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Abstract We study distributions of persistent homology barcodes associated to taking
subsamples of a fixed size from metric measure spaces. We show that such distributions
provide robust invariants of metric measure spaces and illustrate their use in hypothesis
testing and providing confidence intervals for topological data analysis.
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1 Introduction

Topological data analysis assigns homological invariants to data presented as a finite
metric space (a point cloud). If we imagine these data as measurements sampled from
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some abstract universal space X , the structure of that space is a metric measure space,
having a notion both of distance between points and of probability for the sampling.
A standard homological approach to studying the samples is to assign a simplicial
complex and compute its homology. The construction of the associated simplicial
complex for a point cloud depends on a choice of scale parameter. The insight of
persistence is that one should study homological invariants that encode change across
scales; the correct scale parameter is a priori unknown. As such, a first approach
to studying the homology of X from samples is to simply compute the persistent
homology PH∗(X̃) of simplicial complexes associated to the sampled point cloud X̃ .

We can gain some perspective by imagining that we could make measurements
on X directly and interpret these measurements in terms of random sample points.
With this in mind, we immediately notice some defects with homology and persistent
homology as invariants of X . While the homology of X captures information about
the global topology of the metric space, the probability space structure plays no role.
This has bearing even if we assume X is a compact Riemannian manifold and the
probability measure is the volume measure for the metric: handles that are small rep-
resent subsets of low probability but contribute to the homology in the same way as
large handles. In this particular kind of example, persistent homology can identify this
type of phenomenon (by encoding the scales at which homological features exist);
however, in a practical context, the metric on the sample may be ad hoc (e.g., [12])
and less closely related to the probability measure. In this case, we could have handles
that are of medium size with respect to the metric but still low probability with respect
to the measure. Homology and persistent homology have no mechanism for distin-
guishing low-probability features from high-probability features. A closely related
issue is the effect of small amounts of noise (e.g., a situation in which a fraction of the
samples is corrupted). A small proportion of bad samples can arbitrarily change the
persistent homology. These two kinds of phenomena are linked, insofar as decisions
about whether or not low-probability features are noise is part of data analysis.

The disconnect with the underlying probability measure presents a significant prob-
lem when trying to adapt persistent homology to the setting of hypothesis testing and
confidence intervals. Hypothesis testing involves making quantitative statements about
the probability that the persistent homology computed from a sampling from a metric
measure space is consistent with (or refutes) a hypothesis about the actual persistent
homology. Confidence intervals provide a language to understand the variability in
estimates introduced by the process of sampling. Because low-probability features
and a small proportion of bad samples can have a large effect on persistent homology
computations, persistent homology groups make poor test statistics for hypothesis
testing and confidence intervals. To obtain useable test statistics, we need to develop
invariants that better reflect the underlying measure and are less sensitive to large
perturbations. To be precise about this, we use the statistical notion of robustness.

A statistical estimator is robust when its value cannot be arbitrarily perturbed by a
constant proportion of bad samples. For instance, the sample mean is not robust because
a single extremely large sample value can dominate the result. On the other hand, the
sample median is robust. As we discuss in Sect. 4, persistent homology is not robust.
A small number of bad samples can cause large changes in the persistent homology,
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essentially as a reflection of the phenomenon of large metric low-probability handles
(including spurious ones).

To handle this problem, we adopt a standard statistical perspective, namely that the
distribution of an estimator on some fixed finite number of samples is an appropriate
way to grapple with such behavior. To make this precise, we need to be able to talk
about probability distributions on homological invariants.

Using the idea of an underlying metric measure space X , formally the process of
sampling amounts to considering random variables on the probability space Xn = X ×
· · · × X equipped with the product probability measure. The kth persistent homology
of a size n sample is a random variable on Xn taking values in the set B of finite
barcodes [47], where a barcode is essentially a multiset of intervals of the form [a, b).
The set B of barcodes is equipped with a metric dB, the bottleneck metric [18], and
we show in Sect. 3 that it is separable and that its completion B is also a space of
barcodes. Then B is Polish, i.e., complete and separable, which makes it amenable to
probability theory (see also [37] for similar results). In particular, various metrics on
the set of distributions on B metrize weak convergence, including the Prohorov metric
dPr and the Wasserstein metric dW . We consider the following probability distribution
on barcode space B (restated in Sect. 5 as Definition 5.1).

