
Introduction

In the long history of humankind (and animal kind, too) those who
learned to collaborate and improvise most effectively have prevailed.

Charles Darwin

Knowing is not enough; we must apply. Willing is not enough; we
must do.

Johann Wolfgang von Goethe

This book is about the application of algebraic topology to the problem of organiz-
ing and describing biological data. The problems this book studies are of recent
origin. For much of its history biology was a predominantly descriptive science
with comparatively little interaction with mathematics. Explanations of mechanism
took place at the level of entire organisms or cells. But over the last century, the
development of molecular biology has transformed the field so that it is now data
intensive and marked by increasing reliance on mathematics.

This shift began with the discovery of the elemental constituents and rules that
govern biological systems at the molecular level. Early highlights included the
determination of the structure of DNA, RNA, and proteins, the deduction of some
of the processes of information transmission within the cell, and the identification
of specific molecular mechanisms underlying particular biological processes.

For a long time, small amounts of data were hard-won in the laboratory; for
example, many researchers were focused on elucidating the biological mecha-
nisms of individual genes, the sequences of DNA that are translated into RNA
and produce a functional product such as a protein. However, towards the end of
the twentieth century, the rate of data production accelerated very rapidly and it
became possible to study all the genes of a cell (the entire genome) at once. The
publication of the first draft of the human genome [513] in 2001 was a milestone
in this revolution, heralding transformation in almost every realm of biology.
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An incomplete sampling of the subsequent progress on fundamental problems
includes the enumeration of genomic variations in thousands of individuals [122],
detailed molecular characterization of thousands of cancers [343], single cell char-
acterization of tumors [401], study of developmental processes [504], and the
elucidation of the three dimensional structure of DNA in the nucleus of cells
[138, 330].

Mathematics has played a key role in the development of modern molecular biol-
ogy. The amazing progress in data collection depended in part on the development
of mathematical algorithms that supported the assembly of raw DNA sequencing
information and enabled the search for genes in the sequences. The development
of and continued research on these algorithms is a fascinating and deep story, but
it is not the focus of our inquiry here. Rather, we will study mathematical tools for
determining the structure of biological processes and mechanisms from the data.

Analyzing biological data is a difficult problem. There is a large amount of data,
and it is particularly challenging to work with: high-throughput genomic and tran-
scriptomic data typically resides in very high-dimensional spaces (e.g., on the order
of the number of genes in the organism, which can be in the tens of thousands), is
frequently extremely noisy, and often reflects poorly understood systematic errors.
For example, genetically similar organisms or cells can display different molecular
profiles (e.g., present different epigenetic states, express different genes) leading to
markedly different experimental measurements.

In short, modern biology has become a data rich discipline, dependent on sophis-
ticated mathematical techniques for both the production of experimental data and
its interpretation. In this way, it exhibits kinship with modern physics. But in con-
trast to the situation in physics, the mathematical models we have to understand
genomic processes are in general less descriptive and provide fewer conceptual
benefits than the models of physics. One problem is that the immense complex-
ity of fundamental biological systems means that we simply lack good theoretical
frameworks to describe them. For example, the enormously complicated cycle con-
trolling gene expression is still not completely understood. Even our knowledge
of the basic objects of study is incomplete; we hear almost daily that a new non-
coding gene has been identified or that a novel viral species has been associated to
a newly reported disease.

The point of departure for this book is a concrete manifestation of this lack of
models: to date there has been no real analogue in biology for the role of geom-
etry in physics. Geometry is at the heart of modern physics. This is no surprise;
in a sense, modern geometry was invented to describe physical systems. Calculus
was developed in order to describe the acceleration of moving bodies. Einstein’s
theory of general relativity can be succinctly summarized as the contention that
gravity curves spacetime, which can be precisely and concisely expressed in the
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language of differential geometry. In stark contrast, biological data does not natu-
rally appear to have the same kind of rich geometric structure. Typically, all one
has is a collection of data points and various choices of a way of measuring the
distance between them. Even if there was geometry present, it might be hard to see
through the noise.

Our central dogma in this book is that although biological data might not possess
the rigid geometric structure that arises in physics, it nonetheless has meaning-
ful coarser geometry; we will broadly refer to this as shape. In some sense, this
hypothesis is implicit in the standard approach for analyzing genomic data, namely
dimensionality reduction and clustering. We can access the geometry of the situa-
tion through a distance function that takes as input a pair of data points and outputs
a number (larger than 0) that reflects the distance between them. (Here distance is
an abstract notion, not a measure of physical distance.) Dimensionality reduction
refers to the process of using the distances to embed the data points (which might
lie in a 10000-dimensional space) into a low-dimensional space (like the standard
two dimensional Euclidean space R2) in such a way that distances are preserved
as much as possible. Clustering refers to the process of grouping the data points
into “clusters” such that points within a cluster are much closer to each other than
to points in distinct clusters. Often these techniques are combined; clustering algo-
rithms are applied to the results of dimensionality reduction, and we will sometimes
refer to the combination as “clustering analysis.”

