points that are close to x.
Specifically, we have the open balls and closed balls

Bε(x) = {z ∈ X | ∂X(z, x) < ε} and B̄ε(x) = {z ∈ X | ∂X(z, x) ≤ ε}.
We can always separate two distinct points x and y by taking a ball B1 around x

and a ball B2 around y such that B1∩B2 = ∅; if ∂X(x, y) = ε, we can set B1 = B ε
4
(x)

and B2 = B ε
4
(y), for example. (See Figure 1.5.)
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X

Y

Figure 1.5 Any pair of distinct points in a metric space can be separated by open
balls around them.

Elaborating on this, the existence of a metric allows us to talk about convergence
of sequences. A sequence of points in X will be a function N→ X, i.e., a sequence

{xi} = x0, x1, x2, x3, . . .

for xi ∈ X.

Definition 1.2.7. For a metric space (X, ∂X), an infinite sequence of points {xi}
converges to a point x ∈ X if for any ε > 0, there exists a positive integer N such
that ∂X(xk, x) < ε for all k > N.

Informally speaking, the definition of convergence simply means that if we
go out far enough in the sequence, all the points are arbitrarily close to x. (See
Figure 1.6 for a picture of what this means.)

Example 1.2.8. Consider the sequence{
1
n

}
= 1,

1
2
,

1
3
, . . . ,

1
100

, . . . .

This sequence converges to 0; for any ε, it is clear that we can find an N such that for
n > N, ∣∣∣∣∣∣1n − 0

∣∣∣∣∣∣ = 1
n
< ε.

Specifically, take N to be the smallest integer larger than 1
ε .

A more subtle notion is that of a Cauchy sequence; this is a sequence of points
that ought to converge somewhere, in the following sense.



34 Part I Topological Data Analysis

Figure 1.6 For any ball around the point of convergence, all but finitely many
points of the convergent sequence are within that ball. (Note that in the picture
there are only finitely many points, due to limits of resolution.)

ε

Figure 1.7 The points in a Cauchy sequence get closer and closer together but
need not converge.

Definition 1.2.9. For a metric space (X, ∂X), a Cauchy sequence is a sequence of
points {xi} such that for all ε > 0, there exists an N such that ∂X(x j, xk) < ε for
j, k > N.

Although the points in a Cauchy sequence get closer and closer together (see
Figure 1.7), it is not necessarily the case that all Cauchy sequences converge to a
point x ∈ X.

Example 1.2.10. Consider the set of rational numbers Q equipped with the standard
metric, i.e., the distance between x and y is ∂(x, y) = |x − y|. Then the sequence
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{3, 3.1, 3.14, 3.141, 3.1415 . . .}

(where each new number in the sequence has an additional digit of π) is a Cauchy sequence
and “wants” to converge to π, but π is not in Q!

This possible failure of Cauchy sequences to coincide with convergent sequences
motivates the following definition.

Definition 1.2.11. A metric space (X, ∂X) is complete if every Cauchy sequence
converges to a point x ∈ X.

Example 1.2.12. The Euclidean spaces Rn are all complete; R can in fact
be constructed by formally adding to Q points for each Cauchy sequence to
converge to.

As Example 1.2.12 indicates, there is a tension between the size of a metric
space and whether it is complete; Q is countable but not complete. Adding points
to Q to make it complete yields R, which is uncountable. Although metric spaces
of interest are often not countable, there is frequently a countable subset X′ ⊂ X
that is dense, in the following sense.

Definition 1.2.13. A subset X′ ⊂ X is dense if for all x ∈ X and ε > 0 there
exists a point z ∈ X′ such that ∂X(x, z) < ε. That is, for any point X, there exists an
arbitrarily close approximation in X′.

For example, Q is dense in R; any real number can be approximated to any
precision by a finite-length decimal.

Definition 1.2.14. A metric space (X, ∂X) is separable if there exists a countable
subset X′ ⊂ X that is dense in X.

Example 1.2.15. All of the Euclidean spaces Rn are separable; any point can be
approximated by a point with rational coordinates.

A closely related notion is the idea of an ε-net (Figure 1.8).

Definition 1.2.16. Let (X, ∂X) be a metric space. A subset X′ ⊂ X is ε-dense if for
every x ∈ X there exists z ∈ X′ such that ∂X(x, z′) < ε. (So a dense set is ε-dense
for every ε.) An ε-net is a subset X′ ⊂ X that is ε-dense.
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Figure 1.8 Any point in the square is within ε of the blue points at the centers of
the circles.

In order to understand when ε-nets exist, we need to have ways to talk about the
size of a metric space. In order to define the size, we first need to review the notion
of inf and sup.

Definition 1.2.17. Given a subset A ⊂ R, a lower bound for A is an element
x ∈ R such that for all a ∈ A, x ≤ a. Then the infimum inf(A) is the greatest lower
bound, if one exists. Similarly, an upper bound for A is an element y ∈ R such that
for all a ∈ A, a ≤ y. Then the supremum sup(A) is the least upper bound, if one
exists.

The sup and inf are distinct from the max and min, respectively, because they
might not lie in A itself.

Definition 1.2.18. Let (X, ∂X) be a metric space. The diameter of a subset A ⊂ X
is the supremum

sup
x,y∈X

∂X(x, y).

We must write sup rather than max because there might not be any pair of points
which realizes the bound. (Note also that the diameter can be ∞, when there is no
upper bound!)

Another way to talk about this is to observe that a subset A ⊂ X has finite
diameter when there exists a ∈ A such that A ⊂ Bκ(a) for some κ; more gener-
ally, such a set will be referred to as bounded. (See Figure 1.9 for an example of
this.)

An even stronger notion is that of being totally bounded.
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D

Figure 1.9 The diameter of a subset of a metric space can be approximated by
taking a ball that completely encloses the subset.

Definition 1.2.19. Let (X, ∂X) be a metric space. Then X is totally bounded if for
every ε > 0, there exists a finite cover of X by balls of radius ε, i.e., a collection of
balls {Bε(xi)} whose union is X.

In Rn a subset is bounded if and only if it is totally bounded, but in general,
a bounded space need not be totally bounded. For example, a metric space with
infinitely many points such that all interpoint distances are 1 is bounded but not
totally bounded.

Lemma 1.2.20. Let (X, ∂X) be a totally bounded metric space. Then for any ε we
can find a finite ε-net in X.

An important theme in modern mathematics is that the structure of mathematical
objects (e.g., sets or metric spaces) can be completely understood in terms of func-
tions between them. We describe a framework that allows us to be precise about
this in Section 1.7 below (where we introduce basic concepts of category theory).
From this perspective, an essential next step is to define a function between metric
spaces.

At a minimum, a map between metric spaces (X, ∂X) and (Y, ∂Y) should involve
a function of sets f : X → Y . But we would like to require that the function also
respect the metric structures on X and Y , in some sense. There are different ways
to do this; we now discuss the familiar notion of a continuous map.

Definition 1.2.21. Let (X, ∂X) and (Y, ∂Y) be metric spaces. A map f : X → Y
is continuous if for every sequence {xi} in X converging to x the sequence { f (xi)}
converges in Y to f (x).
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An important property of continuous maps is that they compose.

Lemma 1.2.22. Let (X, ∂X), (Y, ∂Y), and (Z, ∂Z) be metric spaces. If f : X → Y
and g : Y → Z are continuous, then so is the composition g ◦ f : X → Z.

Continuity can also be defined in terms of a traditional ε-δ definition; this is easy
to show directly. We explain this below in Example 1.3.20, where we generalize
the notion of continuity to topological spaces.

For metric spaces, it is also sometimes useful to consider a stronger notion of
continuous where the “expansion” of the map is bounded.

Definition 1.2.23. A map f : X → Y between metric spaces (X, ∂X) and (Y, ∂Y) is
Lipschitz with constant κ if for all x1, x2 ∈ X the inequality

∂Y( f (x1), f (x2)) ≤ κ∂X(x1, x2)

holds.

Any Lipschitz map is continuous, but the converse does not hold in general.

1.3 Topological Spaces

The motivating idea of point-set topology is to relax the requirement of a distance
and define a weaker and more flexible notion of closeness that still allows us to
formalize the notions that lead to calculus (i.e., continuity and convergence). This
is the basis for elementary analysis, which studies the foundations of calculus. A
classic textbook for point-set topology is Munkres [369]; there are many excellent
analysis books, of which Rudin [440] is a canonical example.

The basic observation that leads to the development of point-set topology is that
most of the concepts we defined for metric spaces in Section 1.2 were or could be
phrased in terms of the metric balls Bε(x). A topological space can be thought of
as simply a set with a well-behaved collection of subsets that act like metric balls.
This abstraction is extremely useful, for a number of reasons: many metrics can
lead to the same topology, some important topological spaces (notably those arising
in algebraic geometry) do not come from a metric, and many basic constructions
(e.g., gluing) are much more complicated to express in the context of a metric.

Definition 1.3.1. A topological space is a pair (X,U), where X is a set and U is a
collection of subsets of X, which we refer to as open sets. The open sets satisfy the
following conditions.
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1. Both the empty subset ∅ and X are elements of U .
2. Any union of elements of U is an element of U .
3. The intersection of a finite collection of elements of U is an element of U .

A subset Z ⊆ X is closed if the complement of Z in X is open.

Any metric space gives rise to a topological space.

Example 1.3.2. Let (X, ∂X) be a metric space. Then we say that a subset A ⊂ X is
open if for every z ∈ A, there exists ε such that Bε(z) ⊆ A. The open sets make X into a
topological space.

But the definition of a topological space is sufficiently flexible so as to allow a
variety of strange examples. For instance, any set has two trivial topologies.

Example 1.3.3. Any set X can be given the following two topologies.

1. The discrete topology, in which any subset Y ⊂ X is an open set. In particular, the points
themselves are open sets. As the name suggests, in this topology the points should be
thought of as maximally separated from one another.

2. The indiscrete topology, in which the only open sets are the entire set X and ∅. In this
topology, the points should be thought of as being arbitrarily close to each other.

However, the most frequently occurring examples are very familiar. In order to
specify a topological space, one typically gives a base for the topology.

Definition 1.3.4. A base for a topological space (X,U) is a collection of open
sets {Uα} such that any open set is a union of elements of the base. Given simply
a set X, a collection of sets {Bα} is a base if every x ∈ X is in some Bα and given
x ∈ Bα ∩ Bβ, there exists Bγ ⊆ Bα ∩ Bβ such that x ∈ Bγ.

The importance of the intrinsic definition is that we can define a topology on X
given a base.

Lemma 1.3.5. Given a set X and a base {Bα}, we can define a topology on X
where a set U is open if for each x ∈ U there exists Bα such that x ∈ Bα ⊆ X. (And
we will often refer to this as the topology generated by a base.)

As Lemma 1.3.5 makes clear, the base of a topological space is modeled on the
open balls of a metric space.
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Figure 1.10 Basic open and closed sets in Euclidean space are balls; more general
open and closed sets are generated by union and intersection.

Example 1.3.6. Euclidean space with the topology generated by the open balls Bε(x) =
{y ∈ Rn | ||x − y|| < ε}, for x ∈ Rn and ε > 0. See Figure 1.10 for some examples of open
and closed sets in this topology.

Example 1.3.7. In fact, we can conveniently describe the topology of Example 1.3.2 on
a metric space (X, ∂X) as generated by the base of the open balls Bε(x) = {y ∈ X | ∂X(y, x) <
ε}, for x ∈ X and ε > 0.

An important class of topological spaces are those with a countable base; these
are called second countable. Example 1.3.6 is a second countable topological
space; we can take the base using only the balls with rational radii.

The example of the topology induced by a metric has a particularly important
property that we now highlight. Specifically, recall that in a metric space we can
separate points in the sense that given two distinct points x, y ∈ X, we can choose
balls Bε1 (x) and Bε2 (y) such that Bε1 (x) ∩ Bε2 (y) = ∅; we simply take ε1, ε2 <

∂X (x,y)
2 .

It turns out to be very useful to consider topological spaces that have this property,
even if the topology is not generated by a metric.

Definition 1.3.8. A topological space (X,U) is Hausdorff if for any pair of dis-
tinct points x, y ∈ X there exist open sets Ux and Uy such that x ∈ Ux, y ∈ Uy, and
Ux ∩ Uy = ∅.

If (X,U) is a topological space, any subset Y ⊂ X can be given the structure
of a topological space in a natural fashion induced from the topology on X. This
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basic closed
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Figure 1.11 Left: Basic open sets in the subspace topology on the unit square.
Right: Basic open sets in the subspace topology on the unit circle.

is referred to as the subspace topology on Y , and is a very important source of
examples of topological spaces.

Definition 1.3.9. Let (X,U) be a topological space and Y ⊂ X a subset. Then the
subspace topology on Y is defined by taking the open sets to be {Y ∩ U |U ∈ U }.

Example 1.3.10. The subspace topology on the unit square [0, 1]×[0, 1] ⊂ R2 has basic
open sets that are either balls (when the ball is completely contained within the square) or
the intersection of balls with the square; see Figure 1.11 for examples.

Example 1.3.11. Let S 1 denote the standard unit circle in R2; that is, S 1 = {(x, y) ⊂
R2 | x2 + y2 = 1}. We topologize S 1 using the subspace topology as a subset of R2; see
Figure 1.11 for examples.

Just as with sets, another standard way to produce new topological spaces from
old is via the Cartesian product (recall Definition 1.1.3).

Definition 1.3.12. Let X and Y be topological spaces, with the topologies
specified by open sets {Uα} and {Vβ} respectively. Then the product

X × Y = {(x, y) | x ∈ X, y ∈ Y}

is a topological space with a base for the topology given by the open sets {Uα×Vβ};
we refer to this as the product topology.

A topological space is designed to be a minimal structure in which we can talk
about “closeness,” in a precise sense.
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V

Figure 1.12 V is a neighborhood of p.

Figure 1.13 Smaller and smaller open sets around the point of convergence still
contain all but finitely many points in the approaching sequence.

Definition 1.3.13. Given a point x ∈ X, we define a neighborhood of x to be a set
V ⊆ X such that there is an open set U ⊆ V and x ∈ U. (See Figure 1.12.)

Immediately, we can use this definition to specify the notion of convergence of
a sequence (Figure 1.13).

Definition 1.3.14. A sequence of points {xi} converges to p if for any neighbor-
hood V of p there exists an N such that xn ∈ V for n ≥ N.

Considering Example 1.3.6, we see that in Euclidean space this means that for
any ε, there exists an n such that xn ∈ Bε(x), i.e., ||xn − x|| < ε. In particular, when
restricted to R, the definition recovers the usual notion from elementary calculus
of convergence of a sequence. More generally, Definition 1.3.14 coincides with
Definition 1.2.7 in a metric space given the metric topology.

Topological spaces also admit an extremely useful notion of size. This takes a
little bit more work to specify without explicit reference to a distance function. In
order to define this, we need the notion of a cover.
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Figure 1.14 An open cover of U is a collection of open sets whose union
contains U.

Definition 1.3.15. An open cover of a set U in a topological space X is a
collection of open sets {Uα}, with each Uα ⊂ X, such that U ⊆ ⋃

Uα.

For example, the collection of all balls Bε(x) as x varies over the points of Rn is
an open cover of Rn. (See Figure 1.14.) A subcover of a cover is a subset whose
union still contains U.

Definition 1.3.16. A topological space X is compact if any open cover of X has a
finite subcover.

Example 1.3.17.

1. Every finite set is compact.
2. The sphere {x, y, z | x2 + y2 + z2 = 1} with the subspace topology is compact.
3. No Euclidean space Rn is compact for n > 0.

Compact sets are “small” in a basic sense. The notion of compactness is a way
of formalizing the properties of the closed and bounded subsets of Rn.

Theorem 1.3.18. A subset X ⊆ Rn regarded as a metric space is compact if and
only if it is closed and bounded.

1.3.1 Maps between Topological Spaces

We now turn to consider the correct notion of a map between topological spaces.
We want to restrict ourselves to maps f : X → Y which satisfy certain properties
expressing compatibility with the topologies on X and Y . Roughly speaking, we
want continuous maps to have the property that “nearby” points in X are taken to
“nearby” points in Y .
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Figure 1.15 A function is continuous if for every neighborhood V around f (x),
we can find a neighborhood U of x whose image f (U) sits inside it.

Definition 1.3.19. Let (X,UX) and (Y,UY) be topological spaces. A map f : X →
Y is continuous at a point x if for every neighborhood V of f (x), there exists a
neighborhood U of x such that f (U) ⊆ V (Figure 1.15). The map f is continuous
if it is continuous at every point x ∈ X.

It is instructive to work out exactly what this means in the case of the standard
metric topology on R.

Example 1.3.20. A map f : R→ R is continuous at a point x ∈ R if for every open ball
Bε( f (x)), there exists an open ball Bδ(x) such that f (Bδ(x)) ⊆ Bε( f (x)). Put another way,
for every ε > 0, there exists δ > 0 such that |x − y| < δ implies that | f (x) − f (y)| < ε. That
is, we have recovered precisely the usual ε-δ notion of continuity.

More generally, in any metric space, maps are continuous in the sense of
Definition 1.2.21 if and only if they are continuous in the sense of Definition 1.3.19.

Generalizing Lemma 1.2.22, the composition of continuous maps is continuous.

Lemma 1.3.21. Let (X,UX), (Y,UY), and (Z,UZ) be topological spaces and sup-
pose we have continuous maps f : X → Y and g : Y → Z. Then the composite
g ◦ f : X → Z is continuous.

Continuous maps out of simple “test spaces” that are well understood play an
important role in algebraic topology; for example, we can now define a path in
terms of maps out of the unit interval.
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Definition 1.3.22. A path from x to y in a topological space (X,UX) is a continu-
ous function γ : [0, 1]→ X such that γ(0) = x and γ(1) = y. Here [0, 1] is given the
subspace topology it inherits as a subset of R.