Definition 1.1 For a metric measure space (X, ∂X , μX ) and fixed n, k ∈ N, define�n
k

to be the empirical measure induced by the kth n-sample persistent homology, i.e.,

�n
k (X, ∂X , μX ) = (PHk)∗(μ⊗n

X ),

the probability distribution on the set of barcodes B induced by pushforward along
PHk from the product measure μn

X on Xn .

In other words, �n
k is the probability measure on the space of barcodes where the

probability of a subset A is the probability that a size n sample from X has a kth
persistent homology landing in A. Note that the pushforward makes sense since PHk

is a continuous, and hence Borel measurable function; see Sect. 5 for a discussion.
Although complicated,�n

k (X) is a continuous invariant of X in the following sense.
The moduli space of metric measure spaces admits a metric (in fact several) that
combine the ideas of the Gromov–Hausdorff distance on compact metric spaces and
weak convergence of probability measures [42]. We follow [29] and use the Gromov–
Prohorov metric, dG Pr . We prove the following theorem in Sect. 5 (where it is restated
as Theorem 5.2).

Theorem 1.2 Let (X, ∂X , μX ) and (X ′, ∂X ′ , μX ′) be compact metric measure spaces.
Then we have the following inequality relating the Prohorov and Gromov–Prohorov
metrics:

dPr (�
n
k (X, ∂X , μX ),�

n
k (X

′, ∂X ′ , μX ′)) ≤ n dG Pr ((X, ∂X , μX ), (X
′, ∂X ′ , μX ′)).

This inequality becomes increasingly tight as the right-hand side approaches 0;
we discuss precise estimates in Sect. 5. As we explain there, the fact that the bound
increases with n is expected behavior: n should be thought of as a scale parameter,
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and increasing n yields a more sensitive invariant. The main import of Theorem 1.2 is
that for fixed n, empirical approximations to�n

k (X, ∂X , μX ) computed from samples
S taken from X are asymptotically convergent as the number of samples increases.

Theorem 1.2 therefore validates computing�n
k in practice using empirical approx-

imations, where we are given a large finite sample S that we regard as drawn from X .
Making S a metric measure space via the subspace metric from X and the empirical
measure, we can compute �n

k (S) as an approximation to �n
k (X). This procedure is

justified by the fact that as the sample size increases, the empirical metric converges
(in dG Pr ) to X ; see Corollary 5.4. In particular, this justifies a resampling procedure to
approximate�n

k by subsampling from a large sample of size N . (We can also approxi-
mate using more sophisticated resampling methodology, a topic we will study in future
work.)

Moreover, as a consequence of the continuity implied by the previous theorem,
we can use �n

k to develop robust statistics: if we change X by adjusting the metric
arbitrarily on an ε probability mass to produce X ′, then the Gromov–Prohorov distance
satisfies dG Pr (X, X ′) ≤ ε.

A difficulty with applying �n
k is that it can be hard to interpret or summarize the

information contained in a distribution of barcodes, unlike distributions of numbers for
which there are various moments (e.g., the mean and the variance) that provide concise
summaries of the distribution. One approach is to develop topological summarizations
of distributions of barcodes; a version of this using Frechet means is explored in [44].
Another possibility is to embed the space of barcodes in a more tractable function
space [5]. In this paper, we instead consider cruder invariants that take values in R.
One such invariant is the distance with respect to a reference distribution on barcodes
P , chosen to represent a hypothesis about the persistent homology of X .

Definition 1.3 Let (X, ∂X , μX ) be a compact metric measure space and P a fixed
reference distribution on B. Fix k, n ∈ N. Define the homological distance on X
relative to P as

HDn
k ((X, ∂X , μX ),P) = dPr (�

n
k (X, ∂X , μX ),P).

We also consider a robust statistic MHDn
k related to HDn

k without first computing the
distribution �n

k . To construct MHDn
k , we start with a reference barcode and compute

the median distance to the barcodes of subsamples.