Clustering genomic data has been a very successful way to detect genomic
relationships with clinical consequences. In Figure 0.1, there is a representative
example of a clustering analysis of mRNA expression data from pancreatic tumors.
The data, obtained from samples from 147 patients, consists of vectors of num-
bers representing the expression levels for various genes. The distance between
these expression vectors is roughly speaking a measure of similarity; tumor sam-
ples with similar expression profiles are close together. Then the data naturally
breaks up into three clusters of points, as indicated in the plot on the left side of
Figure 0.1. Each column represents the expression vector of a particular tumor
sample; each row represents a particular gene. A point in the square thus encodes
the level of expression of a gene in a sample – red means highly expressed, blue
suppressed.

It is clear from the picture that points within a cluster have similar expression
profiles, but more importantly, these clusters are clinically significant – which clus-
ter a tumor sample is in predicts survival rates. Figure 0.2 graphs the survival
curves for the different clusters; squamous pancreatic adenocarnicomas (cluster 2)
have noticeably worse survival trajectories. That is, understanding the shape of the
expression data as captured by clustering allows us to predict the likely progression
of the cancer.
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Figure 0.1 Using mRNA expression from long non-coding RNA from 147
patients with pancreatic adenocarcinomas, one can observe three different clus-
ters. Cluster 2 is associated to squamous pancreatic adenocarcinomas. Different
clusters reveal molecular mechanisms common to a set of patients. Source: [17].
Reproduced from Gut, Luis Arnes, Zhaoqi Liu, Jiguang Wang et al., Published
Online First: 10 February 2018. c© 2018. With permission from BMJ Publishing
Group Ltd.

Figure 0.2 Different clusters of pancreatic adenocarcinomas have very different
survival profiles. The y-axis represents the fraction of patients as a function of
time. The colors represent the different clusters. Ideally, we would like to assess
the prognosis of a patient based on molecular characteristics, and clustering
patients constitutes a simple way of doing that. In addition to the clinical corre-
lates, different clusters could reflect different molecular mechanisms that lead to
the disease. Source: [17]. Reproduced from Gut, Luis Arnes, Zhaoqi Liu, Jiguang
Wang et al., Published Online First: 10 February 2018. c© 2018. With permission
from BMJ Publishing Group Ltd.
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More generally, dimensionality reduction and clustering methods such as PCA,
MDS, spectral clustering, non-negative matrix factorization, and so forth are
ubiquitous tools for analysis of genomic data. However, despite their successes,
clustering algorithms capture only a very limited amount of information about
shape – they are sensitive only to how many disconnected pieces a data set should
be separated into. And this is often not enough – for example, there are many data
sets of tumor samples where the points do not naturally separate into clusters which
correlate with clinical outcomes.

Moreover, there are many other questions one can pose about the shape of a
data set. For example, a natural question that arises when studying evolutionary
phenomena is whether or not genomic data (for example, sequencing informa-
tion from different flu viruses) can be represented by a tree structure, where the
lengths of the branches correspond to distances between data points. To answer
this question, an obvious approach is to attempt to determine if the points are better
represented not by a tree but by a graph with loops. Such shape information cannot
be extracted from clustering, and traditional dimensionality reduction algorithms
tend to introduce distortions that obliterate this kind of shape.

Our aim in this book is to make the case that robust algorithms for capturing
high-dimensional shape can be effective in situations where clustering fails. Specif-
ically, we want to explain particular mathematical tools from algebraic topology
that generalize clustering algorithms, giving rise to a methodology for extract-
ing scientifically meaningful high-dimensional shape information from genomic
data.

0.1 Why Algebraic Topology?

Modern algebraic topology was invented by Poincaré to provide tools for describ-
ing global properties of differential equations on surfaces. His basic insight was
that the qualitative behavior of differential equations depended on the shape of
the underlying surface. Algebraic topology studies qualitative and often global
properties of geometric objects by constructing algebraic invariants of such
objects.