The notion of a path captures many familiar examples, but the price of the
generality is that strange examples are also permitted.

Example 1.3.23.

1. A path γ in Rn is just a curve that could be drawn without lifting up the pen (see Fig-
ure 1.16). Note that these can be surprisingly complicated: there are famous examples
of “space-filling” curves, which are precisely paths that touch every point of R2.

2. A path γ in S 2 is a smooth curve on the surface of the sphere.
3. A path in a space given the discrete topology must be a constant map.

We now return to considering the continuous analogue of clustering; in light
of Definition 1.3.22, this is straightforward – we replace the discrete paths by
continuous ones.

Definition 1.3.24. Let (X,UX) be a topological space. Two points p, q ∈ X are
path-connected if there exists a continuous path γ : [0, 1] → X such that γ(0) = p
and γ(1) = q.

It is clear that the relation of being path-connected is an equivalence relation
(reparametrizing paths to obtain transitivity), and so the following definition makes
sense.

0 1

γ

γ(1)

γ(0)

Figure 1.16 A path γ is a continuous map γ : [0, 1]→ X.
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Definition 1.3.25. We define the path components of a topological space (X,UX)
to be the collection of subsets of X such that x, y are in the same subset if and only
if there is a path joining them.

We can think of the path components of X as giving a continuous clustering
of the points of X; roughly speaking, two points are in distinct path compo-
nents when they are separated by a “gap” in space. An important property of
path components is that continuous maps of spaces give rise to maps of path
components; this fact, referred to as functoriality, is essential for calculations
(see Figure 1.17).

Lemma 1.3.26. Let X and Y be topological spaces. Given a continuous map
f : X → Y, there is an induced map of sets between the path components of X and
the path components of Y.

1.3.2 Homeomorphisms

The construction of the set of path components is an example of a topologi-
cal invariant; for two topological spaces that are “the same” in a suitable sense,
the sets of path components should be isomorphic. To be precise about this,
we need to describe when we will consider two topological spaces to be the
same.

Definition 1.3.27. Topological spaces (X,UX) and (Y,UY) are homeomorphic if
there exists a bijection f : X → Y such that both f and f −1 are continuous
maps.

continuous map of spaces continuous map of sets

Figure 1.17 A continuous map of spaces induces a map of sets of path compo-
nents. Here, the black space is the union of three components and the blue space
the union of two.
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Figure 1.18 Two spaces are homeomorphic if there is a continuous bijection
between them with continuous inverse. On the top, the circle is deformed into
a pentagon. On the bottom, a sphere with the bottom cut off can be stretched onto
a plane.

In this situation, we refer to f as a homeomorphism. Intuitively, two spaces are
homeomorphic when they are related by a continuous deformation; roughly speak-
ing, this means they are related by stretching and bending without introducing tears
or gluing things together. See Figure 1.18 for a few examples of homeomorphic
spaces.

Example 1.3.28.

1. The xy-plane R2 and a punctured two-dimensional sphere (i.e., a sphere where we have
removed a point at one of the poles) are homeomorphic; there is a homeomorphism that
“unwraps” the sphere. This homeomorphism is very familiar; this is a stereographic
projection, used for example to make maps.

2. A square, a circle, and an octagon are all homeomorphic – we can define a homeomor-
phism by smoothing out the corners of the square and octagon, or alternatively adding
kinks to the circle.

3. Famously, a coffee cup and a solid torus (a doughnut) are homeomorphic.

We can write X � Y when two spaces X and Y are homeomorphic. The relation
of homeomorphism is an equivalence relation on spaces:

1. it is reflexive (clearly X � X via the identity map),
2. symmetric (X � Y implies that Y � X), and
3. transitive (if X � Y and Y � Z, composing the homeomorphisms shows that

X � Z).
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Recall from Lemma 1.3.26 that continuous maps of spaces induce maps of path
components. When the continuous map in question is a homeomorphism, we can
say something stronger.

Lemma 1.3.29. Let f : X → Y be a homeomorphism. Then f induces a bijection
between the set of path components of X and the set of path components of Y.

We can interpret Lemma 1.3.29 to say that the number of path components is a
topological invariant of a topological space. This numerical invariant is interesting,
insofar as it allows us to distinguish spaces very easily.

Corollary 1.3.30. Let X and Y be topological spaces. If X and Y have different
numbers of path components, then X and Y are not homeomorphic. (Of course, two
spaces with the same number of path components need not be homeomorphic!)

We can directly relate the notion of path components to the problem of clustering
discrete data, in a precise sense. First consider the case in which (M, ∂M) is a finite
metric subspace of Rn. Fix a scale parameter ε ≥ 0. Then the topological space
formed as the union

N =
⋃
x∈M

B̄ ε
2
(x)

has the property that the path components of N recover the clusters obtained via
single-linkage clustering with parameter ε. However, a general finite metric space
will not come with an embedding into Rn; for this reason, it is useful to recast the
clustering problem using a discretized topological model that encodes the same
basic data.

To this end, we consider a construction which associates a graph to (M, ∂M).

Definition 1.3.31. Let (M, ∂M) be a finite metric space and fix ε ≥ 0. Define the
associated neighborhood graph Gε(M) to have vertices given by the points of M,
and an edge (vi, v j) connecting vi and v j if and only if ∂M(vi, v j) ≤ ε.

Regarding the graph as a topological space, we can give a graph-theoretic
description of the path components.

Lemma 1.3.32. Two vertices vi and v j in a graph G are in the same path compo-
nent if there exists a collection of edges (vi, vk1 ), (vk1 , vk2), . . . , (vkm , v j) where each
pair of adjacent edges shares a vertex.
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It is now evident that the components of the graph associated to (M, ∂M)
correspond to the clusters given by single-linkage clustering with parameter ε.

1.4 Continuous Deformations and Homotopy Invariants

We have now arrived at the beginnings of homotopy theory; two excellent modern
textbooks are by May [342] and Hatcher [235]. We observed in Lemma 1.3.29 in
the previous section that the set of path components of a space X is a topological
invariant, in the sense that if f : X → Y is a homeomorphism then the induced
map on path components is an isomorphism. However, counting path components
is much weaker than deciding whether two spaces are homeomorphic.

1. A circle and a point {x} are not homeomorphic but have the same number of
path components.

2. As an even simpler example, a disk {x | x ∈ R2, ||x|| ≤ 1} and a point {x} have the
same number of path components. However, they are clearly not homeomorphic
(there is no map from Dn → {x} that is a bijection).

These examples motivate a search for a notion of equivalence that is weaker than
homeomorphism and closer to comparing counts of path components. In particular,
it seems reasonable to want a weaker kind of equivalence for which a point and a
disk look the same but a point and a circle look different.

In order to introduce such a notion of equivalence, we will introduce the idea
of a homotopy. A homotopy specifies a relationship between continuous maps
from X → Y; we will subsequently use this to define a kind of “approximate”
homeomorphism.

Definition 1.4.1. Let X and Y be topological spaces. Then two continuous maps
f , g : X → Y are homotopic if there exists a continuous map (called a homotopy)
h : X × [0, 1]→ Y such that ⎧⎪⎪⎨⎪⎪⎩h(x, 0) = f (x)

h(x, 1) = g(x).

We write f � g when f and g are homotopic.

We think of t ∈ [0, 1] as parametrizing a family of maps interpolating between
f and g; for each t, h induces a continuous map h(−, t) : X → Y . The continuity
condition on h means that these maps vary “smoothly” as the parameter changes. In
fact, for maps to Euclidean space, this description can be made precise as follows.
(See also Figure 1.19.)
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g

f

h(x,1/2)

Figure 1.19 Two maps R → R are homotopic via linear interpolation. We can
think of this as if we represented the graphs of f and g as rubber bands and
dragged one to the other.

Example 1.4.2. Any two continuous maps f , g : Rm → Rn are homotopic; the
homotopy is specified by interpolation as

h(x, t) = (1 − t) f (x) + t(g(x)).

The relation of being homotopic is an equivalence relation on the set Map(X, Y)
of continuous maps between topological spaces X and Y . As in the previous exam-
ples, only transitivity is non-trivial to check. Assume that for f , g, h : X → Y , we
have f � g via the homotopy H1 and g � h via the homotopy H2. Then a homotopy
H3 defined as ⎧⎪⎪⎨⎪⎪⎩H3(t, x) = H1(2t, x) 0 ≤ t ≤ 1

2

H3(t, x) = H2(2t − 1, x) 1
2 < t ≤ 1

shows that f ◦ h.
The notion of a homotopy now allows us to weaken the definition of homeomor-

phism; we will consider continuous maps f : X → Y that admit continuous inverses
up to homotopy. Specifically, we have the following definition.

Definition 1.4.3. Let X and Y be topological spaces. Then X and Y are homotopy
equivalent if there exist continuous maps

f : X → Y and g : Y → X



1 Basic Notions of Algebraic Topology 51

such that

f ◦ g � idY and g ◦ f � idX .

(Here idX and idY denote the identity maps on X and Y .) In this case, we write
X � Y and we refer to f and g as homotopy equivalences.

Example 1.4.4.

1. Any spaces X and Y which are homeomorphic (via maps f and g) are also homotopy
equivalent; the required homotopies are

h1 : X → X h1(x, t) = x

h2 : Y → Y h2(y, t) = y

since f ◦ g = idX and g ◦ f = idY .
2. For a disk Bε(x) ⊂ R2, the inclusion i : {x} → Bε(x) and the constant map p : Bε(x) →
{x} induces a homotopy equivalence. The composite p ◦ i is equal to the identity, and
for the composite i ◦ p, we use the “radial contraction”

h((r, θ), t) = (tr, θ),

where here we are representing the disk using polar coordinates. See the left panel of
Figure 1.20 below for a picture of this process.

3. Recall (from Example 1.3.11) that S 1 denotes the standard unit circle. A cylinder [0, 1]×
S 1 is homotopy equivalent to the circle; the maps are the inclusion S 1 → [0, 1] × S 1

that takes (x, y) �→ (0, (x, y)) and the collapse that takes (t, (x, y)) �→ (x, y). Once again,
the composite of the inclusion and the collapse is the identity and the other composite
is homotopic to the identity via the homotopy

h(t, (s, x, y)) = (ts, x, y).

See the right panel of Figure 1.20 for a picture of this process.

Homotopy equivalence is an equivalence relation on spaces:

1. it is reflexive (clearly X � X via the identity homotopy),
2. symmetric (X � Y implies that Y � X, using the same homotopy in the opposite

direction), and
3. transitive; this is the only property that is not immediate. The key idea is that

given homotopy equivalences f1 : X → Y and f2 : Y → Z (with inverses g1 and
g2), we can build a homotopy from ( f2 ◦ f1) ◦ (g1 ◦ g2) to the identity of Z by
using the homotopy from f1 ◦ g1 to the identity of Y on the interval [0, 1

2 ] and
the homotopy from f2 ◦ g2 to the identity of Z on the interval [ 1

2 , 1].
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Figure 1.20 Radially shrinking a disk realizes the homotopy equivalence between
a point and a disk. A cylinder shrinks along its length to a circle.

Definition 1.4.5. We will refer to the equivalence class of a space under the
relation of homotopy equivalence as its homotopy type.

To understand homotopy equivalence, it is useful to consider the notion of a
deformation retraction.

Definition 1.4.6. Let A ⊂ X be a subspace. Then A is a deformation retraction of
X if there exists a homotopy H : X × I → X such that H(x, 0) = x, H(x, 1) ∈ A, and
H(a, 1) = a.

A deformation retraction specifies a homotopy equivalence between A and X.
Not all homotopy equivalences are deformation retractions, but one can show that
two spaces X and Y are homotopy equivalent if and only if there is a space Z such
that X and Y are each deformation retractions of Z.

Lemma 1.3.29 showed that counting path components of a space was a
homeomorphism invariant. In fact, it is an invariant of homotopy equivalence.

Lemma 1.4.7. Let X and Y be topological spaces such that there is a homo-
topy equivalence f : X → Y. Then f induces a bijection between the set of path
components of X and the set of path components of Y.

In order to study homotopy equivalences, it turns out to be useful to consider the
set obtained by taking homotopy classes of maps; two continuous maps are in the
same homotopy class if they are homotopic.

Definition 1.4.8. Let X and Y be topological spaces. The set of homotopy classes
of maps from X to Y , denoted {X, Y}, is the set of equivalence classes in Map(X, Y)
under the equivalence relation given by homotopy.
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1.4.1 Homotopy Groups

An essential insight from early in the development of algebraic topology is the idea
that homotopy classes of maps from certain “test spaces” capture the homotopy
type of a topological space. The test spaces we need are the standard spheres.

Definition 1.4.9. Let Dn denote the n-dimensional unit disk in Rn defined as

Dn =

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xn) ∈ Rn |
n∑

i=1

x2
i ≤ 1

⎫⎪⎪⎬⎪⎪⎭
and let S n−1 denote the (n − 1)-dimensional unit sphere in Rn defined as

S n−1 =

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xn) ∈ Rn |
n∑

i=1

x2
i = 1

⎫⎪⎪⎬⎪⎪⎭ .
Observe that there is a natural inclusion S n−1 → Dn as the boundary.

Notice that D1 = [−1, 1] ⊆ R1, S 0 = {−1, 1} ⊆ R1, and so forth. We regard Dn

and S n−1 as topologized using the subspace topology, with regard to the standard
topology on Rn.

Now we define the homotopy groups. These will be sets with some additional
algebraic structure, which we will describe informally below and then more pre-
cisely in Section 1.6.4. For this definition, we use the notion of a based homotopy,
which is simply a homotopy H : X × I → Y that has the property that for specified
basepoints x ∈ X and y ∈ Y , H(x, t) = y for all t.

Definition 1.4.10. Let X be a topological space and x ∈ X a point. Choose a point
p ∈ S n. Then for n ≥ 0, as a set, the nth homotopy group πn(X, x) is the set of based
homotopy classes {S n, X} where the point p is sent to x.

Up to isomorphism, the homotopy groups are independent of the choice of base-
point in the spheres S n, but might change depending on the chosen basepoint in
the target space X. For example, if X has many path components, then πn(X, x) will
depend on which path component x lies in.

Example 1.4.11.

1. When n = 0, π0(X, x) is the set of path components of X.
2. When n = 1, π1(X, x) is called the fundamental group, the set of homotopy classes of

loops in X that start and end at x. (See Figure 1.21.)
3. The fundamental group π1(S 1, x), where x is any point of the circle, has ele-

ments in bijection with Z; each homotopy class of maps from S 1 → S 1 can
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Figure 1.21 The fundamental group of a space X is the set of homotopy classes
of loops.
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Figure 1.22 A loop S 1 → X is represented by a map [0, 1] → X with the same
value on 0 and 1. Two loops γ0 and γ1 are added by reparameterizing, doing γ0

on [0, 1
2 ] and γ1 on ( 1

2 , 1].

be characterized by how many times it wraps around, and in which direction it
goes.

The fundamental group of X records information about “holes” in X; a loop
is homotopic to the constant map at a point unless it goes around a hole in X.
(Of course, the loop might go around many times or it might wind around multi-
ple holes; the intricacies of the geometry are reflected in the additional algebraic
structure.)

When n ≥ 1, πn has additional algebraic structure; given two basepoint preserv-
ing maps from S 1 → X, we can “add” them to get a new loop by doing first one,
then the other. (See Figure 1.22.)

More generally, given two pointed maps f1, f2 : S n → X, we can make a new
one by “pinching” a radial belt of the sphere to a point, forming two copies of the
sphere, and then considering the new map that does f1 on one bulb and f2 on the
other. (See Figure 1.23.)
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Figure 1.23 Two maps f1, f2 : S n → X are added by taking a sphere, pinching it
around the radius to produce two spheres joined at a point, and then doing f1 on
one “bulb” and f2 on the other.

In fact, not only can we add, we can subtract as well. In Section 1.6, we quickly
review the abstract framework for this kind of algebraic structure; in Section 1.6.4,
we return to discuss the homotopy groups in more detail.

Another important property of the homotopy groups is that they behave nicely
in the presence of continuous maps. Specifically, restating Lemma 1.4.7 in this
language, we have the following result.

Lemma 1.4.12. Let X and Y be topological spaces and f : X → Y a homo-
topy equivalence. Then for any x ∈ X there is an isomorphism of sets π0(X, x) �
π0(Y, f (x)).

More generally, we have the following result.

Proposition 1.4.13. Let X and Y be topological spaces and f : X → Y a
homotopy equivalence. Then for any x ∈ X, there is an isomorphism of sets
πn(X, x) � πn(Y, f (x)).

The most pressing question about the homotopy groups is now to what degree
there is a converse to Proposition 1.4.13. An answer to this question and a jus-
tification of the use of spheres as test objects is provided by the theory of CW
complexes.
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1.5 Gluing and CW Complexes

When contemplating practical work with topological spaces, a very natural ques-
tion arises: how do we concretely specify the data of a topological space?
Definition 1.3.1 is very well suited for abstract reasoning, but is not usually con-
venient as a way to present a generic space. In particular, since our eventual goals
involve devising algorithms for computing topological invariants that are tractable
on computers, we want to develop means of encoding topological spaces that are
discrete.

If we restrict attention to the question of working with spaces up to homotopy
equivalence, then we obtain additional flexibility. The idea is now to model a given
homotopy type by particularly nice spaces; in a precise sense, it turns out that we
can always replace an arbitrary topological space by one which has a very regular
topological structure. This approach is based on an inductive description of a topo-
logical space in terms of building blocks that are easily understood, namely disks
and spheres.

In order to describe the topology on spaces built up in this way, we begin by
describing the quotient topology. To motivate this construction, consider the inter-
val [0, 1], topologized with the subspace topology from R. Gluing together the
two endpoints {0} ⊂ [0, 1] and {1} ⊂ [0, 1] should produce a circle. The quotient
topology is a way to make this precise.