Definition 1.4 Let (X, ∂X , μX )be a compact metric measure space, and fix a reference
barcode B ∈ B. Fix k,m ∈ N. Let D denote the distribution on R induced by applying
dB(B,−) to the barcode distribution�n

k (X, ∂X , μX ). Define the median homological
distance relative to B as

MHDn
k ((X, ∂X , μX ), B) = median(D).

Remark 1.5 The appearance of reference barcodes and distributions in the preceding
invariants raises the question of where one obtains these quantities. As we illustrate
in Sect. 7 below, a common source of reference points is simply an a priori hypothesis
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about the data we wish to test. The Frechet mean [44] of a collection of samples
provides a more principled approach to producing such reference points.

The use of the median rather than the mean in the preceding definition ensures that
we compute a robust statistic in the following sense.

Definition 1.6 Let f be a function from finite metric spaces to a metric space (B, d).
We say that f is robust with robustness coefficient r > 0 if for any nonempty finite
metric space (X, ∂), there exists a bound δ such that for any isometric embedding of X
in a finite metric space (X ′, ∂ ′), |X ′|/|X | < 1 + r implies d( f (X, ∂), f (X ′, ∂ ′)) < δ,
where |X | denotes the number of elements of X .

For example, under the analogous definition on finite multisubsets of R (in place of
finite metric spaces), the median defines a function to R that is robust with robustness
coefficient 1 − ε for any ε since expanding a multisubset X to a larger one, X ′,
with fewer than twice as many elements will not change the median by more than
the diameter of X . Similarly, for a finite metric space X , expanding X to X ′, the
proportion of n-element samples of X ′ that are samples of X is (|X |/|X ′|)n ; when this
number is more than 1/2, the median value of any function f on the set of n-element
samples of X ′ is then bounded by the values of f on n-element samples of X . Since
(N/(N + r N ))n > 1/2 for r < 21/n − 1, any such function f will be robust, with
robustness coefficient r satisfying this bound, and in particular for r = (ln 2)/n.

Theorem 1.7 For any n, k,P , the function MHDn
k (−,P) from finite metric spaces

(with the uniform probability measure) to R is robust with robustness coefficient >
(ln 2)/n.

The function �n
k from finite metric spaces to distributions on B and the function

HDn
k from finite metric spaces to R are robust for any robustness coefficient for trivial

reasons since the Gromov–Prohorov metric is bounded. However, for these functions
we can give explicit uniform estimates for how much these functions change when
expanding X to X ′ just based on |X ′|/|X |. We introduce the following notion of
uniform robustness, which is strictly stronger than the notion of robustness.

Definition 1.8 Let f be a function from finite metric spaces to a metric space (B, d).
We say that f is uniformly robust with robustness coefficient r > 0 and estimate bound
δ if for any nonempty finite metric space (X, ∂) and any isometric embedding of (X, ∂)
into a finite metric space (X ′, ∂ ′), |X ′|/|X | < 1+r implies d( f (X, ∂), f (X ′, ∂ ′)) < δ.

Uniform robustness gives a uniform estimate on the change in the function from
expanding the finite metric space. For example, the median function does not satisfy
the analogous notion of uniform robustness for functions on finite multisubsets of R.
We show in Sect. 5 that�n

k and HDn
k satisfy this stronger notion of uniform robustness.

Theorem 1.9 For fixed n, k, �n
k is uniformly robust with robustness coefficient r and

estimate bound nr/(1+r) for any r . For fixed n, k,P , HDn
k (−,P) is uniformly robust

with robustness coefficient r and estimate bound nr/(1 + r) for any r .
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As with�n
k itself, the law of large numbers and the convergence implied by Theo-

rem 1.2 tells us that given a sufficiently large finite sample S ⊂ M , we can approximate
HDn

k and MHDn
k of the metric measure space M in a robust fashion from the persistent

homology computations on S. (See Corollaries 5.4, 6.3, and 6.6 below.)
In light of the results on robustness and asymptotic convergence, HDn

k , MHDn
k ,

and �n
k (as well as various distributional invariants associated to �n

k ) provide good
test statistics for hypothesis testing. Furthermore, one of the benefits of the numerical
statistics HDn

k and MHDn
k is that we can use standard techniques to obtain confidence

intervals, which provide a means for understanding the reliability of analyses of data
sets. We discuss hypothesis testing and the construction of confidence intervals in
Sect. 6 and explore examples in Sects. 7 and 8. In this paper we primarily focus
on analytic methods and Monte Carlo simulation for obtaining confidence intervals;
however, these statistics are well suited for the construction of resampling confidence
intervals. In a follow-up paper [4], we establish the asymptotic consistency of the
bootstrap for HDn

k and MHDn
k .