By geometric object, we mean what we will refer to as a “space”; for the pur-
poses of current discussion this means a subset of Euclidean space (e.g., the surface
of a rubber band, or a sheet of paper, or a soda can). By algebraic, we mean some-
thing like a number or a vector space. By invariant, we mean something which is
not changed by smooth deformation; stretching is allowed, but not tearing, as if
we were studying things made out of soft clay. By global, we mean something that
cannot be figured out by looking at a little piece of the object – one has to inspect
the entire thing.
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Let us begin with a very simple example. Suppose we want to answer the geo-
metric question of distinguishing between two collections of non-overlapping solid
blobs; given a collection of n solid blobs (referred to as the “disjoint union”) and
the disjoint union of k solid blobs in the plane R2, we want to decide if these pic-
tures are the same or different. (See Figure 0.3 for a representative example.) An
easy way to do this is to count the number of path components – the number of dis-
tinct pieces that cannot be connected by a path, i.e., a line drawn without removing
the pencil from the page. For example, in Figure 0.3, the left hand shape has three
path components and the right hand shape has five.

This count is a simple example of an algebraic invariant; it is a number, and it
is not affected by smoothly deforming the blobs. Moreover, it is clearly a global
quantity – just looking at a little piece of one of the blobs or even any finite sub-
set of the blobs will not suffice to compute it. And using this count allows us to
distinguish between geometric objects simply by the algebraic operation of com-
paring two numbers. Notice that counting path components feels very reminiscent
of clustering! And as we will explain, there is a precise relationship between these
procedures.

The count of path components is a fairly crude invariant of a space. But there are
many more sophisticated invariants which can detect more interesting properties
of the shape of a geometric object. Figure 0.4 shows a more difficult version of the
question about blobs: how can we distinguish between a circle and a figure-eight?

Figure 0.3 On the left, there are three path components, on the right, five path
components.

Figure 0.4 A circle (or annulus) has a single hole; a figure-eight (or union of two
annuli) has two holes.
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Counting path components cannot distinguish these spaces; there is a single path
component in each case. However, if we count the number of “holes” or closed
loops, we see that the figure-eight has two holes whereas the circle has one hole.
This is another global invariant, the first Betti number, which counts the number of
“holes” enclosed by circles in a geometric object. Once again, notice that smoothly
stretching the circle and the figure-eight will not change the Betti number.

These examples suggest that algebraic topology provides a powerful methodol-
ogy for capturing robust global properties of the shape of geometric objects and
turning them into algebra. But it is a priori not clear how to use these tools to study
real data! The questions we have been discussing above have used spaces that are
defined as infinite sets of points, most concisely specified by equations. This obser-
vation raises two important issues. First, one might worry that describing spaces
in this way does not seem to be algorithmically tractable. Second, the data sets
of biology are likely to be finite sets of isolated points – how can we associate a
continuous space to a finite set?

0.2 Combinatorial Algebraic Topology

Conveniently, there is a long tradition in algebraic topology of studying combi-
natorial models of geometric objects. By combinatorial, we mean a description
of a space using only discrete data. Such models are well suited to algorithmic
computation. The most important kind of combinatorial model for the approach
discussed in this book is the simplicial complex. We will give a precise definition
of a simplicial complex in Section 1.8, but roughly speaking a simplicial complex
should be thought of as a geometric object specified by gluing together a collection
of points, line segments, triangles, and higher dimensional analogues called sim-
plices. Simplicial complexes represent spaces up to continuous deformation; they
are a satisfactory representation for computing topological invariants.

Figure 0.5 presents examples of the standard pieces (called simplices) that
are glued together to form the space represented by a simplicial complex. A k-
dimensional simplex has faces which are (k−1)-dimensional simplices; a simplicial

Figure 0.5 Simplicial complexes model spaces made by gluing together stan-
dard triangular pieces, called simplices; here we illustrate the 0-, 1-, 2-, and
3-dimensional simplices.
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{v2,v0} {v0,v1}
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Figure 0.6 A simplicial model of the circle is given by gluing three 1-simplices
together at their endpoints.

complex is made by gluing together standard simplices along their faces. For
example, the faces of a 1-simplex are the two endpoints. The faces of a 2-simplex
are the three edges of the triangle.

To describe a simplicial complex, one simply specifies the number of 0-
simplices, 1-simplices, etc. as well as instructions for gluing them together. For
example, a simplicial complex consisting only of 0-simplices and 1-simplices is
specified by a collection of edges and instructions for attaching them at their end-
points – this is precisely the data of a graph, with 0-simplices the vertices and
1-simplices the edges. That is, a simplicial complex is precisely a higher dimen-
sional generalization of a graph.