Proposition 1.5.1. Let X be a topological space and Y a set. Let p : X → Y be
a surjective map. Then we can make Y a topological space by specifying that a
subset U ⊂ Y is open when p−1(U) is an open set in X. We call the topology on Y
the quotient topology.

Equivalently, given a continuous surjection of topological spaces p : X → Y , we
can identify a criterion for when the topology on Y is the quotient topology.

Proposition 1.5.2. Given a surjective map of topological spaces p : X → Y, we
say that p is a quotient map provided that U ⊆ Y is an open set in Y if and only
if p−1(U) ⊆ X is an open set in X. In this case, the topology on Y is the quotient
topology.

We can now identify the usual topology on the unit circle S 1 as the quotient
topology.

Example 1.5.3. Let p : [0, 1] → S 1 be the map specified by x �→ (cos(2πx), sin(2πx)).
Then p is a quotient map. (See figure 1.24.)
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Figure 1.24 The unit interval wraps around the circle, joined at the endpoints.

Given a topological space, it is often useful to have a more intrinsic way of
producing a surjective map f : X → Y , where Y is a set; by intrinsic, we mean
defined in terms of some sort of “gluing” data on X. For this, we need the notion
of a partition.

Definition 1.5.4. Given a topological space X, we let a partition of X be a
decomposition

X =
⋃

Xi, where Xi ∩ Xj = ∅, i � j.

A partition specifies an equivalence relation on the points of X, where x and y are
equivalent when x, y ∈ Xi.

The basic idea is that all of the points in each Xi are going to be glued together.

Definition 1.5.5. Given a partition {Xi} of X, the quotient space of the partition is
a topological space with points the set of partitions. The topology is induced by the
surjective map X → {Xi} which takes x ∈ X such that x ∈ Xi to Xi. Put another way,
we are topologizing the set of equivalence classes determined by the partition.

For instance, if we take the partition of [0, 1] specified by {0, 1} and the points
{x} in the open interval (0, 1), we generate the usual topology on S 1 as in Exam-
ple 1.5.3. A rich source of partitions comes from circumstances in which we want
to glue a space X to a space Y along a map from Z ⊂ X to Y .

Definition 1.5.6. Let X and Y be topological spaces, Z ⊆ X a subspace of X, and
f : Z → Y a continuous map. Define a partition on the disjoint union X

∐
Y with

sets ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
{x} ∀x ∈ X − Z,

{y} ∀y ∈ Y − f (Z),

{z, f (z)} ∀z ∈ Z.

The gluing X ∪ f Y is the quotient space associated to this partition.
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Figure 1.25 Cell attachment involves gluing on a disk along its boundary; here,
the boundary circle of the blue disk is glued to the red loop on the surface.

For example, Definition 1.5.6 allows us to regard S 1 as obtained by gluing two
copies of [0, 1] along the map that identifies the endpoints. More generally, Defi-
nition 1.5.6 allows us to regard S n as built by gluing two copies of Dn along the
boundary S n−1 = ∂Dn ⊂ Dn.

Now, we will describe an inductive process for constructing a topological space
by repeatedly gluing on disks along their boundaries, as follows (see Figure 1.25).

1. Let X0 be a set of points, given the discrete topology. These are the zero cells.
2. Form X1 by attaching copies of D1 to X0 by gluing them along their boundaries

– that is, we are given the data of continuous maps

fα : ∂D1 = S 0 → X0

(referred to as attaching maps), and for each one we look at the quotient D1∪ fα
X0 of the disjoint union X0

∐
D1 where we identify the points z ∈ S 0 ⊆ D1 and

fα(z) ∈ X0. The intervals glued in during this stage are referred to as 1-cells.
3. Then we repeat, attaching copies of D2 to X1 by gluing them along their bound-

aries – in this case, the data of the attaching maps is given by continuous maps
fβ : S 1 → X1, and we form the corresponding union D2 ∐

f X0. The disks glued
in during this stage are referred to as 2-cells.

4. And so on . . .

Formalizing this, we have the following definition.

Definition 1.5.7. A finite CW complex is a topological space obtained as a finite
union

⋃
i Xi in which each stage Xi is obtained from Xi−1 by gluing on copies of

Di as above. (The topology is the natural quotient topology induced by the gluing,
and is independent of the order in which cells are attached.)

The subspace Xn ⊂ X is referred to as the n-skeleton, and consists of k-cells for
k ≤ n; if there are no cells of dimension larger than m, then the CW complex A is
referred to as m-dimensional. Notice that the essential data of the CW complex is
contained in the number of cells and the attaching maps, and the n-skeleton encodes
all of the attaching data for objects of dimension less than n.



1 Basic Notions of Algebraic Topology 59

Figure 1.26 The circle S 1 can be formed by gluing two intervals along their
boundaries.

Remark 1.5.8. It is also possible to consider an infinite attachment process of
this kind, but the construction of the topology on the infinite union requires some
care.

Example 1.5.9.

1. Any graph can be realized as a CW complex with one 0-cell for each vertex and a 1-cell
for each edge (glued to the relevant vertices).

2. The circle S 1 can be given the structure of a CW complex in which X0 = {0} and X1 is
obtained by the map that attaches [−1, 1] to 0 via the map from {−1, 1} that takes both
points to 0.

3. The circle can also be given many CW structures, as follows: take n 0-cells (points),
where n ≥ 2. Label these points as {x1, . . . , xn}. Then take n 1-cells (intervals) and
attach them sequentially to connect x1, x2, then x2, x3, then xi, xi+1, and finally xn, x1.
(See Figure 1.26.)

4. In general, a sphere can be given a CW structure by taking a single 0-cell and a single
n-cell and gluing the n-cell to the 0-cell along the map that sends the entire boundary to
the point.

5. A torus (the surface of a doughnut) can be given the structure of a CW complex by
taking a single 0-cell, two 1-cells, and a 2-cell. The two 1-cells are glued to the 0-cell
to form a figure-eight, and then the 2-cell is glued to the figure-eight to make the torus.
(See Figure 1.27.)

We now describe two ways to construct new CW complexes out of old that cover
many interesting examples.

Definition 1.5.10. Let X and Y be CW complexes. Then X × Y has the structure
of a CW complex where the cells are the products of the cells of X and Y .



60 Part I Topological Data Analysis

X1

X2

Figure 1.27 The torus can be built up by gluing together two intervals and then a
two-cell to the resulting figure-eight.
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Figure 1.28 The cylinder is the product of a circle and an interval.

To be more explicit, given a cell Dn attached to X along f : S n−1 → X and Dm

attached to Y along g : S m−1 → Y , we can attach a cell Dn+m � Dn × Dm to X × Y
along the map S n+m−1 → X × Y determined by the homeomorphism

S n+m+1 � (Dn × S m−1) ∪ (S n−1 × Dm),

the maps f and g, and the inclusions Dn → X and Dm → Y .

Example 1.5.11.

1. The standard cylinder S 1 × [0, 1] can be given a CW complex structure as the product
of the CW complex S 1 and the CW complex [0, 1]. (See Figure 1.28.)

2. The torus can be given a CW complex structure as the product of the CW complexes
S 1 × S 1.

A subcomplex of a CW complex is just a closed subspace determined by taking
only some of the cells.
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Figure 1.29 Collapsing one of the copies of S 1 inside the cylinder S 1 × [0, 1] to
a point results in a cone.

Definition 1.5.12. Let X be a CW complex and A a subcomplex; then the quotient
X/A has a CW complex structure consisting of the cells of X that are not contained
in A, along with a new 0-cell representing A. (An attaching map γ : S n → X gives
rise to an attaching map γ′ : S n → X → X/A.)

Taking the cylinder from Example 1.5.11 and taking the quotient S 1×[0, 1]/S 1×
{0} gives rise to a model for the CW complex structure on a cone; see Figure 1.29.

There are three essential results about CW complexes that justify focus on these
combinatorial models of spaces.

1. Replacing an attaching map in a CW complex by a homotopic map does not
change the homotopy type.

2. A homotopy equivalence X → Y of CW complexes can be detected alge-
braically in terms of the homotopy groups πn.

3. Any reasonable topological space can be approximated up to homotopy equiv-
alence by a CW complex, and for an arbitrary topological space there is an
approximation up to a weak kind of equivalence. (See Definition 1.6.32 below.)

The first observation tells us that the data of a CW complex is entirely contained
in the homotopy classes of the attaching maps. The second and third observations
imply that if we are working up to homotopy equivalence, CW complexes are
a good model for general spaces and that homotopy equivalence classes can be
studied algebraically. That is, CW complexes provide a class of spaces which are
constructed according to a recipe from basic building blocks and are well suited
to work up to homotopy equivalence. To make the last two observations precise
(notably in Theorem 1.6.31), we need to develop some algebraic background.

The next section, which briefly reviews abstract algebra (notably group the-
ory and ring theory), may be particularly difficult for readers new to the subject.
On a first reading, a quick perusal of Section 1.6.6 for a refresher on linear alge-
bra might suffice; such readers could then skip to Section 1.7, which introduces
ideas from category theory.
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1.6 Algebra

A central goal of algebraic topology is to produce suitable algebraic invariants of
topological spaces to allow us to determine whether two spaces are homeomor-
phic or homotopy equivalent. For example, the function which takes a topological
space to the number of path components is an example of such an invariant; by
Lemma 1.4.12, this invariant can serve to distinguish certain spaces with different
homotopy types.

Early on in the development of the subject, it was recognized that more discrim-
inatory power could be obtained by considering more structured algebraic objects
than numbers as repositories for topological invariants. For example, the set of
path components is a richer invariant than simply its size. The point is that there
are no maps between numbers, but there are maps of sets – and we have seen
in Lemma 1.3.26 that a continuous map of spaces induces a map of sets of path
components.

It turns out that keeping even more algebraic structure leads to invariants that
are computable and very informative. For example, consider the problem of dis-
tinguishing the circle from the figure-eight. Looking at homotopy classes of maps
from S 1, both of these have an infinite number. But in the circle, the homotopy
classes are all “multiples” of the basic one which wraps around once, and in the
figure-eight all of the homotopy classes are built from combinations of the classes
which wrap around one circle or the other. Algebraic invariants provide a way to
make precise the intuitive notion of being “built from” or “generated by” these
basic loops, and therefore let us tell these spaces apart.

In order to describe these algebraic invariants, we now turn to a quick review of
the background from abstract algebra that we need. Again, our treatment is very
terse and selective; we refer the reader to one of the many excellent treatments
of abstract algebra, for example Artin’s Algebra [22] or Lang’s Undergraduate
Algebra [314]. We begin by reviewing the theory of groups.

1.6.1 Groups

A group is a set with the additional structure of an “addition” operation.

Definition 1.6.1. A set G is equipped with the structure of a group if there is a
distinguished element e ∈ G and functions

G ×G → G (g1, g2) �→ g1 +G g2

and

G → G g �→ −g



1 Basic Notions of Algebraic Topology 63

such that

1.

∀x ∈ G, e +G x = x = x +G e,

2.

∀x ∈ G, x +G (−x) = e = (−x) +G x,

3. and

∀x, y, z ∈ G, x +G (y +G z) = (x +G y) +G z.

We will often write g1+g2 rather than g1+G g2 and usually write 0 for e, in analogy
with the notation. We sometimes use “multiplicative” notation and write g1g2 rather
than g1 +G g2, 1 for e, and g−1 for the inverse of g.

Put another way, a group is a set equipped with an “addition” operation that
is associative, has a unit element, and such that every element x ∈ G has an
inverse. The definition of a group is an abstraction of familiar objects from
arithmetic.

Example 1.6.2.

1. The integers Z under the standard addition operation form a group; x +Z y = x + y for
x, y ∈ Z. The unit is 0 ∈ Z, and the inverse of x is −x.

2. The real numbers R under the standard addition operation form a group; x+R y = x+y ∈
R. The unit is 0 ∈ R and the inverse of x is −x.

3. The non-zero real numbers R − {0} under multiplication form a group; the operation is
(x, y) �→ xy for x, y ∈ R − {0}. The unit is 1 ∈ R and the inverse of x is 1

x . (It is the
existence of inverses that requires us to restrict to non-zero reals!)

4. The set of all polynomials in R of degree k in a single variable t,

Pk = {a0 + a1t + . . . + aktk | a0, a1, . . . , ak ∈ R},
is a group under addition of polynomials, i.e.,

(a0 + a1t+ . . .+ aktk)+ (b0 + b1t+ . . .+ bktk) = (a0 + b0)+ (a1 + b1)t+ . . .+ (ak + bk)tk.

The identity element is 0 and the inverse of p(x) is −p(x).
5. The set C(R) of all continuous functions f : R→ R is a group under pointwise addition,

i.e.,

f +C(R) g = ( f + g)(x) = f (x) + g(x).

The identity element is the zero function f (x) = 0 and the inverse of a function f is − f .
6. The set of n × n matrices with real elements Mn(R) is a group under matrix addition.

The unit element is the zero matrix and the inverse of A is the matrix −A.
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7. The set of invertible n × n matrices GLn(R) is a group under matrix multiplication
where the unit element is the identity matrix and the inverse of A is the inverse
matrix A−1.

The example of GLn(R) is particularly interesting, since this group has the
property that the operation is not commutative, i.e., AB � BA in general.

Definition 1.6.3. A group G is abelian if for all x, y ∈ G, we have x+G y = y+G x.

Example 1.6.4. All of the examples above in Example 1.6.2 are abelian except for
GLn(R).

The examples of groups we have discussed above are “numerical.” But histori-
cally, groups arose from symmetries and rigid transformations of physical objects;
for example, the set of rotations of an object in space forms a group. More
abstractly, the symmetries of a finite set form a group.

Example 1.6.5.

1. The set of symmetries of a square is the group generated by two elements r and f ; r is
the counterclockwise rotation and f is the flip across a diagonal. These are subject to
certain relations, as indicated in Figure 1.30; the group has 8 elements. In general, the
dihedral groups Dn describe the symmetries of a regular n-gon in the plane, and have
2n elements.

2. The set of rotations of the unit cube [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3 about the z-axis
is the circle group S 1; we can parametrize the elements as eiθ, with group operation
eiθ1 eiθ2 = ei(θ1+θ2). (See Figure 1.31.)
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Figure 1.30 The rotation and the flip across a diagonal specify two basic sym-
metries of a square. Together these generate a group of order 8, the dihedral
group D4.
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Figure 1.31 There is a natural action of the circle on a cube that rotates the cube
around the z-axis. On the top row, we see some snapshots of this rotation. There
is a natural subgroup isomorphic to Z/4 inside of S 1 determined by rotations by
90◦; the action of this group on the cube is shown on the bottom row.

3. The set of rotations of R3 about the origin forms a group, the special orthogonal group
S O(3). This can be described as the set of orthogonal 3 × 3 matrices (i.e., matrices A
such that A−1 = AT ) with determinant 1. The group operation is matrix multiplication.
The identity is the identity map (i.e., the rotation that leaves everything fixed) and the
inverse of a rotation is the “opposite” rotation.

4. Let S be an ordered set with n elements. The set of permutations of S (i.e., bijective
maps S → S ) forms a group. The identity is the permutation that leaves every element
of S in place, the group operation is given by composition of permutations, and the
inverse of a permutation is the permutation that “undoes” it.

Another important arithmetic example comes from modular arithmetic.

Definition 1.6.6. For x and y in Z, define x = y mod n if x − y = kn, for some
k ∈ Z. The congruence class of x modulo n is a subset of the form

{x + kn | k ∈ Z}.

The classical long division algorithm implies that a congruence class has a
unique smallest nonnegative representative, the remainder r when we write x =
qn + r via long division.

Example 1.6.7. The set of congruence classes modulo n, which we can represent as
{0, 1, 2, . . . , n−1}, forms a group that we denote by Z/n. The identity element is 0, addition
is given by letting the sum of x and y be x+ y mod n, and the inverse of x is n− x mod n.

The preceding example has a special structure; it is a cyclic group, in the sense
that every element other than the identity is generated by sums of a distinguished
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generator, for example 1. The integers Z are an infinite cyclic group, with generator
1. But not all groups are cyclic; for example, SO(3) is very far from being cyclic.

1.6.2 Homomorphisms

A fundamental tenet of modern mathematics is that to understand a collection
of mathematical objects it is essential to understand the maps between them. An
important aspect of this principle is that invariants should “take maps to maps.” We
have already seen this at work in the context of topological spaces and continuous
maps: a continuous map of spaces induces a map between sets of path components.
In Section 1.7, we will describe an abstract framework for formalizing this insight.

In the meantime, we want to describe the correct notion of a map between groups.
Recall that we singled out the class of continuous maps when describing functions
between topological spaces; these were the functions that were suitably compatible
with the topologies of the domain and range. Correspondingly, we are primarily
interested in functions between groups which respect the group structure, in the
sense of the following definition.

Definition 1.6.8. A map f : G1 → G2 is a group homomorphism if

f (0) = 0 and f (x +G1 y) = f (x) +G2 f (y) ∀x, y ∈ G1.

Example 1.6.9.

1. The natural inclusion Z→ R is a group homomorphism.
2. The projection Z→ Z/m specified by the formula

x �→ x mod m

is a group homomorphism.
3. The derivative

d
dt

: Pk → Pk−1

a0 + a1t + a2t2 + . . . + aktk �→ a1 + 2a2t + . . . + kaktk−1

is a group homomorphism.
4. The trace of a square matrix with real entries (the sum of the diagonal elements)

specifies a group homomorphism

Tr : Mn(R)→ R.

Associated to a homomorphism f : G1 → G2 are certain distinguished subsets
of G1 and G2.

Definition 1.6.10. Let f : G1 → G2 be a group homomorphism (Figure 1.32).
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Figure 1.32 The kernel of a homomorphism f is the set of points that go to 0; the
image is the set of points that f hits.

● The kernel of f , ker f ⊆ G1, is the set of elements x such that f (x) = 0.
● The image of f , im f ⊆ G2, is the set of elements y such that y = f (x) for some x.