We regard this paper as a step toward providing a foundation for the integration of
standard statistical methodology into computational algebraic topology. Our goal is
to provide tools for practical use in topological data analysis.

Related work

We have developed an approach to using statistical tools to study persistent homo-
logical invariants for metric measure spaces accessed through finite samples. There
are a number of related approaches to studying the statistical properties of persistent
homological estimators; we quickly survey this work.

Bubenik [5] develops statistical inference via an embedding into function spaces
called persistence landscapes and, with various coauthors in [7,17], studies an
approach using Morse theory (and hence taking advantage of the ambient metric space
for smoothing). The work of Mileyko et al. in [37] parallels the development in Sect. 3
and introduces probability measures on barcode space, and these ideas are developed
further (with Turner) in the context of Frechet means as ways of summarizing barcode
distributions in [44].

In another direction, there has been a fair amount of work on the topological features
of random simplicial complexes and noise due to Kahle [33,34] as well as Adler et
al. [1–3]. This work is essential for understanding what persistent homological null
hypotheses look like and, adapted to our setting, should inform our statistical inference
procedures.

Finally, there has also been a lot of excellent work done on studying robustness in
the context of understanding distances to measures for point clouds. This approach was
introduced by Chazal et al. in [14] and further developed by Caillerie et al. in [9]. The
basic idea is that the distribution of distances to a point cloud is a robust invariant of
the point cloud; indeed, this is closely related to the n = 2 case of our central invariant.
Since preservation of explicit distances is a goal of this approach, it is more closely
related to rigid geometric inference (and manifold learning) than purely topological
inference, as in our homological approach.

123



Found Comput Math (2014) 14:745–789 751

Outline

The paper is organized as follows. In Sect. 2, we provide a rapid review of the necessary
background on simplicial complexes, persistent homology, and metric measure spaces.
In Sect. 3, we study the space of barcodes, establishing the foundations needed to
work with distributions of barcodes. In Sect. 4, we discuss the robustness of persistent
homology. In Sect. 5, we study the properties of �n

k , MHDn
k , and HDn

k and prove
Theorem 1.2. In Sect. 6, we discuss hypothesis testing and confidence intervals, which
we illustrate with synthetic examples in Sect. 7. Section 8 applies these ideas to the
analysis of the natural images data in [12].

2 Background

In this section we provide background for the framework for topological data analysis
we study in this paper. We focus on an approach that accesses the ambient metric
measure space (X, ∂X , μX ) only through finite samples, i.e., point clouds.

2.1 Simplicial Complexes Associated to Point Clouds

A standard approach in computational algebraic topology proceeds by assigning a
simplicial complex (which usually also depends on a scale parameter ε) to a finite
metric space (X, ∂). Recall that a simplicial complex is a combinatorial model of a
topological space, defined as a collection of nonempty finite sets Z such that for any
set Z ∈ Z , every nonempty subset of Z is also in Z . Associated to such a simplicial
complex is the geometric realization, which is formed by gluing standard simplices of
dimension |Z |−1 via the subset relations. (The standard n-simplex has n+1 vertices.)
The most basic and widely used construction of a simplicial complex associated to a
point cloud is the Vietoris–Rips complex, defined as follows.

Definition 2.1 For ε ∈ R, ε ≥ 0, the Vietoris–Rips complex VRε(X) is the simplicial
complex with vertex set X such that [v0, v1, . . . , vn] is an n-simplex when for each
pair vi , v j the distance ∂(vi , v j ) ≤ ε.

The Vietoris–Rips complex is determined by its 1-skeleton. The construction is
functorial in the sense that for a continuous map f : X → Y with Lipshitz constant κ
and for ε ≤ ε′, there is a commutative diagram

VRε(X) ��

��

VRκε(Y )

��
VRε′(X) �� VRκε′(Y ).