For example, consider the complex in Figure 0.6. We have 0-simplices {v0, v1, v2}
and the 1-simplices {{v0, v1}, {v1, v2}, {v2, v0}} where, for example, the 1-simplex
{v0, v1} has faces v0 and v1, and is thought of as a line segment connecting the ver-
tices. We think of this complex as representing a circle; we are working with spaces
up to continuous deformation, and a triangle can be stretched out into a circle.

Notice that there are other natural ways to represent a circle: one could
use the “square” specified by the 0-simplices {v0, v1, v2, v3} and the 1-simplices
{{v0, v1}, {v1, v2}, {v2, v3}, {v3, v0}}.

Figure 0.7 shows how to produce a simplicial model of a solid disk (the circle
plus its interior): we could take our first model of the circle above and add the
2-simplex with faces the 1-simplices; we can uniquely specify this 2-simplex as
{v0, v1, v2}. Here the 0-simplices and 1-simplices of the circle specify the boundary
of the disk; the 2-simplex describes how the interior is glued to the boundary. An
example of a more complicated simplicial complex is shown below in Figure 0.8;
this represents a hollow ball with a circle attached to it (at the vertex v4) and a line
attached to the circle (at the vertex v2).

The real payoff from working with simplicial complexes is that algebraic invari-
ants of the spaces they represent can be algorithmically computed directly from
the combinatorial description. The prototypical example of an algebraic invariant
associated to a simplicial complex is the Euler characteristic. Suppose that we
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Figure 0.7 A simplicial model of the solid disk is given by gluing three 1-
simplices together at their endpoints and gluing a 2-simplex to them at its
faces.
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Figure 0.8 The simplicial complex on the left is made by gluing together
the standard simplices. Combinatorially, we would write this as having
0-simplices {v1, v2, v3, v4, v5, v6, v7}, 1-simplices {{v1, v2}, {v2, v3}, {v2, v4},
{v3, v4}, {v4, v5}, {v4, v6}, {v4, v7}, {v5, v6}, {v5, v7}, {v6, v7}}, and 2-simplices
{{v4, v5, v6}, {v5, v6, v7}, {v4, v6, v7}, {v4, v5, v7}}. On the right is a space represented
by this complex.

have a simplicial complex with V vertices, E 1-simplices, and F 2-simplices and
no higher simplices. Then the Euler characteristic is V − E + F. In general, the
Euler characteristic of a simplicial complex is the alternating sum of the numbers
of k-simplices.

For example, the Euler characteristic of a point is clearly 1. The Euler character-
istic of a simplicial complex consisting of a single 1-simplex and its two endpoints
is 2−1 = 1. Next, consider the simplicial complex modeling the circle from the dis-
cussion above – this is a loop formed by the three vertices and three line segments.
This complex has Euler characteristic 3 − 3 = 0. If we take the model of the circle
given by the “square,” this also has Euler characteristic 4 − 4 = 0, and in general
any such model of a circle will have n vertices and n 1-simplices and hence Euler
characteristic 0.

On the other hand, the Euler characteristic of the disk given by filling in the
triangle with a 2-simplex is 3 − 3 + 1 = 1. Notice that the Euler characteristic
of the filled triangle is the same as the Euler characteristic of a point; the Euler
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characteristic is a topological invariant, as it is insensitive to smoothly crushing the
triangle to the central point. Comparing the results for the triangle and the filled
triangle, we observe that the Euler characteristic is detecting a topological property,
namely that the loop has a hole in the middle.

We can also compute the path components of a space represented by a simplicial
complex directly from the complex; this turns out to reduce to a standard prob-
lem in graph theory. More generally, one can compute many algebraic invariants
directly from simplicial complexes – for instance, the problem of counting holes
(i.e., the Betti numbers) can be transformed into an elementary problem in linear
algebra, as we shall see in Section 1.10. In summary, provided that we can represent
our data using an appropriate simplicial complex, we can apply the computational
tools of algebraic topology.

0.3 Topological Data Analysis (TDA)

The kind of biological data we will work with is typically presented as a finite set
of points equipped with some kind of distance or dissimilarity measure between
the points; a mathematical model of this situation is a finite metric space, which
is a set X of points equipped with a distance function ∂X satisfying a few simple
axioms. The central question is: given data presented as a finite metric space, how
can we robustly produce a simplicial complex such that the algebraic invariants of
the simplicial complex reflect the shape of the data? Often, we hypothesize that
these points are samples from a probability distribution on some geometric object;
Figure 0.9 gives an idealized picture of this situation.

Consideration of clustering guides us to an answer. To explain, we need to make
the connection between clustering and components precise, via single-linkage
clustering, which works as follows.