Generalizing the notion of an isomorphism of sets from Definition 1.1.8, we
have the following version in the context of groups and group homomorphisms.

Definition 1.6.11. A group homomorphism f : G1 → G2 is an isomorphism
if there exists an inverse group homomorphism g : G2 → G1 such that f and g
demonstrate an isomorphism of sets between G1 and G2.

Equivalently, we have the following characterization.

Lemma 1.6.12. Let G1 and G2 be groups. A group homomorphism f : G1 →
G2 is an isomorphism if and only if it is a bijection. As a consequence, f is an
isomorphism if and only if ker f = {0} and im f = G2.

Both ker f and im f are themselves groups, with operations inherited from G1

and G2 respectively. These are subgroups of G1 and G2, as we now explain.

1.6.3 New Groups from Old

Many groups of interest arise via constructions that start from an existing group.
The simplest is to consider subsets of a group that inherit the structure of a group
themselves.

Definition 1.6.13. A subgroup of a group G is a subset H ⊆ G such that H is a
group in its own right with the operation and unit inherited from G. That is,

1. the identity element 0 ∈ G is an element of H,
2. for any h ∈ H, −h is in H, and
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3. for all h1, h2 ∈ H, the sum h1 + h2 is in H.

We have already seen some examples of subgroups.

Example 1.6.14.

1. The special orthogonal group SO(3) is a subgroup of GL3(R).
2. The set {x ∈ Z | x even} is a subgroup of Z under addition.
3. The set Pk of degree at most k polynomials is a subgroup of Pk+1.
4. The set Pk of degree at most k polynomials is a subgroup of C(R).

The following lemma provides many other examples of subgroups.

Lemma 1.6.15. Let f : G1 → G2 be a group homomorphism. Then ker f ⊆ G1 is
a subgroup of G1 and im f ⊆ G2 is a subgroup of G2.

The preceding lemma is a simple exercise in the properties of group homomor-
phisms; for the first part, if f (g1) = 0 and f (g2) = 0, then

f (g1 + g2) = f (g1) + f (g2) = 0 + 0 = 0.

Given a suitable subgroup H ⊂ G, we can “collapse it out” by forming the
quotient group G/H of G by a subgroup H, which is akin to the quotient topology
discussed above in Proposition 1.5.1. The idea is to specify that in G/H all elements
of H are identified. We will define the quotient in the setting of an abelian group
G; when G is not abelian, only certain subgroups permit the construction of the
quotient group.

Definition 1.6.16. Let G be an abelian group and H ⊂ G a subgroup. Then the
quotient group G/H is given by the set of cosets gH = {gh | h ∈ H} as g varies, with
group operation (g1H)(g2H) = (g1g2)H.

(Note that a small check is required to verify that the definition of the quotient
group is independent of choice of coset representative.)

Example 1.6.17. For Z and the subgroup 3Z = {3k | k ∈ Z}, the quotient Z/3Z is
isomorphic to the construction of Z/3 described in Example 1.6.7.

A basic structural property of group homomorphisms can be usefully described
in terms of the quotient group.
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Theorem 1.6.18. Let G1 and G2 be groups and f : G1 → G2 be a group
homomorphism. Then there is an isomorphism

im f � G1/ ker f .

(This is true even if G1 is not abelian; the kernel of a homomorphism allows the
construction of the quotient.)

As an elaboration of this result, we can describe a large class of groups in terms
of generators and relations.

Definition 1.6.19. A group G is finitely generated if there exists a finite set S ⊆ G
such that any g ∈ G can be written as a (finite) sum of elements in S .

For example, any finite group is of course finitely generated. The integers Z
are finitely generated with generator 1. On the other hand, the rationals Q are not
finitely generated. Clearly, a finitely generated group must be countable; therefore,
R is not finitely generated.

Definition 1.6.20. A group is free if there exists a collection of elements {gα}
(called the generators) such that every element g ∈ G can be uniquely written as a
finite sum ∑

i

nigαi

for ni ∈ Z.

Free groups are easy to work with because group homomorphisms F → G,
where F is free, can be described simply as set maps from the generators of F to
G. That is, to specify such a group homomorphism f , it suffices to give the data of
where each generator lands in G,

f

⎛⎜⎜⎜⎜⎜⎝∑
i

nigαi

⎞⎟⎟⎟⎟⎟⎠ =∑
i

ni f (gαi).

Theorem 1.6.21. Any finitely generated group G is isomorphic to the quotient of
a free group by a subgroup described by specifying products of generators that are
equal to 1.

We refer to the generators of the free group as the generators of G and the prod-
ucts describing the subgroup as the relations of G. From an algorithmic perspective,
a presentation of a group in terms of generators and relations is essential.
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Example 1.6.22.

1. The integers Z can be represented as having the identity element 0, a single generator 1,
and no relations. Here the element −1 must exist and is distinct from 1, and in general
we have a description as

Z � {. . . ,−1 + (−1) + (−1),−1 + (−1),−1, 0, 1, 1 + 1, 1 + 1 + 1, . . .}.
2. The cyclic group Z/3 is the quotient of the free group Z by the subgroup of relations
{3k | k ∈ Z}. Another way to express this is that Z/3 can be described as having an
identity element, a single generator g, and the single relation g3 = 1. Then explicitly
this representation describes Z/3 as the set {1, g, g2} with the usual multiplication of
polynomials as the group operation; g−1 = g2, since (g)(g2) = g3 = 1.

Remark 1.6.23. Note that an interesting problem arises in this context, namely,
the problem of deciding when two “words” representing group elements are equal.
For instance, in the group with generator {x} and relation x4 = 1, one might ask
whether x8 and x16 are the same. This is known as the word problem for a group,
and it is an important classical result that this is undecidable. That is, there does not
exist any algorithm (computer program) to solve this problem in general! This hard-
ness result is the core of many demonstrations that certain mathematical questions
are undecidable.

However, for our purposes it will suffice to consider free abelian groups. A free
abelian group with one generator is an infinite cyclic group and is isomorphic to
Z. In order to describe free groups with more generators, we need the notion of a
product.

Definition 1.6.24. Let G1 and G2 be groups (not necessarily abelian). Then the
Cartesian product G1 ×G2 denotes the group structure on the Cartesian product of
sets with identity element (0G1 , 0G2 ), operation

(g1, g2) + (g′1, g
′
2) = (g1 + g′1, g2 + g′2),

and the inverse of (g1, g2) is (−g1,−g2).

Lemma 1.6.25. A free abelian group with k generators is isomorphic to a product
of k copies of Z: one copy of Z for each generator.

In this case, any finitely generated abelian group G is isomorphic to a quotient
Zn/H, for a subgroup H ∈ Zn; here n is the size of a set S of generators. More pre-
cisely, we have the following fundamental characterization, the structure theorem
for finitely generated abelian groups.
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Theorem 1.6.26. Let G be a finitely generated abelian group. Then there is an
isomorphism

G � Z × Z × . . .Z︸����������︷︷����������︸
k

×Z/pn1
1 × Z/pn2

2 × . . . × Z/pnm
m .

Here the pi are prime and not necessarily distinct.

The number k of factors of Z is known as the rank of G. The part of G that does
not consist of copies of Z is often referred to as the torsion. The rank is unique and
the torsion is unique up to rearrangement.

1.6.4 The Group Structure on πn(X, x)

We now return to justify referring to the homotopy groups πn(X, x) (from Defini-
tion 1.4.10) as groups. Specifically, we explain the following theorem.

Theorem 1.6.27. When n > 0, the set of homotopy classes of maps

πn(X, x) = {(S n, ∗), (X, x)}
can be given the structure of a group, where the identity element is the constant
map and the composition is given by “composing” maps.

We begin by considering the case of π1(X, x). Given two loops γ1, γ2 : S 1 → X,
we can produce a new loop as follows. Regard the maps γ1 and γ2 as paths (maps
from [0, 1] to X) such that

γ1(0) = γ2(0) = γ1(1) = γ2(1) = x.

Then define γ1γ2 : [0, 1]→ X to be the loop specified by the formula

(γ1γ2)(t) =

⎧⎪⎪⎨⎪⎪⎩γ1(2t) 0 ≤ t < 1
2 ,

γ2(2t − 1) 1
2 ≤ t ≤ 1.

That is, we reparameterize and do γ1 on the first half of the interval and γ2 on the
second half of the interval (see Figure 1.33). Since γ1(0) = γ2(1) = x, this defines
a map S 1 → X.

Note that the composition we have just defined is not associative prior to passing
to homotopy classes of maps; that is, (γ1γ2)γ3 is not the same map as γ1(γ2γ3).
Specifically, given γ1, γ2, γ3 : S 1 → X, (γ1γ2)γ3 does γ1 on [0, 1

4 ), γ2 on [ 1
4 ,

1
2 )

and γ3 on [ 1
2 , 1] whereas γ1(γ2γ3) does γ1 on [0, 1

2 ), γ2 on [ 1
2 ,

3
4 ), and γ3 on [ 3

4 , 1].
However, there is a natural straight-line homotopy connecting (γ1γ2)γ3 to γ1(γ2γ3);
see Figure 1.34.
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1

1/2

0

X

γ0

γ1

γ0

γ1

γ0+ γ1

γ1

γ0

γ1

γ0

Figure 1.33 Two loops γ0 and γ1 are added by reparameterizing, doing γ0 on
[0, 1

2 ) and γ1 on [ 1
2 , 1].

Figure 1.34 A linear homotopy connects the two associativity parameterizations.

Analogously, we define the inverse of γ : S 1 → X to be the loop traversed in the
opposite direction:

γ−1(t) = γ(1 − t).

Once again, note that γγ−1 is not equal to the constant map until we pass to homo-
topy classes of maps; there is a homotopy connecting γγ−1 to the constant map that
takes all of S 1 to x.

Generalizing this, we can put a group structure on πn(X, x) for n > 1 as follows.
We regard maps from S n → X as maps from [0, 1]n → X which take the boundary
of [0, 1]n to x and again compose by reparametrizing. We have choices about how
to reparameterize; fixing an index 1 ≤ i ≤ n, we define

γ1γ2(x1, x2, . . . , xn) =

⎧⎪⎪⎨⎪⎪⎩γ1(x1, x2, . . . , 2xi, . . . , xn) xi ∈ [0, 1
2 )

γ1(x1, x2, . . . , 2xi − 1, . . . , xn) xi ∈ [ 1
2 , 1].

(See Figure 1.35.)
Once again, there is a homotopy that makes this associative. In fact, for n > 1,

we have the following improvement of Theorem 1.6.27.

Theorem 1.6.28. For n > 1, the homotopy group πn(X, x) is abelian.
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X X

Y1

Y0

Y0+Y1

Figure 1.35 Two maps from spheres γ0 and γ1 are added by reparameterizing,
doing γ0 on the upper square and γ1 on the lower square.

1 2

γ2 γ2

γ1 γ1γ2

γ1

γ2

γ1

3 4

Figure 1.36 The commutativity homotopy involves moving two squares past each
other. Here the unlabeled squares are sent to the basepoint.

A picture of the commutativity homotopy that proves Theorem 1.6.28 is shown
in Figure 1.36.

Given a continuous map f : X → Y , composition defines a map

πn(X, x)→ πn(Y, f (x))

via

γ : S 1 → X �→ ( f ◦ γ) : S 1 → X → Y.

In fact, this map specifies a group homomorphism when n > 0.

Lemma 1.6.29. Let f : X → Y be a continuous map of spaces. There are induced
group homomorphisms for n > 0

πn(X, x)→ πn(Y, f (x)).

The importance of the homotopy groups as algebraic invariants is provided by
the following two theorems. First, homotopy groups are invariants of the homotopy
type.

Proposition 1.6.30. Let f : X → Y be a homotopy equivalence. Then the induced
group homomorphism

πn(X, x)→ πn(Y, f (x))

is an isomorphism.
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Although the converse to this is not in general true, we have the following basic
result.

Theorem 1.6.31 (Whitehead). Let f : X → Y be a continuous map of CW com-
plexes such that the induced maps πn(X, x) → πn(Y, f (x)) are isomorphisms for
every n ≥ 0 and x ∈ X. Then f is a homotopy equivalence between X and Y.

We say that a map f that induces isomorphisms of homotopy groups as in
Theorem 1.6.31 is a weak homotopy equivalence.

Definition 1.6.32. Let f : X → Y be a continuous map of topological spaces.
Then f is a weak homotopy equivalence (or weak equivalence) if the induced group
homomorphisms

πn(X, x)→ πn(Y, f (x))

are isomorphisms for every n ≥ 0 and x ∈ X.

This is a central definition in modern algebraic topology. Moreover, it turns out
that any topological space X is weakly homotopy equivalent to a CW complex.
(Warning: note that not every space is homotopy equivalent to a CW complex. For
example, the sequence { 1n } along with its limit point 0 is not homotopy equivalent
to a CW complex. See also discussion of the “long line”, e.g., in [369, §10].)

Weak homotopy equivalence is not an equivalence relation on spaces, but we
work with the transitive closure, which is the smallest equivalence relation it
generates.

Definition 1.6.33. We will refer to the equivalence class of a space under the
relation of weak homotopy equivalence as its weak homotopy type.

We now have a number of different equivalence relations on topological spaces.
These relations are progressively weaker – the relationship between them can be
summarized as follows.

1. If two spaces X and Y are homeomorphic, then they are homotopy equivalent.
2. If two spaces X and Y are homotopy equivalent, then they are weakly homotopy

equivalent.

Theorem 1.6.31 shows that for CW complexes, the latter two equivalence rela-
tions coincide. In contrast, determining when a homotopy equivalence is even
homotopic to a homeomorphism is quite difficult; a restricted version of this
problem is the subject of surgery theory.
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Although homotopy groups are easy to define and the Whitehead theorem
implies that they are complete invariants of the homotopy type of a CW complex
(in the presence of a continuous map), the best known algorithms for computing
them in general are intractable. As a consequence, we are led to search for alge-
braic invariants which are rich enough to distinguish a wide class of spaces but can
be easily computed.

1.6.5 Rings and Fields

We return to the basic examples of the abelian groups (Z,+, 0) and (R,+, 0), the
integers and the real numbers with group operation given by addition. These groups
have additional structure, namely a second operation – multiplication. Moreover,
multiplication interacts nicely with addition, for example, the distributive property
tells us that x(y + z) = xy + xz.

Definition 1.6.34. A ring is a set R that has an abelian group structure (with
operation denoted by + and identity by 0) along with a distinguished element 1 ∈ R
and an additional operation

R × R→ R (x, y) �→ xy

such that

∀x ∈ G, 1x = x = x1,

and

x(yz) = x(yz).

In addition, we require that the new operation satisfy the distributive law with
respect to the abelian group structure:

x(y + z) = xy + xz.

(x + y)z = xz + yz.

A ring has both an additive identity element (typically written 0) and a multiplica-
tive identity element (typically written 1). A multiplicative inverse for an element
x ∈ R is an element y such that xy = 1; typically we write x−1 for the multiplicative
inverse. An element x ∈ R that has a multiplicative inverse is called a unit. Not all
elements of a ring have multiplicative inverses.

Definition 1.6.35. A field F is a ring such that for all x ∈ R such that x � 0
(where 0 denotes the additive identity), x has a multiplicative inverse x−1 such that
xx−1 = x−1x = 1.
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Example 1.6.36.

1. The integers Z with addition and multiplication form a ring, but not a field as there is
no multiplicative inverse for any x � ±1.

2. The rational numbers Q with addition and multiplication form a ring and in fact a field;
the inverse of p

q is q
p , which is well defined as long as p � 0.

3. The set of congruence classes Z/m forms a ring, where multiplication is also computed
by taking the remainder of xy when divided by m. When m is prime, this is in fact a
field; the inverse can be computed using the long division algorithm. The fields Z/p are
referred to as finite fields of order p.

In addition to R, the most important fields for our purposes are the rational num-
bers Q and the finite fields Z/p (which are often denoted Fp). For any field F, we
can consider a vector space with F as the scalars. Although we assume that the
reader has some familiarity with linear algebra in the context of the fields R and C,
we quickly review linear algebra from a more abstract perspective.

1.6.6 Vector Spaces and Linear Algebra

Linear algebra studies the geometric structure of solutions to systems of linear
equations; these turn out to form lines and (hyper)planes. It is a central example
of the power of using algebraic structures to encode geometry. There are an enor-
mous number of textbooks on linear algebra. For an abstract treatment, Axler’s
book [24] is very clearly written. For applications, Meyer’s book is an excellent
introduction [349].

The basic object in linear algebra is the vector space, which is an abstraction of
some parts of the structure of Euclidean space.

Definition 1.6.37. Let F be a field. An F-vector space is an abelian group V with
an additional operation called scalar multiplication

F × V → V (x, v) �→ xv

that is

1. associative, x1(x2v) = (x1x2)v,
2. distributive with respect to addition in F, (x1 + x2)v = x1v + x2v,
3. distributive with respect to the group operation in V , x(v1 + v2) = xv1 + xv2,

and
4. compatible with the multiplicative unit in F, 1v = v.

We call the elements of V vectors.
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Example 1.6.38.

1. The field F itself gives a first example of a vector space.
2. The set {0} is a vector space.
3. When F = R, familiar examples of vector spaces are given by Rn, where R acts by

multiplication in each component.
4. More generally, for any field F, the product Fn =

∏n
i=1 F of n copies of F is a vector

space where F acts by componentwise multiplication.

Other basic examples of vector spaces are given by subspaces.

Definition 1.6.39. A subspace W of a vector space V is a subgroup such that
kw ∈ W for all k ∈ F,w ∈ W. (That is, W is closed under addition in V and scalar
multiplication.)

Vector spaces can sometimes be decomposed into pieces by subspaces.

Definition 1.6.40. Let U and W be subspaces of the vector space V . If U ∩W =
{0}, the direct sum U ⊕W is defined to be the collection

U ⊕W = {u + w | u ∈ U,w ∈ W}.