(2.1)

The Vietoris–Rips complex is easy to compute in the sense that it is straightforward
to determine when a simplex is in the complex. More closely related to classical
constructions in algebraic topology is the Cech complex.
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Definition 2.2 For ε ∈ R, ε ≥ 0, the Cech complex Cε(X) is the simplicial complex
with vertex set X such that [v0, v1, . . . , vn] is an n-simplex when the intersection

⋂

0≤i≤n

B ε
2
(vi )

is nonempty, where Br (x) denotes the r -ball around x .

The Cech complex has functoriality properties that are analogous to those of the
Vietoris–Rips complex. The Cech complex associated to a cover of a paracompact
topological space satisfies the nerve lemma: if the cover consists of contractible spaces
such that all finite intersections are contractible or empty, the resulting simplicial
complex is homotopy equivalent to the original space.

Remark 2.3 Both the Vietoris–Rips complex and the Cech complex can be unman-
ageably large, e.g., for a set of points Y = {y1, y2, . . . , yn} such that ∂(yi , y j ) ≤ ε,
every subset of Y specifies a simplex of the Vietoris–Rips complex. As a consequence,
it is often very useful to define complexes with vertices restricted to a small set of land-
mark points; the weak witness complex is perhaps the best example of such a simplicial
complex [22]. We discuss this construction further in Sect. 8 where it is important in
the application.

The theory we develop in this paper is relatively insensitive to the specific details
of the construction of the simplicial complex associated to a finite metric space (and
scale parameter). For reasons that will become evident when we discuss persistence
in Sect. 2.3 below, the main thing we require is a procedure for assigning a complex
to ((M, ∂), ε) that is functorial in the vertical maps of diagram (2.1) for κ = 1.

2.2 Homological Invariants of Point Clouds

In light of the previous section, given a metric space (X, ∂), one defines the homology
at the feature scale ε to be the homology of a simplicial complex associated to (X, ∂),
e.g., H∗(VRε(X)) or H∗(Cε(X)). This latter definition is supported by the following
essential consistency result, which is in line with the general philosophy that we are
studying an underlying continuous geometric object via finite sets of samples.

Theorem 2.4 (Niyogi et al. [39]) Let (M, ∂) be a compact Riemannian manifold
equipped with an isometric embedding γ : M → R

n, and let X ⊂ M be a finite
independent identically distributed sample drawn according to the volume measure
on M. Then for any p ∈ (0, 1) there are constants δ (which depends on the curvature
of M and the embedding γ ) and Nδ,p such that if ε < δ and |X | > Nδ,p, then the
probability that H∗(Cε(X)) ∼= H∗(M) is an isomorphism is > p.

In fact, Niyogi et al. prove an effective version of the previous result in the sense
that there are explicit numerical bounds dependent on p and a condition number that
incorporates data about the curvature of M and the twisting of the embedding γ .
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Work by Latschev provides an equivalent result for VRε(X), with somewhat worse
bounds, defined in terms of the injectivity radius of M [35]. Alternatively, one can
show that in the limit VRε(X) captures the homotopy type of the underlying manifold
using the fact that there are inclusions

Cε(X) ⊆ VRε(X) ⊆ C2ε(X).

While reassuring, an unsatisfactory aspect of the preceding results is the dependence
on a priori knowledge of the feature scale ε, the details of the intrinsic curvature of M ,
and the nature of the embedding. A convenient way to handle the fact that it is often
hard to know a good choice of ε at the outset is to consider multiscale homological
invariants that encode the way homology changes as ε varies. This leads us to the
notion of persistent homology.

2.3 Persistent Homology

Persistent homology arose more or less simultaneously and independently in the work
of Robins [41], Frosini and Ferri and collaborators [8,26], and Edelsbrunner and
collaborators [25]. See the excellent survey by Edelsbrunner and Harer [24] for a
more expansive discussion of the history and development of these ideas. The efficient
algorithms and the algebraic presentation we apply herein is due to [25] and [47].

Given a diagram of simplicial complexes indexed on R, i.e., a complex Xs for each
s ∈ R and maps Xs → Xs′ for s ≤ s′, there are natural maps H∗(Xs) → H∗(Xs′)
induced by functoriality.