1. Fix a scale parameter ε.
1. Assign two points x and y to the same cluster if they are connected by a path of

points (for some k)

x = x0, x1, x2, . . . xk−1, xk = y

such that each point xi is within a distance ε of xi+1.

Figure 0.9 On the left, the underlying geometric “ground truth.” On the right,
finite samples from which we seek to recover the invariants of the circle, figure-
eight, and nested circles.
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Figure 0.10 The clusters are the path components of the simplicial complexes.

We can interpret single-linkage clustering in terms of simplicial complexes: form
the simplicial complex whose vertices are the data points and whose 1-simplices
connect points x and y if they are less than a distance ε apart. Now the single-
linkage clusters are precisely the path components of this simplicial complex; see
Figure 0.10 for an illustration. But we can go even further – namely, we can add
higher dimensional simplices when groups of points are close in some way. For
instance, we could add a 2-simplex for every triple of points {x, y, z} such that
each pair {x, y}, {x, z}, and {y, z} has distance less than ε. We then hope that the
topological invariants of the resulting simplicial complex are capturing qualitative
information about the shape of the data set.

This procedure has some attractive properties. Sufficiently small perturbations
of the data typically result in small perturbations of the resulting simplicial com-
plex that do not change algebraic invariants. Moreover, the simplicial complex
constructed in this fashion reflects the sensible hypothesis that small measured
distances between data points are likely to be accurate, but large distances are
probably not accurate and should instead be estimated in terms of small distances.
So intuitively speaking, it seems plausible that such topological invariants will be
robust against certain kinds of noise and corruption, and will reflect real geometric
structure of the data.

However, choosing ε correctly is difficult; this requires some knowledge of
the feature scale of the data. It is illuminating to reflect on what happens to
these simplicial complexes as ε increases; see Figure 0.11. When ε is very small,
there are just discrete points (panel A). When ε is larger, the resulting simpli-
cial complex has interesting geometric structure (panels C and D). And when ε

is very large, everything is connected and there is no information recovered at all
(panel E).

In the example above, it is not clear what the “correct” value of ε is, as the
underlying topology is not evident. The best we can say is that there is a wide range
of values for ε in which there is non-trivial topology. In simple cases, however, we
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A B C D E

Figure 0.11 As ε grows, more and more simplices are added to the simplicial
complex.

A B C D E

Figure 0.12 As ε grows, topological features appear. In panels C and D, the circle
can be detected.

might hope to extract more precise topological hypotheses; we illustrate how this
might work in Figure 0.12.

When ε is small, again the result is just discrete points (panel A). As ε grows,
adjacent points begin to link up (panel B). But there is a wide range in which
ε results in adjacent points along the circle being connected without connecting
points across the circle (panels C and D); this is an illustration of the importance
of privileging “short” distances over “long” ones. One way of looking at the sit-
uation is to observe that for these ε, distances between points that are less than ε
accurately reflect distances along the circle. When ε is large enough, connections
across the circle “short-circuit” the complex (panel E), and we eventually again
obtain a completely connected complex.

As both of the preceding examples make clear, it is a priori very difficult to guess
what the correct feature scale should be. There might be multiple scales at which we
expect to see meaningful topological features, or it might even be the case that no
single scale correctly encodes the salient features. A basic philosophy underlying
topological data analysis is that scale issues should be handled simply by encoding
the complexes for all ε simultaneously and keeping track of how they change as ε
changes. This leads to a series of new algebraic invariants, which reflect the persis-
tence of topological features across scales. By using these invariants, topological
data analysis provides tools for robustly describing multiscale shape information
of data.

In recent years, there has been an explosion of work in this area; however,
many interesting problems remain to be solved. For instance, there are still many
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questions about the relationship between statistical practice and the invariants of
topological data analysis. Nonetheless, part of our motivation for writing this book
is that already the field is sufficiently mature for there to be many interesting appli-
cations to biological data. With this in mind, we now explain why topological data
analysis is a potentially very useful tool to analyze biological data. We begin by
explaining the kinds of biological problems that we will focus on in this book.

0.4 Genetics and Genomics

We will focus on biological questions arising from the perspectives of modern
genetics (the study of genes, the fundamental units of heredity) and genomics
(the study of genomes, the collections of all genes in an organism). These ques-
tions have been chosen to illustrate how topological data analysis can be used
to address biological problems. Genetics and genomics are particularly amenable
to the application of topological methods: there is a great need for mathematical
tools to study the shape of large amounts of large scale experimental data, and the
standard methods in use are comparatively crude.