More generally, given two vector spaces V1 and V2 we can define the external
direct sum V1 ⊕ V2 to consist of pairs (v1, v2) for v1 ∈ V1 and v2 ∈ V2, with the
operations defined coordinatewise. Then regarding V1 and V2 as subspaces of V1 ⊕
V2 (via {(v1, 0)} and {(0, v2)}, respectively), V1 ⊕ V2 arises as their direct sum as in
Definition 1.6.40.

Although a priori it appears that subspaces could take on many forms, in fact, it
turns out that all examples of finite-dimensional vector spaces look like the exam-
ples in 1.6.38. For example, the subspaces ofR2 are {0},R2 itself, and lines that pass
through the origin. Each such line looks like a copy of R. Similarly, the subspaces
of R3 are {0}, lines through the origin (which look like R), planes through the origin
(which look like R2), and R3 itself. To be precise about this fact, we need the notion
of a basis, which generalizes the idea of the coordinate axes in Euclidean space.

Definition 1.6.41. Let V be a vector space. For a subset B = {b1, b2, . . . , bn} ⊆ V ,

1. B spans V if any vector z ∈ V can be written as a sum

z =
n∑

i=1

aibi, ai ∈ F,

i.e., any vector admits a representation as a weighted sum of basis elements,
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2. the set B is linearly independent if the only solution to the equation

n∑
i=1

aibi = 0

is ai = 0 for all i, and
3. B is a basis for a vector space V if it spans and is linearly independent.

Linear independence is a way of saying that a set of vectors has no redundancy,
in the following sense.

Lemma 1.6.42. The set B is linearly independent if and only if when z ∈ V can
be written as a sum

z =
n∑

i=1

aibi,

then this representation is unique, i.e., the values {ai} are unique.

Example 1.6.43.

1. In R2, the standard unit vectors along the axes (1, 0) and (0, 1) form a basis.
2. In R2, the vectors (3, 4) and (−1, 1) form a basis. In fact, any two non-collinear vectors

form a basis. (See Figure 1.37 and Figure 1.38 for an example.)
3. In R3, any three vectors that do not all lie in the same plane form a basis.
4. More generally, in Rn, any n vectors that do not all lie in the same hyperplane (i.e.,

subspace of strictly smaller dimension) form a basis.

b1 b1

b2

b2

(1,0)

(0,1)

b1 + 3/2 b2

(2, 3/2) (2, 3/2)

(1,0)

(1,1)

1/2

Figure 1.37 Any vector in R2 can be written uniquely as a linear combination
a1v1 + a2v2 as long as v1 and v2 do not lie on the same line. We illustrate this for
the vector (2,3/2).
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Figure 1.38 Any two-dimensional subspace of R3 is a plane; two vectors that
specify the plane provide a basis.

By providing coordinates for describing points in vector spaces, bases are essen-
tial for calculation. They also give rise to the notion of dimension of a vector
space.

Proposition 1.6.44. Any basis for a vector space V has the same size.

In light of the preceding proposition, the following definition makes sense.

Definition 1.6.45. The dimension of a vector space V is the size of a basis.

In fact, the dimension is a complete invariant of finite-dimensional vector spaces.
To be precise, we need to define the notion of a map between vector spaces.

Definition 1.6.46. Let V and W be vector spaces. A linear transformation
f : V → W is a map of sets such that

f (ax + by) = a f (x) + b f (y).

That is, a linear transformation is a group homomorphism that preserves scalar
multiplication.

The kernel and image of a linear transformation f : V1 → V2 are subgroups of
V1 and V2 respectively. In fact, they are vector spaces themselves.

Lemma 1.6.47. Let f : V1 → V2 be a linear transformation. Then ker f is a
subspace of V1 and im f is a subspace of V2.

One of the appealing things about linear transformations is that they can be
expressed in a concise and algorithmically tractable way. Since a vector space is
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the set of linear combinations of basis elements, a linear transformation can be
specified simply in terms of its action on the basis. Put another way, linear trans-
formations can be specified by matrices; the ith column of the matrix describes the
effect of the linear transformation applied to the basis vector bi.

Definition 1.6.48. A linear transformation f : V → W is an isomorphism if it
is injective and surjective, or equivalently if there is an inverse transformation
g : W → V such that g ◦ f = idV and f ◦ g = idW .

Theorem 1.6.49. Any vector space of dimension n is isomorphic to Fn.

The homotopy groups πn(X, x) are groups that are very hard to compute. The
basic topological invariants that will be our algorithmic focus take values in vector
spaces; the fact that a linear transformation can be specified by a matrix will ensure
that computation is tractable. Before we introduce these invariants, we will have a
brief interlude about category theory, which provides a formal context to describe
the invariants.

1.7 Category Theory

The basic topological invariants we study are functions that take as input topolog-
ical spaces (represented by CW complexes or simplicial complexes) and output
finitely generated abelian groups or vector spaces:{

finite
simplicial complexes

}
→

{
abelian
groups

}
.

However, these invariants are better than functions, as they turn out to have an
additional essential property: they take continuous maps between spaces to group
homomorphisms. We have already seen an example of this in Lemma 1.6.29, which
states that a continuous map f : X → Y induces a group homomorphism πk(X, x)→
πk(Y, f (x)). Formalizing this property of algebraic invariants was one of the original
motivations for the invention of category theory.

Category theory provides a language for capturing common phenomena in differ-
ent domains. For example, the notion of an isomorphism has appeared in a variety
of different contexts in this chapter. A motivating idea at the core of the develop-
ment of category theory is the notion that properties of mathematical objects (e.g.,
topological spaces) can often be characterized entirely in terms of maps from other
objects. We have seen this philosophy at work already in our discussion of homo-
topy groups. Properties that can be expressed purely in terms of such data are often
referred to as formal; a common slogan is that category theory is a way to make
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formal things formal. We give a very brief overview of category theory; the clas-
sic text is Mac Lane [337]. Riehl has written two excellent recent books, [428]
which is a more elementary introduction and [427] which is an in-depth discussion
from the perspective of algebraic topology. Spivak’s book [480] strives to provide
context for categorical notions in applications.

Definition 1.7.1. A category C is a collection of objects ob(C) and for each pair of
objects x, y ∈ ob(C) a set of morphisms or maps HomC(x, y) satisfying the following
conditions.

1. For all objects w, x, y ∈ C, there is a composition map

HomC(x, y) × HomC(w, x)→ HomC(w, y)

that takes the morphisms f : w → x and g : x → y to the composite morphism
g ◦ f : w→ y.

2. There is a distinguished element idx ∈ HomC(x, x), the identity map.
3. Composition is associative and unital. Associativity means that given f ∈

Hom(w, x), g ∈ Hom(x, y), and h ∈ Hom(y, z), we have the equality of
composites

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

Unitality means that

idx ◦ f = f = f ◦ idw.

The composition map is written in the “backwards” order above in order to align
with the standard notation for composition, i.e. (g ◦ f )(−) = g( f (−)).

Remark 1.7.2. The sophisticated reader will notice that we are being incautious
about set theory and using the somewhat vague term “collection”; as we discussed
in Section 1.1, Russell’s paradox tells us that there is no “set of all sets,” and so
there cannot be a set of objects for the category of sets. We refer the reader to the
category theory references for more discussion of this point.

We have many familiar examples of categories underlying the notions we have
already seen.

Example 1.7.3.

1. The category Set with objects sets and morphisms maps of sets.
2. The category Grp with objects groups and morphisms homomorphisms.
3. The category Vect with objects vector spaces and morphisms linear transformations.
4. The category Top with objects topological spaces and morphisms continuous maps.
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5. The category Met of metric spaces and metric maps (i.e., maps f : X → Y such that
∂Y ( f (x1), f (x2)) ≤ ∂X(x1, x2)).

6. The category Ho(Top) with objects topological spaces and morphisms homotopy classes
of continuous maps.

7. A partially ordered set forms a category. For example, N is a category with objects the
elements of N and a morphism between x and y if x ≤ y.

Moreover, for any category we can obtain new categories by taking subsets of
the collection of objects and morphisms.

Definition 1.7.4. A category D is a subcategory of a category C if each object of
D is an object of C and for every x, y ∈ ob(D), we have

HomD(x, y) ⊆ HomC(x, y).

When we have equality in the previous inclusion, D is called a full subcategory
of C.

Example 1.7.5.

1. The category Ab with objects abelian groups and morphisms homomorphisms is a full
subcategory of Grp.

2. The category of finite dimensional vector spaces and linear transformations is a full
subcategory of Vect.

3. The category of topological spaces and morphisms the homeomorphisms is a subcate-
gory of Top, although it is not full.

In any category, there is an intrinsic notion of two things being “the same” that
comes directly from the data of the category.

Definition 1.7.6. Let C be a category. A map f ∈ HomC(x, y) is an isomorphism
if there exists g ∈ HomC(y, x) such that

f ◦ g = idy ∈ HomC(y, y) and g ◦ f = idx ∈ HomC(x, x).

The notion of a categorical isomorphism encompasses all of the definitions we
have seen so far.

Example 1.7.7.

1. In Set, an isomorphism is an isomorphism of sets (as defined in Definition 1.1.8).
2. In Grp, an isomorphism is an isomorphism of groups (as defined in Definition 1.6.11).
3. In Vect, an isomorphism is an isomorphism of vector spaces (as defined in Defini-

tion 1.6.48).
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4. In Top, an isomorphism is a homeomorphism (as defined in Definition 1.3.27).
5. In Ho(Top), an isomorphism is the equivalence class of a homotopy equivalence (as

defined in Definition 1.4.3).

Since the only properties we can express in a category are described in terms of
morphisms and the result of composing morphisms, the notion of a commutative
diagram is of basic importance. A commutative diagram refers to a collection of
objects and morphisms such that any morphisms between two objects coincide. For
example, in the commutative square

A
f

h

B

g

C
i

D

we are expressing the compatibility requirement that g ◦ f = i ◦ h as a morphism
in HomC(A,D).

The structure of the category itself can encode many interesting properties of
objects; we now give some examples.

Definition 1.7.8. An initial object in a category is an object c such that HomC(c, z)
consists of a single point for any z. That is, there is a unique morphism from c to
any other object.

Dually, a terminal object is an object d such that HomC(z, d) consists of a single
point for any z.

These notions are not necessarily unique, although they are unique up to
isomorphism, i.e., any two initial or terminal objects are isomorphic.

Example 1.7.9.

1. In Set, the initial object is the empty set ∅ and any one-point set is a terminal object. We
will denote a choice of terminal object by ∗.

2. In Grp the initial object is the trivial group and the terminal object is also the trivial
group.

3. In Top the initial object is ∅ and the one-point space is a terminal object. We will again
denote a choice of terminal object by ∗.

The point here (no pun intended) is that the special properties of the one-point
set or the one-point space can be expressed in a way which generalizes to any
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category; the properties can be expressed solely in terms of data about maps to and
from other objects.

Moreover, commutative diagrams allow us to succinctly express algebraic prop-
erties. For instance, a group is an object G in the category Set along with a
morphism m : G × G → G, a morphism u : ∗ → G, and a morphism i : G → G
such that the following holds.

1. The diagram

G×G×G
m×id

id×m

G×G

m

G×G m G.

commutes; this expresses associativity.
2. The diagrams

G
id×u

id

G×G

m

G

and

G
u×id

id

G×G

m

G

commute; this expresses the property of the identity element.
3. The diagrams

G
Δ

u

G×G

id×i

G G×G
m
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and

G
Δ

u

G×G

i×id

G G×G
m

commute, where Δ : G → G×G is the diagonal map specified by the assignment
x �→ (x, x) and u : G → G is the composite G → ∗ → G specified by the unique
map G → ∗ and the unit map u : ∗ → G. These diagrams express the property
of the inverse.

We can also describe gluing constructions (e.g., the attaching of cells in
Definition 1.5.6) purely in terms of categorical data. Suppose that we have a
diagram

A
f

g

B

C

in some category C. Explicitly, this means that

1. A, B, and C are objects in the category C,
2. f is an element of HomC(A, B) and g is an element of HomC(A,C).

We will refer to the data of this diagram as D. We now want to explain how to give
a general construction of an object that is produced by “gluing” B to C along A.

To motivate the abstract definition, it is instructive to consider how to describe
such a construction. Within category theory, the only way we can express the prop-
erties of such a gluing is to talk about morphisms either into or out of it, i.e., to talk
about the gluing in terms of its relationship to other objects. Let us consider how to
specify a map out of the gluing of B and C along A, to some other object X. Such
a map should be determined by maps

B→ X and C → X

that agree on the image of A → B and A → C. Moreover, we would like
the gluing to be the “smallest” such object. We can make all of this precise as
follows.
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Definition 1.7.10. The pushout of D is an object P equipped with morphisms
p1 : B→ P and p2 : C → P such that the square

A
f

g

B

p1

C
p2

P

commutes, and for any pair of morphisms a : B → X and b : C → X such that
a ◦ f = b ◦ f there is a unique morphism h : P→ X such that the diagram

A
f

g

B

p1

a
C

p2

b

P

h

X

commutes.

The requirement that for any maps a and b there is a map h : P → X enforces
the condition that P be the smallest candidate, up to isomorphism; if there were
another object P′ that satisfied the same property as P, then P would map to P′ and
P′ would map to P and by the uniqueness of the induced mappings P and P′ would
be isomorphic.

Example 1.7.11.

1. In Set, the pushout of the maps ∅ → {0, 1, 2} and ∅ → {7, 8, 9} is the set {0, 1, 2, 7, 8, 9}.
2. More generally, the pushout in Set of the maps ∅ → B and ∅ → C is the disjoint union

of B and C, i.e., the set consisting of all the elements of B and C.
3. In Set, the pushout of the maps

f : {0, 1} → {3, 4, 5} f (0) = 3, f (1) = 4

and

g : {0, 1} → {a, b, c} g(0) = g(1) = a

is the union of {3, 4, 5} and {a, b, c} with a identified with 3 and 4.
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4. More generally, the pushout in Set of maps A → B and A → C is the set specified by
taking the disjoint union of B and C and identifying f (a) and g(a).

As a set, the pushout in the category of topological spaces is described by the
pushout in sets. However, we need to specify the topology on this identification.
We have already seen how to perform this kind of construction in our discussion of
the quotient topology.

Example 1.7.12. Let f : A → B be a continuous map of topological spaces. The
pushout of the diagram

A
f

B

∗

where A → ∗ is the unique map taking all of A to ∗, is the quotient space generated by the
partition of B given by {b} for b ∈ B− f (A) and f (A). That is, the pushout is isomorphic to
the quotient B/ f (A).

Example 1.7.13. Let B be a cylinder S 1 × [0, 1], C a point ∗, and A be the circle
S 1. Take f : A → B to be the inclusion S 1 → S 1 × [0, 1] specified by x �→ (x, 0)
and g : A → ∗ to be the unique map taking all x ∈ S 1 to the point ∗. Then the
pushout

S1

g

f
S1×[0,1]

∗ (S1×[0,1])/S1

is a cone (see Figure 1.39).

The description of the quotient topology in terms of the pushout gives rise to the
following interesting characterization.

Corollary 1.7.14. Let f : A → B be a continuous map of topological spaces. A
map from the quotient space B/ f (A) → X is determined by a map B → X which
takes all of A to a point.

More generally, we use the quotient topology to describe the pushout in
topological spaces.
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Figure 1.39 The cone can be formed by collapsing one end of a cylinder to a
point.

Figure 1.40 Gluing along a common subspace.

Example 1.7.15. The pushout of f : A→ B and g : A→ C is the quotient of the disjoint
union B

∐
C given by identifying the points f (a) and g(a) for each a ∈ A. For example, if

f and g are injective, we look at the partition of B
∐

C given by the points in B \ f (A), the
points in C \ g(A), and all subsets of the form { f (a), g(a)} for a ∈ A.

As this last example suggests, the gluing in CW complexes can also be described
in terms of pushouts (Figure 1.40). Specifically, the constructions Dn ∐

f Xi arising
in the description of CW complexes (in Definition 1.5.7) are precisely pushouts.
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Example 1.7.16.

1. Let B and C be the subspaces of R3 defined as

B = {(x, y, z) | x2 + y2 + z2 = 1, z ≥ 0}

and

C = {(x, y, z) | x2 + y2 + z2 = 1, z ≤ 0},

and let A be the circle

{(x, y, 0) | x2 + y2 = 1}.

Take f : A → B and g : A → C to be the evident inclusions. Then the pushout is
precisely the unit sphere

S 2 = {(x, y, z) | x2 + y2 + z2 = 1}.

2. More generally, we have the following pushout diagram

Sn−1 Dn

Dn Sn

3. We can do the same kind of construction with solid disks and hemispheres; see
Figure 1.41.

Figure 1.41 The solid sphere can be represented as the pushout of two hemi-
spheres along a shared bounding disk.
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1.7.1 Functors

For our purposes, perhaps the most important definition from category theory is the
notion of a function between categories, called a functor. The topological invari-
ants we study will all be functors from geometric categories to algebraic ones,
for example, the function that assigns the set of path components to a topological
space X.

Definition 1.7.17. Let C and D be categories. A functor F : C → D is specified
by

1. a function

F : ob(C)→ ob(D),

2. for all x, y ∈ ob(C) a function

F : HomC(x, y)→ HomD(Fx, Fy)

such that F(idx) = idFx (the maps preserve the identity) and Fg◦F f = F(g◦ f )
(the maps are compatible with the composition).

We can reinterpret and strengthen Lemma 1.3.26 in this language.

Lemma 1.7.18. The assignment of path components is a functor from the
category Top to the category Set.

Functorial constructions are ubiquitous in mathematics.

1. The functor Grp → Set that forgets the group structure is an example of a
forgetful functor.

2. The functor Set → Grp that takes a set to the free group on generators the
elements of the set is a functor.

3. The functor Top→ Ho(Top) that takes each space to itself and each continuous
map to its homotopy class is a functor.

4. The assignment of a vector space to its double dual and each linear transfor-
mation to its double dual transformation is a functor from Vect to itself. (The
assignment of a vector space to its dual reverses the direction of the arrows, and
specifies what is known as a contravariant functor.)