We say that a class α ∈ Hp(Xi ) is born at time i if it is not in the image of Hk(X j )

for j < i , and we say a class α ∈ Hk(Xi ) dies at time i if the image of α is 0 in
Hk(X j ) for j ≥ i . This information about the homology can be packaged up into an
algebraic object, as follows.

Definition 2.5 Let {Xi } be a diagram of simplicial complexes indexed on R. The pth
persistent kth homology group of Xi is defined as

Hk,p(Xi ) = Zi
k/(B

i+p
k ∩ Zi

k),

where Z and B denote the cycle and boundary groups, respectively. Alternatively,
Hk,p(Xi ) is the image of the natural map

Hk(Xi ) → Hk(Xi+p).

Barcodes provide a convenient reformulation of information from persistent homol-
ogy. Although we will work over a field and in the presence of suitable finiteness
hypotheses that are satisfied in our motivating examples, recent work makes it clear
that this restriction could be weakened [6,15]. We assume that the values H∗(Xi )

change only at a countable discrete subset of R, so that by reindexing we have a direct
system
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X0 → X1 → · · · → Xn → · · · ,

the direct system of simplicial complexes stabilizes at a finite stage, and all homol-
ogy groups are finitely generated. Then a basic classification result of Zomorodian-
Carlsson [47] describes the persistent homology in terms of a barcode, a multiset of
nonempty intervals of the form [a, b) ⊂ R. An interval in the barcode indicates the
birth and death of a specific homological feature. For reasons we explain below, the
barcodes appearing in our context will always have finite length intervals.

The Vietoris–Rips (or Cech) complex associated to a point cloud (X, ∂X ) fits into
this context by looking at a sequence of varying values of ε:

VRε1(X) → VRε2(X) → · · · .

We can do this in several ways, for example, using the fact that the Vietoris–Rips
complex changes only at discrete points {εi } and stabilizes for sufficiently large ε, or
just choosing and fixing a finite sequence εi independently of X . The theory we present
in what follows makes sense for either of these choices, and we use the following
notation.

Notation 2.6 Let (X, ∂X ) be a finite metric space. For k ∈ N, denote the persistent
homology of X by

PHk((X, ∂X )) = PHk,p({V Rε(−) (X)})

for some chosen sequence 0 < ε1 < ε2 < · · · and p ≥ 0.

More generally, we can make analogous definitions for any functor

	 : M × R>0 → sComp,

where M is the category of finite metric spaces and metric maps and sComp denotes
the category of simplicial complexes. We will call such a	 good when the homology
changes for only finitely values in R. In this case, we can choose the directed system
of values of εi to contain these transition values.

For large values of the parameter ε, V Rε(X) will be contractible. Therefore, if we
use the reduced homology group in dimension 0, we obtain Hk(V Rε) = 0 for all
k for large ε. The barcodes associated to these persistent homologies therefore have
only finite length bars. For convenience in computation, we typically cut off ε at a
moderately high value before this breakdown occurs. The result is a truncation of the
barcode to the cutoff point.

2.4 Gromov–Hausdorff Stability and the Bottleneck Metric

By the work of Gromov, the set of isometry classes of compact metric spaces admits
a useful metric structure, the Gromov–Hausdorff metric. For a pair of finite metric
spaces (X1, ∂1) and (X2, ∂2), the Gromov–Hausdorff distance is defined as follows:
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for a compact metric space (Z , ∂) and closed subsets A, B ⊂ Z , the Hausdorff distance
is defined as

d Z
H (A, B) = max(sup

a∈A
inf
b∈B

∂(a, b), sup
b∈B

inf
a∈A

∂(a, b)).

One then defines the Gromov–Hausdorff distance between X1 and X2 as

dG H (X1, X2) = inf
Z ,γ1,γ2

d Z
H (X1, X2),

where γ1 : X1 → Z and γ2 : X2 → Z are isometric embeddings.
Since the topological invariants we are studying ultimately arise from finite metric

spaces, a natural question to consider is the degree to which point clouds that are close
in the Gromov–Hausdorff metric have similar homological invariants. This question
does not in general have a good answer in the setting of the homology of the point
cloud, but in the context of persistent homology, Chazal et al. [13, 3.1] provide a
seminal theorem in this direction; we review it as Theorem 2.8 below.