At a high level, most of the problems in genetics can be posed in a simple fash-
ion. There are two “spaces” of interest, the space of genotypes (the set of possible
genomes) and the space of phenotypes (the set of observable characteristics of an
organism that could occur in a particular environment); scientific questions are
typically about describing and understanding a function that maps genotype into
phenotype (e.g., see Figure 0.13). Such a function specifies which genetic alter-
ations lead to a particular phenotype. Conversely, the function also determines the

Figure 0.13 Many problems in genetics can be posed as the study of functions
from the space of genes and genomes (the genotype) and the environment to
the observable characteristics (the phenotype). Variation in genes and genomes
between different organisms causes changes in observable characteristics, such
as protein structure, protein function, disease survival, and many other potential
phenotypes.
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most interesting phenotypes to look at when studying variations in a particular gene.
For example, cancer genetics studies the impact of mutations in cancer cells (geno-
types) on clinical manifestations of cancer, notably on tumor growth, tissue inva-
sion, and metastasis (phenotypes). To understand this relationship, one studies the
molecular mechanisms of this association: how a mutation changes a protein, how
this change affects the cell, and how such changes lead to the observed phenotypes.

At a very high level, the genome can be understood as a long word whose let-
ters are the four nucleotide bases, denoted (A, C, G, and T or U, in the case of
RNA). The length of this word varies dramatically across different organisms. The
shortest, called viroids, are a few hundred bases. Humans have roughly three bil-
lion bases. And plant genomes can be two orders of magnitude larger (e.g., the
genome of Paris japonica, a rare and beautiful plant from alpine regions in Japan,
has a genome of 150 billion bases). The situation is further complicated by the fact
that in multicellular organisms, such as humans, different cells will have similar
but not necessarily identical genomes. Mathematically, different organisms can be
regarded as producing distinct points in the genotype space, and so can different
cells from a single organism.

However, the most interesting sources of variation come from the fact that
genomes are not stable objects; they change over time. Specifically, errors occur
when the genome of an organism is copied to produce offspring. The simplest types
of mistakes are point mutations, where at a particular place in the genome one base
is replaced with another one. However, more drastic changes can occur; sections
of the genome can be lost or duplicated, or there can be more wholesale scram-
bling. In Figure 0.14 we show the typical order of magnitude of the size of the
genome of different organisms along with the mutation rates (i.e., the probability
of a point mutation at a particular spot per replication). Genome sizes and muta-
tion rates vary by orders of magnitude; organisms with shorter genomes tend to be
prone to mutations. A pervasive and more complicated phenomenon is that differ-
ent organisms can exchange genomic information, resulting in new genomes which
shuffle together the original genetic information. These processes produce clouds
of points in the genome space; the problem is then to understand the relationship
between these point clouds and resulting phenotypic changes.

However, the phenotype space is harder to specify and often more complex than
the genotype space. Examples of phenotypic characteristics include the expression
of different mRNAs, the expression of proteins, the shapes of these proteins, the
shape of the cell, the ability to grow and replicate, the susceptibility to differ-
ent stimuli, the ability to respond to an infection, and the size and weight of a
multicellular organism. Obviously we do not expect an exhaustive enumeration
of scientifically important observable characteristics. Instead, different areas of
biology focus on specific choices of salient phenotype; for example, in evolutionary
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Figure 0.14 The size of genomes varies by many orders of magnitude. Viroids
are small (a few hundred bases) sequences of free RNA that can infect plants. The
genomes of RNA viruses (like influenza) are usually around 10,000 bases, the
genomes of DNA viruses are typically 100,000 bases, and the genomes of bacteria
can be millions of bases. Some plant genomes can reach 100 billion bases (Paris
japonica). There is a fascinating relationship between the size of the genome and
the number of mistakes per replication (mutation rate), represented here in the
y-axis.

biology we might be interested in fitness or the ability to proliferate in some partic-
ular environment. In the context of tumors, proliferation, invasion of new tissues,
and survival rate are all interesting phenotypes to study.

Finally, the environment is also an important factor determining when genetic
variation will cause changes in the phenotype. Many genes are only expressed in
certain circumstances, and beneficial alterations in one environment could be detri-
mental in another one. As a first approximation to reduce the complexity of the
problem, it is common to fix or reduce the number of environmental factors to a
few conditions that are suspected to be germane to the phenotype under study.