In the language of this section, we can now describe algebraic topology as the
study of functors from Top to an algebraic category (e.g., Grp or Vect). For exam-
ple, let Top∗ be the category of based spaces, i.e., the objects are pairs (X, x) of a
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topological space and a “basepoint” x ∈ X and a morphism (X, x)→ (Y, y) is a con-
tinuous map f : X → Y such that f (x) = y. Then Lemma 1.6.29 can be interpreted
and strengthened as the following assertion.

Lemma 1.7.19. For n > 0, the construction πn(X, x) specifies a functor from Top∗
to Grp.

All of the invariants we study will be functorial, and in fact we will see that the
functoriality of our invariants is one of the essential facts that ensures their good
properties in algorithmic contexts.

Remark 1.7.20. Correspondingly, one might hope to cast a certain amount of
molecular biology as the study of suitable functors from genotype to phenotype.
Here the initial problem of setting up categories of genotype and phenotype, where
for instance morphisms might represent mutation and certain physical changes, is
of basic interest.

The final notion we need from category theory is the idea of a natural
transformation; this is a map between functors.

Definition 1.7.21. Let F and G be functors from C to D. A natural transformation
τ : F → G is specified by:

1. a map τx : F(x)→ G(x) for every object x ∈ ob(C), and
2. commuting squares

F(x)

τx

F(y)

τy

G(x) G(y)

for every morphism x→ y in HomC(x, y).

Example 1.7.22.

1. The most important example for us comes in the context of functors N → C, for a
category C. A functor F : N→ C is specified by a sequence

F(0)→ F(1)→ F(2)→ . . . ,
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and so a natural transformation τ : F → G is determined by the commuting diagrams

F(0)

τ0

F(1)

τ1

F(2)

τ2

. . .

G(0) G(1) G(2) . . .

2. For any category C and object x ∈ ob(C), there is a functor

hom(x,−) : C → Set

that takes an object y to the set of maps Hom(x, y) and a map f : y1 → y2 to the map
Hom(x, y1) → Hom(x, y2) induced by composition with f . Now, for any pair of func-
tors hom(x1,−) and hom(x2,−), any map x2 → x1 induces a natural transformation
hom(x1,−)→ hom(x2,−). (This is a version of the Yoneda lemma.)

1.8 Simplicial Complexes

Our most basic model of a geometric object is a topological space, which we
introduced in Section 1.3. Topological spaces are too general to be feasible for algo-
rithmic purposes, however. In Section 1.5, we introduced CW complexes, which
are a more restrictive notion of a topological space; this data is a recipe for build-
ing a space from spheres and disks. Although CW complexes are an incredibly
useful notion in modern algebraic topology, they are still not concise enough for
algorithmic purposes. The issue is that describing the data of an attaching map
f : S n → Xn in general requires an infinite amount of information. That is, despite
the fact that there are a limited number of building blocks, the instructions about
how to glue them together are not simple enough.

We now describe an older model of topological spaces, the category of simplicial
complexes, that is entirely discrete: here a space will be specified by gluing simple
pieces together in a very small number of ways. As long as we are willing to work
up to homotopy equivalence or weak homotopy equivalence, it will turn out that
this is a general model of topological spaces. Our treatment follows the fantastic
introduction given in [368].

Simplicial complexes are generalizations of graphs. And in this guise, there are
many examples of simplicial complexes that are studied by systems biologists. For
example, any of the networks that are described as graphs (e.g., protein interac-
tion networks, regulatory networks, ecological interaction networks) are simplicial
complexes. Thus, in a precise sense the theory we are developing here is a way to
talk about higher dimensional networks.

Suppose that we are given points {x0, . . . , xk} in Rn. We will assume that
these points satisfy the condition that the set of vectors in Rn represented by the
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differences

{x1 − x0, x2 − x0, . . . , xk − x0}
are linearly independent. For example, a set {x0, x1, x2} will satisfy this condition if
the points do not all lie on the same line.

Definition 1.8.1. The k-simplex spanned by the points {x0, . . . , xk} is the set of all
points

z =
k∑

i=0

aixi,

k∑
i=0

ai = 1.

For a given z, we refer to ai as the ith barycentric coordinate.

Example 1.8.2.

1. A 0-simplex is a point.
2. A 1-simplex is a line segment (with endpoints the points x0 and x1).
3. A 2-simplex is a triangle with vertices the points {x0, x1, x2}.
(See Figure 1.42 for examples of geometric simplices.)

The simplices are the basic building blocks for a simplicial complex; roughly
speaking, a simplicial complex is a collection of simplices glued along their edges
(or “edges” of their edges).

Definition 1.8.3. The interior of a simplex S spanned by the points {x0, . . . , xk},
denoted int(S ), is the subset of points where ai > 0 for all the barycentric
coordinates ai. The boundary bd(S ) is defined to be S \ int(S ). (See Figure 1.43.)

It is straightforward to check that for any n-simplex S , there are homeomor-
phisms

bd(S ) � S n−1 and S � Dn+1.

(1,0)

v1

v1

v2

v2

v3

(0,1)

(1,0,0)

(0,1,0)

(0,0,1)

Figure 1.42 Geometric simplices specified by a set of vectors (including 0). On
the left, the simplices are determined by the standard axial unit vectors; on the
right, they are specified by the indicated vectors.
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Figure 1.43 The boundary of a standard simplex is a combinatorial sphere; the
interior is an open disk.

Therefore, there is a close analogy between gluing together simplices and building
CW complexes. The advantage of working with simplices rather than CW com-
plexes is that the boundaries of a simplex decompose into unions of simplices; we
will be able to use a very restricted universe of attaching maps.

Definition 1.8.4. For a simplex S spanned by the points P = {x0, . . . , xk}, a face
of S refers to any simplex spanned by a subset of P.

Example 1.8.5.

1. There are no non-empty faces of a 0-simplex.
2. The non-empty faces of a 1-simplex determined by the points x0 and x1 are the two

0-simplices spanned by {x0} and {x1} respectively.
3. The non-empty faces of a 2-simplex determined by the points {x0, x1, x2} are the edges

of the triangle and the vertices, the three 1-simplices determined by {x0, x1}, {x1, x2},
and {x2, x0} and the three 0-simplices {x0}, {x1}, and {x2}.

The following lemma is the key observation that allows us to glue together
simplices in a simple way (Figure 1.44).

Lemma 1.8.6. Let S be a simplex. The union of all of the faces of S is bd(S ).

We now define the notion of a simplicial complex.

Definition 1.8.7. A simplicial complex X in Rn is a set of simplices in Rn such
that:
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Figure 1.44 The boundary of the standard 3-simplex is a hollow pyramid; unfold-
ing it makes clear how the 2-simplices that form the faces are glued along edges
and vertices.

1. every face of a simplex in X is also a simplex in X, and
2. the intersection of two simplices in X is a face of each of them.

The zero simplices of a simplicial complex are referred to as the vertices. More
generally, the collection of simplices of dimension at most k is referred to as the
k-skeleton of the simplicial complex; we will denote the k-skeleton by Xk. For
simplicity, we will restrict attention to simplicial complexes with finitely many
simplices, referred to as finite simplicial complexes.

Definition 1.8.8. The geometric realization |X| of a finite simplicial complex X is
the topological space given by the union of simplices, given the subspace topology.
(Here we regard the union as a subspace of Rn.)

The geometric realization of a simplicial complex can be given the structure of
a CW complex, where the cells correspond to the simplices and the attaching maps
are determined by the faces.

Example 1.8.9. A circle can be given the structure of a simplicial complex (up to home-
omorphism) in R2 where the 0-simplices are the points (0, 0), (1, 0), and (1, 1) and the
1-simplices are the line segments specified by the equations

x + 0y = 1, 0x + y = 0, and x + y = 1,

where x, y ∈ [0, 1]. (In fact, as explained in Example 1.8.21, we can analogously model
the circle with n 0-simplices and n 1-simplices connecting them for any n. See also
Figure 1.45)

Remark 1.8.10. As with infinite CW complexes (recall Remark 1.5.8), we
can make sense of the geometric realization of an infinite simplicial complex,
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Figure 1.45 Up to homeomorphism, a torus can be triangulated as a simplicial
complex.

but describing the topology is somewhat more complicated. However, all of the
examples we consider in this book will be finite.

In a precise sense, a simplicial complex can be thought of as a higher dimen-
sional generalization of a graph.

Example 1.8.11. A simplicial complex that has only 0-simplices and 1-simplices rep-
resents a graph embedded in Euclidean space, where the 0-simplices are the vertices and
the 1-simplices are the edges.

We can assemble simplicial complexes into a category; for this purpose, we need
an analogue of a continuous map.

Definition 1.8.12. Let X and Y be simplicial complexes. A simplicial map
f : X → Y is specified by a map X0 → Y0 such that whenever

{z0, . . . , zk} ⊂ X0

span a simplex of X,

{ f (z0), f (z1), . . . , f (zk)}
span a simplex of Y .

Therefore, we can form a category with objects the simplicial complexes and
morphisms the simplicial maps. It is useful to characterize the isomorphisms in
this category.

Definition 1.8.13. Let X and Y be simplicial complexes. An isomorphism of sim-
plicial complexes is a simplicial map f : X → Y that is a bijection on 0-simplices
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and such that for any k > 1, a collection of vertices {x1, . . . , xk} specifies a simplex
of X if and only if { f (x1), . . . , f (xk)} is a simplex of Y .

Moreover, a simplicial map can be extended to a continuous map f : |X| → |Y |
by linear interpolation:

f

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

aixi

⎞⎟⎟⎟⎟⎟⎠ = n∑
i=0

ai f (xi).

Put another way, geometric realization is a functor.

Lemma 1.8.14. Geometric realization specifies a functor from the category of
simplicial complexes and simplicial maps to the category of topological spaces
and continuous maps.

One inconvenience with working with simplicial complexes as specified in Defi-
nition 1.8.7 is the dependence on a choice of embedding in some ambient Euclidean
space Rn. For example, ensuring that simplices intersect properly can require solv-
ing equations. Fortunately, it turns out that the data of a simplicial complex can
be abstracted even further; all that is really important is the data of how many
simplices there are and which faces they are glued along.

Definition 1.8.15. An abstract simplicial complex is a set X of finite non-empty
sets such that if A is an element of X then so is every non-empty subset of A.

1. Each element of X represents a simplex; we refer to elements of X as (abstract)
simplices.

2. The dimension of an abstract simplex A is |A| − 1, where here | − | denotes the
number of elements of a set.

3. Any non-empty subset of a simplex A is a face of A.
4. The vertices of X are the one-point sets in X. (Notice that any simplex of X is a

union of vertices.)
5. More generally, we will denote the subset of X consisting of sets of cardinality
≤ k + 1 as Xk, the k-skeleton.

We have a natural generalization of Definition 1.8.12 to the setting of abstract
simplicial complexes.

Definition 1.8.16. A map of abstract simplicial complexes f : X → Y is specified
by a map of sets f : X0 → Y0 with the property that for any element {x0, . . . , xk} in
X, { f (x0), . . . , f (xk)} is an element of Y .
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Therefore, we have a category with objects the abstract simplicial complexes
and morphisms the simplicial maps.

Definition 1.8.17. Let X and Y be abstract simplicial complexes. A simplicial
map f : X → Y is an isomorphism if f is a bijection on 0-simplices and {x0, . . . , xk}
is an element of X if and only if { f (x0), . . . , f (xk)} is an element of Y .

We now explain the relationship between abstract simplicial complexes and the
simplicial complexes of Definition 1.8.7, which to be clear we will refer to as
geometric simplicial complexes.

Lemma 1.8.18. Let X be a geometric simplicial complex spanned by the points
x0, . . . , xk ⊆ Rn. Then there is an associated abstract simplicial complex specified
by the collection of subsets of the vertices of X which span a simplex in X.

Two geometric simplicial complexes are isomorphic if and only if their asso-
ciated abstract simplicial complexes are isomorphic. Moreover, every abstract
simplicial complex can be uniquely associated to a geometric simplicial complex.

Theorem 1.8.19. For every abstract simplicial complex S , there exists a geomet-
ric simplicial complex S̃ such that S is associated to S̃ .

The preceding theorem allows us to define the geometric realization of an
abstract simplicial complex in terms of the geometric realization of the associated
geometric simplicial complex. Once again, geometric realization is a functor.

Lemma 1.8.20. The geometric realization of the associated simplicial complex
specifies a functor | − | from the category of abstract simplicial complexes and
simplicial maps to the category of topological spaces and continuous maps.

Example 1.8.21.

1. The abstract simplicial complex

{{v0}, {v1}, {v2}, {v0, v1}, {v1, v2}, {v2, v0}, {v0, v1, v2}}

describes the 2-simplex and its faces; the geometric realization has the homotopy type
of a disk in R2.

2. Removing the interior from the previous example, the abstract simplicial complex

{{v0}, {v1}, {v2}, {v0, v1}, {v1, v2}, {v2, v0}}
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Figure 1.46 Two different models of the simplicial circle.

describes the boundary of the 2-simplex; the geometric realization has the homotopy
type of a circle in R2. (In fact, Example 1.8.9 is homeomorphic to the geometric
realization of this complex.)

3. More generally, we can make an abstract simplicial complex which models the circle
using n vertices

{v0, v1, . . . , vn−1}
and n 1-simplices

{{v0, v1}, {v1, v2}, . . . , {vn−2, vn−1}, {vn−1, v0}}.
(See Figure 1.46 for examples of this.)

4. The previous examples are all of two kinds; we can form the standard simplex Δn by
taking a single n-simplex [v0, . . . , vn] and all of its subsets. The boundary ∂Δn is given
by removing the n-simplex from the complex Δn.

5. Although computationally tractable, simplicial complexes describing even relatively
simple surfaces can be large; see Figure 1.47 for a representation of a complex modeling
a torus.

A next question one might wonder about is whether every topological space is
homeomorphic or at least homotopy equivalent to a simplicial complex. In the case
of homeomorphism, this kind of question turns out to be very difficult to answer.
But for homotopy equivalence, there is a simple and satisfying criterion.

Proposition 1.8.22. Let X be an abstract simplicial complex. The geometric
realization |X| is a CW complex with an n-cell for each n-simplex of X.

Proposition 1.8.23. Let X be a CW complex. Then X is homotopy equivalent to
the geometric realization of a simplicial complex K. Moreover, if X is a finite CW
complex, then K can be taken to be a finite simplicial complex.

Thus a topological space is homotopy equivalent to the geometric realization of
a simplicial complex if and only if it is homotopy equivalent to a CW complex.
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1 2 3 1

4 6 7 4

5 8 9 5

1 2 3 1

Figure 1.47 This diagram represents the vertices, 1-simplices, and 2-simplices of
an abstract simplicial complex with realization homeomorphic to the torus. (Note
that we identify the top edge with the bottom edge and the left edge with the right
edge.)

But what about the morphisms? That is, can every continuous map |X| → |Y | be
described as the geometric realization of a simplicial map? To be precise, we might
ask the following question.

Question 1.8.24. Let X and Y be abstract simplicial complexes. Is every contin-
uous map |X| → |Y | homotopic to the geometric realization of a simplicial map
X → Y?

As the question is posed, the answer is no.

Example 1.8.25. Let S 1 be the minimal abstract simplicial complex that models the
circle; S 1 has vertices x0, x1, and x2 and 1-simplices {x0, x1}, {x1, x2}, and {x2, x0}. If we
consider simplicial maps from S 1 → S 1, it is clear that there is no way to model the
continuous maps S 1 → S 1 given by t �→ ekt(2πi) for k > 1. That is, we cannot represent
homotopy classes of maps that wrap the circle around itself more than once.

However, this deficiency can be repaired. The counterexample in Example 1.8.25
works because the “feature scale” of the domain is not fine enough. We can improve
the situation using the notion of subdivision. In this case, if we use a model of the
circle with n vertices and n − 1 1-simplices, as n increases we can represent maps
which wrap around the circle more and more. More generally, we can subdivide
any simplicial complex by dividing the simplices into unions of smaller simplices.
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The resulting complex has geometric realization homeomorphic to the original one.
Since we do not need these results we do not discuss them further here, but in fact
there is a fundamental result (the simplicial subdivision theorem) that guarantees
that any homotopy class of maps |X| → |Y | can be represented by a simplicial map
from some subdivision of X to Y .

We now turn to the discussion of algebraic invariants of topological spaces that
can be computed in terms of combinatorial operations on simplicial complexes.
The oldest and simplest example of such an invariant is the Euler characteristic.

1.9 The Euler Characteristic

A basic and classical combinatorial invariant associated to a CW complex or an
abstract simplicial complex is the Euler characteristic.

Definition 1.9.1. Let X be a finite CW complex, with cells of dimension at most
n. The Euler characteristic of X is defined to be the alternating sum

χ(X) =
n∑

i=0

(−1)iki,

where ki denotes the number of i-cells.

Equivalently, we can define the Euler characteristic of a finite simplicial complex
directly.

Definition 1.9.2. Let X be a finite simplicial complex, with simplices of dimen-
sion at most n. The Euler characteristic of X is defined to be the alternating
sum

χ(X) =
n∑

i=0

(−1)iki

where ki denotes the number of i-simplices (see Figure 1.48).

It is straightforward to verify that these two notions are consistent under
geometric realization.

The Euler characteristic is a very appealing invariant insofar as it does not
depend on any information about the way in which cells or simplices are glued
together, just their counts. As a consequence, it is very easy to compute. However,
it is not completely clear from the definition what sorts of equivalences the Euler
characteristic is preserved by. It is easy to see that χ is an isomorphism invariant
for simplicial complexes.
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    –        +    1 = 4    –    4    =    0
vertices 1-simplices vertices 1-simplices2-simplices

1

Figure 1.48 The Euler characteristic of a finite simplicial complex is computed
as the alternating sum of the counts of simplices.