The statement of Theorem 2.8 involves a metric on the set of barcodes called the
bottleneck distance and is defined as follows. Recall that a barcode {Iα} is a multiset
of nonempty intervals. Given two nonempty intervals I1 = [a1, b1) and I2 = [a2, b2),
define the distance between them as

d∞(I1, I2) = ||(a1, b1)− (a2, b2)||∞ = max(|a1 − a2|, |b1 − b2|).

We also use the convention

d∞([a, b),∅) = |b − a|/2

for b > a and d∞(∅,∅) = 0. For the purposes of the following definition, we define a
matching between two barcodes B1 = {Iα} and B2 = {Jβ} as a multisubset C of the
underlying set of

(B1 ∪ {∅})× (B2 ∪ {∅})

such that C does not contain (∅,∅) and each element Iα of B1 occurs as the first
coordinate of an element of C exactly the number of times (counted with multiplicity)
of its multiplicity in B1, and likewise for every element of B2. We obtain a more
intuitive but less convenient description of a matching using the decomposition of
(B1 ∪ {∅}) × (B2 ∪ {∅}) into its evident four pieces: the basic data of C consist of
multisubsets A1 ⊂ B1 and A2 ⊂ B2, together with a bijection (properly accounting
for multiplicities) γ : A1 → A2; C is then the (disjoint) union of the graph of γ viewed
as a multisubset of B1 × B2, the multisubset (B1 − A1) × {∅} of B1 × {∅}, and the
multisubset {∅} × (B2 − A2) of {∅} × B2. With this terminology, we can define the
bottleneck distance.
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Definition 2.7 The bottleneck distance between barcodes B1 = {Iα} and B2 = {Jβ}
is

dB(B1, B2) = inf
C

sup
(I,J )∈C

d∞(I, J ),

where C varies over all matchings between B1 and B2.

Although expressed slightly differently, this agrees with the bottleneck metric as
defined in [18, §3.1] and [13, §2.2]. On the set of barcodes B with finitely many finite
length intervals, dB is obviously a metric. More generally, for any p > 0, one can
consider the �p version of this metric,

dB,p(B1, B2) = inf
C

( ∑

(I,J )∈C

d∞(I, J )p)1/p
.

For simplicity, we focus on dB in this paper, but analogs of our main theorems apply
to these variant metrics as well.

We have the following essential stability theorem.

Theorem 2.8 (Chazal et al. [13, 3.1]) For each k, we have the bound

dB(PHk(X),PHk(Y )) ≤ dG H (X,Y ).

Note that truncating barcodes (i.e., truncating each persistent interval) is a Lipshitz
map B → B with Lipshitz constant 1, so the preceding bound still holds when we use
a large parameter cutoff in defining PHk .

Remark 2.9 The space of barcodes admits other metrics that are finer than the bot-
tleneck metric for which versions of the stability theorem also hold; these can be
useful in practical situations. Notably, the papers [19,37,44] study and apply a family
of Wasserstein (mass transportation) metrics on barcode space. We believe that our
results can be extended to this setting.

2.5 Metric Measure Spaces and the Gromov–Prohorov Distance

To establish more robust convergence results, we work with suitable metrics on the set
of compact metric measure spaces. Specifically, following [29,36,42] we use the idea
of the Gromov–Hausdorff metric to extend certain standard metrics on distributions
(on a fixed metric measure space) to a metric on the set of all compact metric measure
spaces.

A basic metric of this kind is the Gromov–Prohorov metric [29]. (For the following
formulas, see Sect. 5 of [29] and its references.) This metric is defined in terms of the
standard Prohorov metric dPr (metrizing weak convergence of probability distribu-
tions on separable metric spaces). First, recall that for measuresμ1 andμ2 on a metric
space Z , the Prohorov metric is defined as

dPr (μ1, μ2) = inf{ε > 0 | μ1(A) ≤ μ2(Bε(A))+ ε},
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where A ⊂ Z varies over all closed sets and Bε(A) is the set of points z such that
dZ (z, a) < ε for some a ∈ A. Then the Gromov–Prohorov metric is defined as

dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY )) = inf
(φX ,φY ,Z)

d(Z ,∂Z )
Pr ((φX )∗μX , (φY )∗μY ),

where the inf is computed over all isometric embeddingsφX : X → Z andφY : Y → Z
into a target metric space (Z , ∂Z ).