0.5 Why Is Topological Data Analysis Useful in Genomics?

Our contention is that topological data analysis provides novel and effective tools
to attack the problem of inferring the relationship between genotypic events and
changes in phenotype. For example, understanding the shape of the data in genome
space reveals the way that certain phenotypical changes arise. To support our claim,
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in this book we describe a number of biological problems where the methods of
topological data analysis reveal new and interesting phenomena. In each case, bio-
logical data is presented as a finite collection of points equipped with a distance,
i.e., a finite metric space. Topological invariants of associated simplicial complexes
then turn out to encode biologically relevant quantities. Here, we describe three
illustrative examples (see Figure 0.15).
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Figure 0.15 Examples of biological point cloud data: (A) Starting from stem
cells, different cell types arise from a process of differentiation over time. Single
cell approaches provide information about differentiation, where each point cor-
responds to a particular cell. Important questions include characterizing distinct
subpopulations/expression programs/specific surface markers, and determining
how cells decide their fate. (B) Each point represents the tumor of a patient.
Questions in this space concern the classification of patients according to their
molecular profile, association of location in this space with survival, determina-
tion of mechanisms of drug resistance, and the identification of specific pathways
implicated in tumor progression. (C) Each dot (tree leaf) represents a genome.
Traditionally, we expect evolutionary processes to be described as trees. But there
are many examples of phenomena (e.g., recombinations) that do not fit into this
framework. This raises the question of how to describe the relationship between
genomes.
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Our first example concerns the process of differentiation (panel A). A baby
animal begins from a single cell that divides and differentiates to generate an
incredibly complicated collection of organs, tissues, and cell types. Differentiation
is usually represented as a branching process, with a root, the stem cell, giving
rise to descendant cells of many different types. All of our cells share a com-
mon genome: a particular cell type is characterized by the expression of specific
genes, i.e., by the amounts of messenger RNA (mRNA) or protein generated from
each gene. Transcription, the generation of RNA copies from DNA, follows a care-
fully orchestrated program in which certain genes are turned on in consonance
with other genes. This transcription program is regulated by proteins that control
the expression of multiple genes; the regulation ensures that the right amounts
of RNA are produced at the right times. Cells of similar type have related tran-
scriptional programs and thus similar gene expression profiles – comparing the
expression of genes of individual cells sampled along the process of differenti-
ation can reveal the specific mechanisms that determine what type of cell will
arise.

Until recently, studying the process of differentiation was complicated by the fact
that experimental techniques commingled genomic information from many cells,
each potentially in a different stage of differentiation. However, single cell expres-
sion technologies now allow the measurement of the transcriptional state of single
cells throughout the differentiation process. The transcriptional state of a cell can be
described by a vector (e1, e2, . . . , eG), where ei is a measure of the amount of mRNA
produced from gene i and G is the total number of genes measured. Given this data,
we wish to characterize different cell states and types and infer the trajectory of
the differentiation process. This problem can be formulated as reconstructing low-
dimensional geometric structure from a sample of points (cells sequenced) in a
high-dimensional ambient space (with dimension given by the number of genes).
Both the Euclidean distance and the correlation between expression vectors can be
used to provide metrics on transcription vectors, and clustering using these metrics
has been applied to great effect. Framed in this fashion, the problem of analyzing
differentiation using single cell data is clearly a potential application area for the
tools of topological data analysis.

Our second example focuses on cancer (panel B). A cancerous tumor is the result
of the accumulation of mutations that lead to uncontrolled cell growth; for exam-
ple, mutations that alter the cell division cycle by reducing apoptosis (cell death),
enhancing blood supply, and increasing generation or responsiveness to growth-
promoting signals. Tissue samples from tumors in patients can be sequenced to
identify these mutations and to try to determine how expression differs between
tumors and normal tissue. While each individual tumor is the result of specific
genomic alterations, almost all currently available therapies are generic. Moreover,
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it is often unclear why some tumors are cured by treatment whereas others progress.
The goal of precision medicine is to provide doctors with guidance enabling the
deployment of therapies tailored to a particular patient’s tumors.

Given sequencing data from a variety of tumors, one can study the relation-
ships between these tumors in the hope of finding improved tumor classifications,
discovering specific molecular mechanisms of progression and drug resistance,
and eventually providing specific therapeutic options based on the tumor’s molec-
ular profile. Sequencing data taken from the same tumor at different times
gives insight into tumor progression and development. Traditional computational
approaches cluster the data and use the clusters to try to characterize the spec-
trum of alterations, pathways, and the clinical characteristics (e.g., survival).
However, often the structure of the data does not support unambiguous divi-
sion into clusters; in this case, the task of grouping patients is very difficult, as
the number of clusters becomes a matter of opinion and many of the samples
remain unclassified. Better tools for understanding and characterizing the shape
of the tumor data have the potential to provide valuable information about clin-
ical relationships. As we explain, sophisticated geometric models of the space
of tumors as well as simplicial complexes associated to the metric space of
sequencing data reveal biologically meaningful structure invisible to clustering
algorithms.