Lemma 1.9.3. Let f : X → Y be an isomorphism of simplicial complexes. Then
χ(X) = χ(Y).

But this is not tremendously useful; as we have seen in Example 1.8.21, there are
many non-isomorphic models for the circle S 1. We would like there to be a well-
defined Euler characteristic for “the circle” that does not depend on the simplicial
model. Direct computation is encouraging, however – all the models of the circle
have n vertices and n 1-simplices, and therefore have Euler characteristic 0. It turns
out that χ(X) is a homotopy invariant for CW complexes.

Another concern about the Euler characteristic is that it does not reflect sim-
plicial maps. The issue is simply that numbers are not rich enough to support
functoriality. A central motivation for constructing invariants of topological spaces
that land in algebraic categories (e.g., groups or vector spaces) is to provide enough
structure for them to be functors.

1.10 Simplicial Homology

In this section, we finally develop the central invariant that we will use in topologi-
cal data analysis, the homology groups. The homology groups will be a collection
of functors indexed on the natural numbers

Hn : Simp→ VectF, n ≥ 0.

Let X be an abstract simplicial complex. Roughly speaking, the homology
groups of X are going to encode information about the way in which the simplices
in successive dimensions are glued together. For the definition, we will need to
pick an orientation for the simplices – in the case of a 1-simplex, this amounts to
picking a direction for the line segment connecting the two vertices.

Let X be an abstract simplicial complex and σ a simplex. We will pick an
ordering for the set of vertices in σ. Consider the case of a 2-simplex [v0, v1, v2].
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Then there are six possible orderings: (v0, v1, v2), (v0, v2, v1), (v1, v0, v2), (v1, v2, v0),
(v2, v0, v1), and (v2, v1, v0). However, we want to regard the possible choices of
orientation for this 2-simplex as twofold, either clockwise or counterclockwise.
We can express this by identifying orderings that are given by “rotations” of the
vertices.

Definition 1.10.1. An orientation of the vertices of a simplex σ is an equivalence
class of orderings of the vertices under the equivalence relation that two orderings
are the same if they differ by an even permutation. (Recall that an even permutation
is one that can be written as the composite of an even number of transpositions.)

Each k-simplex can be given one of two possible orientations for k > 0; there is
only a single orientation for a vertex. We now assume that we have chosen orienta-
tions for the k-simplices of X; this can be done arbitrarily. We let [v0, . . . , vk] denote
the oriented simplex specified by the vertices {v0, . . . , vk}, where the orientation is
specified by the ordering of the vertices.

1.10.1 Chains and Boundaries

We now explain the building blocks for the homology groups, the chain groups and
the boundary homomorphism. These provide algebraic encodings of the combina-
torial information of a simplicial complex. We start with the case of coefficients in
a field F, as this is most relevant for topological data analysis.

Definition 1.10.2. The k-chains Ck(X; F) is the vector space with basis the set
of oriented k-simplices. That is, elements of Ck(X; F) are linear combinations of
generators {gσ}, where σ varies over the oriented k-simplices of X.

Example 1.10.3. Consider the abstract simplicial complex

X = {[v0], [v1], [v2], [v0, v1], [v1, v2]}.
1. The space of 0-chains C0(X; F) for X is a vector space which is isomorphic to F⊕ F⊕ F.

We think of C0(X; F) as having elements of the form

a0v0 + a1v1 + a2v2, a0, a1, a2 ∈ F,
where generators correspond to the vertices v0, v1, and v2 respectively.

2. The space of 1-chains C1(X; F) for X is a vector space which is isomorphic to F⊕F. We
think of C1(X; F) as having elements of the form

a0g01 + a1g12, a0, a1 ∈ F,
where g01 and g12 are generators corresponding to the two 1-simplices of X.
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3. The space of 2-chains C2(X; F) (and all higher chain groups) is the trivial vector space
{0} since there are no k-simplices for k > 1.

We now define a linear transformation ∂k : Ck(X; F) → Ck−1(X; F), the bound-
ary map. As we will see, this is an algebraic way to encode the boundary of a
simplex.

Definition 1.10.4. The linear transformation

∂k : Ck(X; F)→ Ck−1(X; F)

is specified on the generators as

∂n([v0, . . . , vk]) �→
k∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vk]

where the v̂i notation means we delete that vertex. The homomorphism is then
specified by extending linearly to all of Ck(X; F). (The orientation of the image is
determined by the ordering of the vertices.)

Notice that this expression has a clear geometric interpretation: the boundary
map applied to a simplex is precisely the alternating sum over the faces that make
up the boundary of the simplex. (See Figure 1.49.)

Example 1.10.5.

1. The boundary of the 1-simplex [v0, v1] is v1 − v0.
2. The boundary of the 2-simplex [v0, v1, v2] is [v1, v2] − [v0, v2] + [v0, v1].

Figure 1.49 The boundary map applied to a simplex is the alternating sum of the
simplices along the boundary.
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The boundary map has the special property that applying it twice is 0; “the
boundary of a boundary is 0.”

Lemma 1.10.6. The composite ∂k ◦ ∂k+1 = 0.

Checking this is an easy algebraic argument; the alternating signs result in
cancellation.

Example 1.10.7. We compute ∂1 ◦ ∂2 applied to the 2-simplex [v0, v1, v2]. As in
Example 1.10.5 above,

∂2([v0, v1, v2]) = [v1, v2] − [v0, v2] + [v0, v1],

and applying ∂1 we obtain

∂1∂2([v0, v1, v2]) = ∂1([v1, v2]) − ∂1([v0, v2]) + ∂1([v0, v1])

= (v2 − v1) − (v2 − v0) + (v1 − v0)

= v2 − v1 − v2 + v0 + v1 − v0

= 0.

As an immediate corollary, we have the following.

Corollary 1.10.8. For any simplicial complex X and natural number k,

im(∂k+1) ⊆ ker(∂k).

1.10.2 Homology Groups

We now define the homology groups associated to the simplicial complex; the kth
homology group Hk measures the failure of the inclusion of im(∂k+1) in ker(∂k) to
be an isomorphism. The idea of the homology groups is to take the subgroup of
Ck(X) of cycles, i.e., ker(∂k), and impose the equivalence relation that two chains
c1 and c2 are homologous if their difference c1 − c2 is a boundary, i.e., if c1 − c2 is
an element of im(∂k+1).

Definition 1.10.9. The kth homology group with F-coefficients Hk(X; F) is
defined to be the quotient group ker(∂k)/ im(∂k+1). (In fact, this quotient group
inherits the structure of a vector space.)

The zeroth homology group has a very natural interpretation.

Theorem 1.10.10. Let X be an abstract simplicial complex. The homology group
H0(X; F) is a vector space on generators in bijection with the path components
of X.
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Figure 1.50 (a) gives a simplicial complex for an annulus. The blue paths in pic-
tures (b) and (c) are examples of cycles in the complex. The cycle in picture (b)
is not the boundary of any collection of simplices in the complex; it represents a
non-zero class in the first homology group. In contrast, (c) is the boundary of a
simplex and therefore is 0 in the homology group.

As we make precise below in Theorem 1.10.29, the first homology group is
closely related to the fundamental group and hence to loops in X (see Figure 1.50).

Crudely, we can think of homology groups as the set of cycles in Ck(X; F)
that are not the boundaries of elements of Ck+1(X; F). Roughly speaking,
the fact that an element γ in Ck(X; F) is a cycle means that it encloses a
k-dimensional region, and the fact that γ is not a boundary means that the
interior of the region is not part of the space X.

More precisely, consider the simplicial complex ∂Δk, consisting of the boundary
of the standard k-simplex. There is a cycle consisting of the alternating sum of the
(k − 1)-simplices; this is the boundary of the (missing) k-simplex. But this cycle
cannot be a boundary, since there are no k-simplices. Thus, it specifies a class in
the homology group Hk−1; this class detects the “hole.” But if we fill the hole in, we
get the standard simplex Δk, and now this cycle is clearly in the image of δk, and so
vanishes in homology. More generally, given a simplicial complex X that contains
∂Δk but not the k-simplex, there will be a homology class representing that hole.
Of course, this analysis does not directly apply to “larger” holes (with boundaries
that are the union of many (k − 1)-simplices), but a similar analysis does apply.

Summarizing:

1. H0 a measure of path components of X,
2. H1 is a measure of the one dimensional “holes” in X, and
3. more generally, Hk is a measure of k-dimensional geometric features of X,

specifically, a count of the number of k-dimensional “holes” in X.
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One of the advantages of simplicial homology is that it is easily computable
given the data of an abstract simplicial complex. We illustrate this with some
examples below.

Example 1.10.11.

1. Let S be the abstract simplicial complex {[v0], [v1], [v0, v1]}; this represents the interval.
Then ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C0(S ; F) � F ⊕ F,
C1(S ; F) � F,

Ci(S ; F) = 0, i > 1.

The boundary map ∂1 : C1(S ; F)→ C0(S ; F) is specified by

1 ∈ F �→ (1,−1) ∈ F ⊕ F.

Then H0(S ) = F, since ker(∂0) is all of C0(S ; F) and the image of ∂1 is F. H1(S ; F) = 0,
as the kernel of ∂1 is 0. And all Hi(S ; F) = 0 for i > 1.

Interpreting geometrically, this answer tells us that S represents a topological space
that has one path component and no holes.

2. Let S be the abstract simplicial complex ∂Δ2, with vertices

{[v0], [v1], [v2]}

and 1-simplices

{[v0, v1], [v1, v2], [v2, v0]}.

This complex is a model for the circle. Then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C0(S ; F) � F ⊕ F ⊕ F,
C1(S ; F) � F ⊕ F ⊕ F,
C2(S ; F) = 0, i > 1.

Since ∂1([v0, v1]) = v1 − v0, ∂1([v1, v2]) = v2 − v1, and ∂1([v2, v0]) = v0 − v2, it is
straightforward to check that ker(∂1) is F with generator [v0, v1] + [v1, v2] − [v2, v0].
Therefore, H1(S ) � F and a similar argument shows that H0(S ) � F. Specifically,
ker(∂0) must be all of C0(S ) � F ⊕ F ⊕ F. The computations of the image of ∂1 above
imply that in the quotient by im(∂1), we have that v0 = v1 since v0 + ∂1([v0, v1]) = v1.
Similarly, v1 = v2. Therefore, the quotient must be F, generated by the coincident coset
of v0, v1, and v2. Interpreting geometrically, this example tells us that S represents
a topological space that has one path component and one one-dimensional hole (see
Figure 1.51).
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Figure 1.51 The red and yellow paths indicate representative generators for H1
of the torus, which is F ⊕ F.

3. More generally, for the simplicial complex Δn+1 modeling S n (i.e., the boundary of the
standard (n + 1)-simplex), we compute the answer⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

H0(S n; F) � F,

Hn(S n; F) � F,

Hk(S n; F) = 0, k � 0, n.

This computation makes precise the sense in which we can think of the nth homology
group as capturing information about n-dimensional holes.

Of particular relevance for topological data analysis is the fact that simplicial
homology is algorithmically tractable; ∂k can be expressed as a matrix where
each column specifies the image in Ck−1(S ; F) of a generator of Ck(S ; F). We can
then compute the image and kernel using linear algebra manipulations. Specifi-
cally, using Gaussian elimination we put ∂k and ∂k+1 into Smith normal form; the
rank of the homology group can then be computed in terms of the ranks of ∂k and
∂k+1.

Theorem 1.10.12. Given a simplicial complex, there exists an algorithm to com-
pute Hk(−; F) whose running time is polynomial (cubic) in the total number of
(k + 1)-simplices, k-simplices, and (k − 1)-simplices.

1.10.3 Homology of Chain Complexes

The impressionistic description of the homology groups as computing informa-
tion about k-dimensional holes strongly suggests that the groups Hk are homotopy
invariants. To provide context for stating this kind of invariance result, it is use-
ful to describe the homology groups as functors. As we have emphasized, much
of the power of the invariants of algebraic topology comes because they are
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functorial. We can check directly from the definition that homology is in fact a
functor

Hn : Simp→ VectF.

Theorem 1.10.13. Let X and Y be abstract simplicial complexes and let
f : X → Y be a simplicial map. Then for each k ≥ 0 there is an induced group
homomorphism

f∗ : Hk(X; F)→ Hk(Y; F).

To explain this result, we provide an algebraic category to abstract the construc-
tion underlying homology. To this end, we now define the category Ch(VectF) of
chain complexes of F-vector spaces.

Definition 1.10.14. A chain complex of vector spaces A• is a collection of vector
spaces {An}, for n ∈ Z, and linear transformations

∂n : An → An−1

such that ∂n−1 ◦ ∂n = 0. More succinctly, a chain complex is a functor Zop → VectF
satisfying the condition above on the successive composites of maps.

Having specified the objects of Ch(VectF), we now need to explain the mor-
phisms.

Definition 1.10.15. A map of chain complexes f : A• → B• is a collection of
linear transformations fn : An → Bn for each n ∈ Z such that fn−1 ◦ ∂A

n = ∂
B
n ◦ fn,

i.e., such that the diagrams

∂A
n+1 ∂B

n+1

An
fn

∂A
n

Bn

∂B
n

An−1

∂A
n−1

fn−1
Bn−1

∂B
n−1

commute.
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There is a natural functor VectF → Ch(VectF) that takes a vector space V to the
chain complex

A• = . . .→ 0→ 0→ V → 0→ 0→ . . .

where A0 = V and Ai = 0 for i � 0.
As we have seen, the category of topological spaces has several useful notions

of equivalence: homeomorphisms, which are categorical isomorphisms, as well as
homotopy equivalences and weak equivalences. In contrast, the algebraic category
VectF does not have a good analogue of the notion of homotopy equivalence. One of
the advantages of Ch(VectF) is precisely that is an algebraic category that enlarges
VectF enough to have a notion of homotopy equivalence, which is called quasi-
isomorphism.

To explain a quasi-isomorphism of chain complexes, we need to observe that
the definition of homology makes sense for arbitrary chain complexes. Notice that
since by definition ∂n ◦ ∂n+1 = 0, we have the evident inclusion of groups

im(∂n+1) ⊆ ker(∂n).

We have the following general analogue of Definition 1.10.9.

Definition 1.10.16. For a chain complex A•, the nth homology group Hn is defined
as the quotient

Hn(A•) = ker(∂n)/ im(∂n+1).

The construction of homology is functorial.

Lemma 1.10.17. A map f : A• → B• of chain complexes induces a linear trans-
formation of vector spaces Hn(A•) → Hn(B•). Moreover, Hn specifies a functor
from the category of chain complexes to the category of vector spaces.

We think of the homology groups of a chain complex as akin to the homotopy
groups of a space, and this leads to the following definition.

Definition 1.10.18. A map f : A• → B• of chain complexes is a quasi-isomorp-
hism when each induced map Hn(A•)→ Hn(B•) is an isomorphism.

Of course, if each map fn is an isomorphism, then f is a quasi-isomorphism. But
there are many examples of quasi-isomorphisms that are not isomorphisms.

Example 1.10.19. Consider the chain complex where C3 = F, C2 = F, all other Ci = 0,
and ∂3 = id. Then the homology is zero for all n; this chain complex is quasi-isomorphic
to the zero complex (i.e., the complex where Ci = 0 for all i).
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For our purposes, the most interesting examples of chain complexes come from
the construction of the simplicial chains. This assignment is functorial.

Lemma 1.10.20. For a simplicial complex X, the chains C•(X; F) form a chain
complex of vector spaces. A simplicial map of simplicial complexes f : X → Y
induces a chain map C•(X; F) → C•(Y; F). That is, passage to simplicial chains
induces a functor

C•(−) : Simp→ Ch(VectF).

We can immediately deduce the functoriality of homology from this construc-
tion. An isomorphism of simplicial complexes clearly induces a quasi-isomorphism
of chains; in fact, so does a homeomorphism of the associated topological spaces.
But the power of homology arises because it is in fact a homotopy invariant. To
explain this, we need to consider the question of when two maps f , g : A• → B•
induce the same map on homology.

Definition 1.10.21. We say that two maps of chain complexes f , g : A• → B• are
chain homotopic if there exist maps h : An → Bn+1 such that fn − gn = ∂n+1 ◦ hn −
hn−1 ◦ ∂n.

The definition of chain homotopy is a precise analogue of the notion of
homotopy of maps of spaces.

Theorem 1.10.22. If f , g : X → Y are simplicial maps of abstract simplicial
complexes such that | f |, |g| : |X| → |Y | are homotopic, then the induced maps
f , g : C•(X; F)→ C•(Y; F) are chain homotopic.

In fact, Definition 1.10.21 can be derived by considering the chain complexes
C•(X × [0, 1];F) and C•(Y; F) and the conditions imposed by the existence of a
homotopy h : X × I → Y .

For our purposes, the most important fact about chain homotopic maps is the
following result:

Proposition 1.10.23. If two maps f , g : A• → B• of chain complexes are chain
homotopic, then they induce the same map on homology.

The point is simply that

∂n ◦ ( fn − gn) = ∂n ◦ ∂n+1 ◦ hn − ∂n ◦ hn−1 ◦ ∂n = ∂n ◦ hn−1 ◦ ∂n,

i.e., the difference between fn and gn is a boundary.
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Corollary 1.10.24. If f : X → Y is a simplicial map of abstract simplicial com-
plexes such that | f | : |X| → |Y | is a homotopy equivalence, then f induces an
isomorphism on homology.

Put another way, we really have a functor

Hn : Ho(Simp)→ VectF,

where we define Ho(Simp) to be the category with objects abstract simplicial com-
plexes and morphisms from X to Y specified by the homotopy classes of maps
|X| → |Y |.