Our final example has to do with evolution (panel C). Darwin first proposed the
phylogenetic tree as a means to represent the evolution of phenotypic attributes.
Since then, methods in molecular phylogenetics have been developed to character-
ize evolutionary relationships between species. These approaches generally assume
that genomic information is solely passed from parents to children.

However, it has long been known that more complex modes of genetic exchange
can occur, including lateral gene transfer in bacteria, recombination and reassort-
ment in viruses, viral integration in eukaryotes, and fusion of genomes of symbiotic
species. These “horizontal inheritance” phenomena can cause serious concerns
about the reliability of inference of evolutionary relationships.

For example, traditional phylogenetic classifications of microorganisms have
relied on evolutionary relationships inferred from 16S ribosomal RNA, a highly
conserved genomic region between bacteria and archea species. However, as this
region accounts for under 1% of the complete genome in most species, the vast
majority of genetic information is ignored. Since horizontal inheritance is perva-
sive, the remaining 99% of genes might tell a very different evolutionary story. This
problem becomes acute in viruses that lack 16S or other universal genes. Such chal-
lenges underscore the need for approaches to describe the shape of evolutionary
processes in a more general way, free from the constraints of the tree representa-
tion. As a first step, it would be very useful to have criteria to determine when tree
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representations are inadequate. The rapidly growing number of sequenced micro-
bial genomes provides fertile ground for developing and testing new approaches to
quantifying both vertical and horizontal evolutionary processes.

While recent developments in phylogenetic networks provide ways to identify
instances of non-tree-like events, the field does not have a widely accepted frame-
work to visualize and quantify the frequency, scale, and significance of horizontal
evolution. Although phylogenetic trees can be visually complex, from a topological
standpoint they are very simple mathematical objects: a tree is a simplicial complex
with only 0-simplices and 1-simplices that contains no loops. In contrast, simple
kinds of horizontal evolution can be represented by the presence of loops. Thus,
computing Betti numbers of the simplicial complexes produced from sequencing
data can detect horizontal evolution.

0.6 What Is in This Book?

This book is aimed at two distinct audiences: quantitative biologists interested in
applying new mathematical tools to the study of genomics, and mathematicians
and computer scientists interested in understanding geometric problems that arise
in modern genetics and genomics. As a consequence, we have written neither a
traditional mathematics textbook nor a standard biology textbook.

In the first part of the book, we begin by giving a rapid but comprehensive
review of the mathematical background for topological data analysis (TDA). We
state definitions and theorems, and provide many examples, but do not give proofs;
our goal is to provide context for understanding the TDA framework and also to
provide detailed references for the reader interested in achieving a deeper under-
standing. We assume that the reader has some familiarity with calculus, linear
algebra, elementary probability, and basic statistics.

In Chapter 1, we give a brief introduction to the basic ideas of algebraic topol-
ogy, including discussion of algebraic background (linear algebra and abstract
algebra), basic point-set topology, simplicial complexes, and the construction of
homology groups. In Chapter 2, we give an overview of topological data analysis,
focused on the theory surrounding persistent homology. We review the machinery
for understanding topological invariants of data sets in terms of associated simpli-
cial complexes, explain persistent homology and the basic structural theorems, and
describe the Mapper algorithm. In Chapter 3, we describe the emerging and active
area of research integrating topological data analysis with the methods of statistics;
this is a necessity for the use of these tools to analyze scientific data and perform
inference. In Chapter 4, we give a brief overview of the area of manifold learn-
ing, which is closely related to topological data analysis, and review mathematical
models of spaces of phylogenetic trees.
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In the second part of the book, we explore some biological applications. In Chap-
ter 5, we study the topology of point clouds in genomic space using persistent
homology and the geometry of phylogenetic spaces. Specific examples include
viruses (influenza and HIV), bacteria, and humans. Chapter 6 provides a concise
introduction to cancer genomics; among the applications, we use topological data
analysis to study the evolution of tumors in collections of patients, to describe
the stratification of patients, and to capture the association between genomic data
and sensitivity to diverse therapeutic agents. Next, in Chapter 7, we turn to a new
type of data that is particularly well suited to TDA tools: expression profiles of
large collections of single cells. In Chapter 8 we study the three dimensional struc-
ture of DNA using persistent homology, with examples from bacteria and human
cells. Finally in Chapter 9 we use a mapping of time-series data into finite met-
ric spaces to extract periodic features. Each of these chapters contains background
information on the relevant biological problem and can be read independently.