Remark 1.10.25. Typically, this fact is proved using a related homology theory
called singular homology, which coincides with simplicial homology but is (by
definition) independent of the simplicial structure. In addition, as we mentioned
in Remark 1.10.31, one can also define homology directly for CW complexes. In
light of this menagerie of definitions, a basic consistency question arises: given
an abstract simplicial complex X, do all the possible ways of defining its homol-
ogy agree? Direct comparisons are possible, but it turns out that the collection of
homology functors Hn : Top → VectF can be axiomatically characterized in terms
of a very simple set of axioms, the Eilenberg-Steenrod axioms. Roughly speaking,
these axioms describe families of functors that have prescribed behavior on the
spheres S n and satisfy certain gluing relationships; the proof that this suffices to
characterize the theories amounts to induction over a CW structure.

1.10.4 Simplicial Homology with Coefficients in an Abelian Group

In fact, simplicial homology can take values in the category of abelian groups
instead of vector spaces. We consider the case of Z for clarity. Definitions 1.10.14
and 1.10.15 generalize immediately to the category Ch(Ab) of chain complexes of
abelian groups.

Definition 1.10.26. A chain complex of abelian groups A• is a collection of
abelian groups {An}, for n ∈ Z, and homomorphisms

∂n : An → An−1

such that ∂n−1 ◦ ∂n = 0. More succinctly, a chain complex is a functor Z → Ab
satisfying the condition above on the successive composites of maps. The mor-
phisms are the maps of chain complexes, i.e., the collections of homomorphisms
fn : An → Bn such that fn−1 ◦ ∂A

n = ∂
B
n ◦ fn.
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We can build the simplicial chains by working with the free abelian group
generated by the simplices. Specifically, we have the following definition.

Definition 1.10.27. The group of m-chains Cm(X;Z) is the free abelian group
with basis elements in bijection with the oriented m-simplices. That is, elements of
Cm(X;Z) are linear combinations (with coefficients in Z) of generators {gσ}, where
σ varies over the oriented m-simplices of X.

Lemma 1.10.28. A map of simplicial complexes S → S ′ determines a chain map
C•(S ;Z)→ C•(S ′;Z). That is, passage to simplicial chains induces a functor

C•(−;Z) : Simp→ Ch(Ab).

Applying homology, we get a composite functor

Hn(−;Z) : Simp→ Ch(Ab)→ Ab.

We refer to this as homology with coefficients in the group Z. As in Proposition
1.10.23, homotopy classes of maps induce the same map on homology and quasi-
isomorphisms of chain complexes induce isomorphisms.

In this context, the first homology group can be described in terms of something
we have already seen.

Theorem 1.10.29. Let X be an abstract simplicial complex that is connected. The
homology group H1(X;Z) is the abelianization of the fundamental group π1(X, x),
where here the abelianization of a group is the quotient by the subgroup generated
by terms of the form xyx−1y−1.

The advantage of working with Z coefficients is that the homology captures more
information about the space X. More generally, it is possible to consider homology
with coefficients in any ring R; the situation for Z is a special case. However, when
working with topological data analysis, only the cases of homology with field coef-
ficients tend to be used. We explain the reason for this in Section 2.3. Just as for the
case of field coefficients, there is an efficient algorithm for computing homology
with coefficients in Z.

Theorem 1.10.30. Given a simplicial complex, there exists an algorithm to com-
pute Hk(−;Z) whose running time is polynomial (cubic) in the total number of
(k + 1)-simplices, k-simplices, and (k − 1)-simplices.
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Remark 1.10.31. Because of our focus on algorithmic methods, we have dis-
cussed simplicial homology in this section. As we mentioned in Remark 1.10.25,
there are a number of other candidate constructions of the homology of a space; for
example, one can define homology using calculus (in terms of differential forms)
or infinite-dimensional functions (singular homology). Most notably, in the spirit
of our discussion, it is possible to give a definition of homology that works directly
from the CW complex structure on a space; one begins with a chain complex
defined where Ck(X) is the free abelian group on the k-cells. However, the boundary
map is considerably more complicated in this case. Nonetheless, this approach has
been the basis for computational work in discrete Morse theory and computational
cubical homology (e.g., see [228, 280]).

1.11 Manifolds

The definition of a topological space is very general; an arbitrary topological space
can be extremely complicated and have a very non-geometric flavor. For example,
the Cantor set, constructed by removing the middle third from the interval [0, 1],
then the middle third from each of the resulting intervals, and so on (i.e., the subset
of [0, 1] consisting of elements whose ternary expansion does not contain 1) is an
exotic topological space. When we work up to weak homotopy equivalence, we
can restrict attention to simplicial complexes, which are a much nicer collection
of spaces. Nonetheless, simplicial complexes still admit a very wide collection of
examples with complicated local geometry.

However, in many applications (e.g., computer vision, medical imaging,
physics), particularly nice examples of topological spaces tend to arise; these are
spaces which admit Euclidean coordinates, at least locally, and permit the definition
of a precise generalization of classical calculus. Such a topological space is called
a manifold. A wonderful introduction to smooth manifolds is given by Milnor’s
classic book [355]; for more on Riemannian manifolds see [96].

In order to define a manifold, we need to explain what we mean by coordinates.

Definition 1.11.1. Let X be a topological space. Given an open set U ⊆ X, we
say that a chart is a homeomorphism θ : U → V , where V is an open subset of Rn.
The inverse θ−1 equips U with a coordinate system. (See Figure 1.52 for examples
of charts.)

An atlas for X is a collection of charts such that the {Ui} cover X. The composites

θαθ
−1
β : θβ(Uα ∩ Uβ)→ θα(Uα ∩ Uβ)
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Figure 1.52 Left: Two overlapping charts on a circle. Right: Two overlapping
charts on a torus. Each chart gives a little coordinate system, and transition
functions connect these coordinates on the overlaps.

are referred to as transition functions. These explain how coordinates change as we
move between different charts.

Definition 1.11.2. An n-dimensional topological manifold X is a second-
countable, Hausdorff topological space equipped with an atlas where the charts
are all subsets of Rn.

(Here recall that second-countable means that the topological space has a count-
able base and Hausdorffmeans that any pair of points can be separated by enclosing
open sets.)

It is often the case that examples have additional smoothness which permits
the use of the methods of calculus. Since the transition functions involve maps
from subsets of Euclidean space to itself, we can ask about their continuity and
derivatives using the standard techniques of multivariable calculus.

Definition 1.11.3. An n-dimensional smooth manifold is a topological manifold
where the transition functions are continuous and infinitely differentiable.

Many of the most familiar examples of topological spaces are manifolds.

Example 1.11.4.

1. Any Euclidean space Rn is a manifold, covered by a single chart.
2. The space S 1 = {(x, y) ⊂ R2 | x2 + y2 = 1} is a manifold, covered by two charts, one

covering points with y > 1
2 − ε and one covering points with y < 1

2 + ε. (Here we can
choose any ε > 0.)

3. More generally, any sphere S n = {(x1, x2, . . . , xn+1) ∈ Rn+1 | ∑i x2
i = 1} is a manifold

covered by two charts.
4. The torus is a manifold; charts can be provided by considering a covering of the torus

by little overlapping squares, for instance.
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Figure 1.53 The tangent space at a point is all the directions in which a derivative
of a curve could point; equivalently, it is the plane perpendicular to the normal or
“outward” pointing direction.

Calculus on manifolds is expressed in terms of the notion of tangent spaces. At
each point x of a manifold M, the tangent space TxM is simply a vector space
in which the tangent vectors (i.e., derivatives) to curves through that point can lie.
The derivative of a function f : M → R at a point x ∈ M is a vector which lies
in TxM.

Example 1.11.5.

1. The tangent space TxR
n of Euclidean space Rn at any point x ∈ Rn is isomorphic to Rn.

2. The tangent space TxS 1 at a point x ∈ S 1 is isomorphic to R1; the tangent space can be
viewed as the tangent line to the circle.

3. The tangent space to TxS n to a sphere at a point x ∈ S n is a plane Rn.

(See Figure 1.53 for a representation of the tangent space of spheres.)

For particularly nice manifolds (including the examples we have discussed
above), the tangent spaces TxM admit inner products that vary smoothly as we
move around on M. Recall that an inner product (sometimes referred to as a dot
product) is a pairing of the following form.

Definition 1.11.6. An inner product on a vector space V over the field R is a
function

〈−,−〉 : V × V → R
such that

1. 〈x, x〉 ≥ 0,
2. 〈x, y〉 = 〈y, x〉, and
3. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.



1 Basic Notions of Algebraic Topology 117

The significance of an inner product is that it allows us to define the length of a
vector as the norm ||x|| = √〈x, x〉 and the (cosine of the) angle between two vectors
as being proportional to their inner product. That is, manifolds with inner products
on the tangent spaces admit nice notions of area and angles; such manifolds are
referred to as Riemannian manifolds. Riemannian manifolds have a number of rich
geometric properties.

1. A path-connected Riemannian manifold has a metric; a path γ in M has a length
computed by integrating the norms of the tangent vectors along γ. The dis-
tance between two points p and q is computed by taking the infimum (recall
Definition 1.2.17) of the lengths of all paths joining them.

2. A Riemannian manifold has a notion of area or volume of regions on the mani-
fold, referred to as the volume form, coming from the determinant in the tangent
spaces.

3. A Riemannian manifold M has a notion of curvature, which can be described
in terms of the divergence of paths following the tangent vectors at a point. For
example, the standard sphere has curvature 1, Euclidean space has curvature
0, and hyperbolic space has curvature −1. (Here recall that hyperbolic space
is a description of the geometry that arises when Euclid’s parallel postulate is
modified to allow infinitely many distinct parallel lines between two points.)
We will say more about this below in Section 4.7.3.

Such manifolds allow a theory of integration and sampling, and although one
does not expect data to lie on such manifolds, these provide a vital source of
intuition and theoretical backing for the behavior of topological data analysis
algorithms; such examples play an important motivating role, as we will see in
Chapters 2 and 3.

Despite their rigidity, there are an enormous number of possible manifold
topologies as the dimension increases; easy estimates show the number of home-
omorphism classes of manifolds grows faster than exponentially as the dimension
increases [533]. We can classify manifolds in low dimensions, however.

Example 1.11.7.

1. In dimension 0, the only manifolds are disjoint unions of points.
2. In dimension 1, the manifolds are homeomorphic to disjoint unions of circles and copies

of R. For example, a compact manifold with a single path component must be a circle.
3. In dimension 2, the classification of surfaces is an early and important theorem in topol-

ogy; compact manifolds can be completely described as either a sphere or a manifold
classified by a pair of natural numbers, describing how the manifold is made by gluing
two kinds of basic pieces (toruses and projective planes) together. (For a nice treatment,
see [369, §12].)
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Another important class of examples comes from matrix groups, which are
examples of Lie groups.

Example 1.11.8. Roughly speaking, a Lie group is a group which is also a topological
space that is a manifold, so that the group operations are continuous. For example, the
circle S 1 can be given the structure of a Lie group where the group operation is specified
by adding angles. As another important example, the set GLn(R) of invertible matrices can
be given the structure of a manifold; such manifold symmetry groups are ubiquitous in
physical applications.

On the one hand, manifolds provide geometric intuition for many methods in
computational topology, and provide a large and familiar class of topological
spaces. On the other hand, in contrast to physics, in applications to biology and
genomics we do not usually expect the metric spaces we encounter to come from
Riemannian manifold structures. In many cases, we do not even expect them to
come from continuous topological spaces, in the sense that for many biologically
relevant metrics, there is a minimum bound such that any distance is larger than
this bound – for example, the Hamming distance between strings has this property.

One potential compromise between manifolds and arbitrary topological spaces
comes from the theory of stratified spaces. Although a precise definition is more
technical than we require, roughly speaking a stratified space is a topological space
that is the union of manifolds (of possibly different dimensions) that fit together
nicely. (See [534] for a wide-ranging treatment.)

Example 1.11.9.

1. Any graph embedded in Euclidean space is a stratified space comprising zero dimen-
sional manifolds (points) and one dimensional manifolds (open intervals). Notably,
trees are stratified spaces.

2. The disjoint union of manifolds
∐

iMi is a stratified space.

1.12 Morse Functions and Reeb Spaces

A natural question to ask about a manifold is whether we can endow it with a CW
structure which reflects the geometric structure of the manifold. A classical answer
to this question is provided by Morse theory. Morse theory starts by considering a
manifold M along with a “height function”

h : M → R.

Example 1.12.1. Consider the standard sphere

S 2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}.
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We think of this as sitting on the tangent plane z = −1, and we can define the height at a
point (x, y, z) as simply z+1. (Of course, there are many other reasonable choices of height
functions.)

Given a height function, the approach of Morse theory is to study the information
about M encoded in the inverse images f −1(k) as k varies; specifically, we consider
the inverse images for k ∈ R, or more generally in the inverse images f −1(I), where
I ⊆ R is an open interval (a, b). The places where the inverse images change in
interesting ways turn out to be precisely the critical points of the function h. That
is, the idea of Morse theory is that a space can be characterized by the critical
points of suitable continuous functions from M → R.

Example 1.12.2. A standard example to consider is the torus “stood on its end,” where
the bottom has height 0. As a varies, the inverse images h−1([0, a]) start as a disk, then
become a cylinder, then the torus with a disk cut out, and then finally become the entire
torus. From the perspective of homotopy theory, the process described is precisely cell
attachment in a CW structure! Attaching occurs as h passes through a critical point. (See
Figure 1.54.)

We do not need the full generality of Morse theory to explain the techniques of
topological data analysis, so we do not give precise statements of the main theo-
rems; for a beautiful treatment, see [354]. However, constructions inspired by this
approach, the Reeb graph and Reeb space, have turned out to be incredibly use-
ful in topological data analysis and computational geometry. We now give a brief
overview of these constructions; see [459] for a more in-depth exposition.

Suppose that we are given a topological space X (e.g., a CW complex or the
geometric realization of a finite simplicial complex) along with a continuous map
h : X → Rn.

Definition 1.12.3. We define an equivalence relation on X by stipulating that
p � q if p, q ∈ f −1(k) for some k and moreover that p and q are in the same path
component. The Reeb space of X is the quotient of X by this equivalence relation.

height (h)

Figure 1.54 As the height increases, the inverse image includes more and more
of the torus.
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Figure 1.55 The Reeb graph of a torus.

When n = 1, Definition 1.12.3 yields a graph, referred to as the Reeb graph. The
vertices of the Reeb graph correspond to components of the level sets, with edges
connecting components that merge as k varies. See Figure 1.55 for the Reeb graph
of the torus; notice the similarities to the Morse theory description above.

It is sometimes helpful in theoretical work to have a more general version of the
Reeb space, referred to as the categorical Reeb space.

Definition 1.12.4. Given a topological space X equipped with a continuous func-
tion h : X → Rn, we specify the functor RX, f from the category of open sets of Rn

with morphisms inclusions U1 → U2 to the category of spaces as follows.
Let RX, f (I) be the space f −1(I), and let the induced map RX, f (I) → RX, f (J) be

the evident inclusion f −1(I)→ f −1(J).

Under good conditions, when n = 1 the Reeb graph of Definition 1.12.3 can be
recovered from the categorical Reeb space of Definition 1.12.4 by applying π0 to
pass to components [459].

1.13 Summary

● Metric spaces, topological spaces, groups, and vector spaces are sets endowed
with additional mathematical structure. These structures are the central objects
upon which topological data analysis is built.

● A topological space (X,U) is a set X endowed with a topology U . We may
describe the similarities of (X,U) to other topological spaces by considering
homeomorphisms and homotopy equivalences.

● We may construct topological spaces by gluing together simpler spaces such as
cells (n-disks Dn) along their boundaries. Spaces produced in this way are called
CW complexes. We may also create new topological spaces by considering the
product of two or more smaller spaces (such as the torus in Example 1.5.11) or
by collapsing subspaces of larger spaces, called a quotient (such as the cone in
Figure 1.29).
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● The fundamental group π1(X, x) of a topological space X is the set of homotopy
classes of loops in X based at a fixed point x ∈ X. We may generalize the idea
of the fundamental group to higher dimensions with the nth homotopy group
πn(X, x) (see Definition 1.4.10). As the name suggests, πn(X, x) is a mathematical
group under composition of rescaled maps (see Theorem 1.6.27). The homotopy
groups of a space capture information about the space encoded in maps out of
test spaces, namely spheres.

● Category theory provides a means of formalizing the notion of moving between
different mathematical worlds. For example, we may use the language of cat-
egory theory to restate the previous bulletpoint: πn(X, x) specifies a functor
between the categories of based topological spaces and algebraic groups.

● Simplicial complexes provide a discrete, combinatorial framework for studying
topological spaces. Many topological spaces arise as the geometric realizations
of finite simplicial complexes.

● The combinatorial nature of simplicial complexes allows us to develop the idea
of simplicial homology. For each k ≥ 0, we may consider the group Ck(X) of
linear combinations of oriented k-simplices. Cycles in Ck(X) may or may not
form the boundaries of elements in Ck+1(X). The kth homology group Hk(X;Z)
measures the size of the difference between Ck(X) and the set of boundaries of
elements in Ck+1(X). That is, the kth homology group encodes information about
the k-dimensional holes in X. The homology groups can be computed efficiently
using linear algebra.

● Manifolds are topological spaces that are especially nice in that they admit
Euclidean coordinates locally. Riemannian manifolds provide geometric struc-
ture: a metric, volume, and curvature.

● Given a function f : X → R, the Reeb space encodes information about
topological changes in the level sets defined via inverse images.

1.14 Suggestions for Further Reading

The material we have covered in this section is standard, and in each of the pre-
vious sections, we have made suggestions about accessible treatments for readers
who want more detail. For a reader who wants a geodesic path to the necessary
background for topological data analysis, there are two sources to focus on: the
first part of Munkres’ book on simplicial homology [368], and Riehl’s introductory
textbook on category theory [428]. These are mostly self-contained (e.g., Munkres
has a concise but detailed treatment of the required abstract algebra) and provide
very lucid explanations.