It is convenient to reformulate both the Gromov–Hausdorff and Gromov–Prohorov
distances in terms of relations. For sets X and Y , a relation R ⊂ X × Y is a corre-
spondence if for each x ∈ X there exists at least one y ∈ Y such that (x, y) ∈ R and
for each y′ ∈ Y there exists at least one x ′ ∈ X such that (x ′, y′) ∈ R. For a relation
R on metric spaces (X, ∂X ) and (Y, ∂Y ), we define the distortion as

dis(R) = sup
(x,y),(x ′,y′)∈R

|∂X (x, x ′)− ∂Y (y, y′)|.

The Gromov–Hausdorff distance can be expressed as

dG H ((X, ∂X ), (Y, ∂Y )) = 1

2
inf
R

dis(R),

where we take the infimum over all correspondences R ⊂ X × Y .
Similarly, we can reformulate the Prohorov metric as follows. Given two measures

μ1 and μ2 on a metric space X , let a coupling of μ1 and μ2 be a measure ψ on X × X
(with the product metric) such that ψ(X × −) = μ2 and ψ(− × X) = μ1. Then we
have

dPr (μ1, μ2) = inf
ψ

inf{ε > 0 | ψ {
(x, x ′) ∈ X × X | ∂X (x, x ′) ≥ ε

} ≤ ε}.

This characterization of the Prohorov metric turns out to be useful when work-
ing with the Gromov–Prohorov metric in light of the (trivial) observation that if
dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY )) < ε, then there exists a metric space Z and embed-
dings ι1 : X → Z and ι2 : Y → Z such that dPr ((ι1)∗μX , (ι2)∗μY ) < ε.

3 Probability Measures on Spaces of Barcodes

This section introduces the spaces of barcodes BN and B used in the distributional
invariants �n

k of Definition 1.1. These spaces are complete and separable under the
bottleneck metric. This implies in particular that the Prohorov metric on the set of
probability measures in BN or B metrizes convergence in probability, which justi-
fies the perspective in the Stability Theorem 1.2 and the definition of the invariants
HDn

k (−,P) in Definition 1.3.
A barcode is by definition a multiset of intervals, in our case of the form [a, b) for

0 ≤ a < b < ∞. The set I of all intervals of this form is, of course, in bijective
correspondence with a subset of R

2. A multiset A of intervals is a multisubset of I,
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which concretely is a function from I to the natural numbers N = {0, 1, 2, 3, . . . } that
counts the number of multiples of each interval in A. We denote by |A| the cardinality
of A, which we define as the sum of the values of the function I → N specified by
A (if finite, or countably or uncountably infinite if not). The space B of barcodes of
the introduction is the set of multisets of intervals A such that |A| < ∞. We have the
following important subsets of B.

Definition 3.1 For N ≥ 0, let BN denote the set of multisets of intervals (in I) A
with |A| ≤ N .

The main result on BN is the following theorem, proved below. (Similar results can
also be found in [37].)

Theorem 3.2 For each N ≥ 0, BN is complete and separable under the bottleneck
metric.

Since the homology Hk (with any coefficients) of any complex with n vertices can
have rank at most

( n
k+1

)
, our persistent homology barcodes will always land in one of

the BN , with N depending just on the size of the samples. As we let the size of the
samples increase, N may increase, and so it is convenient to have a target independent
of the number of samples. The space B = ⋃ BN is clearly not complete under the
bottleneck metric (consider a sequence of barcodes {Xn} such that Xn is produced
from Xn−1 by adding a bar (0, 1

n )), so we introduce the following space of barcodes
B.

Definition 3.3 Let B be the space of multisets A of intervals (in I) with the property
that for every ε > 0, the multisubset of A of those intervals of length greater than ε
has finite cardinality.

Clearly barcodes in B have at most countable cardinality, and the bottleneck metric
extends to a pseudo-metric dB : B × B → R. The following lemma shows it is a
metric.

Lemma 3.4 For X,Y ∈ B, dB(X,Y ) = 0 only if X = Y .

Proof Let X,Y ∈ B, with dB(X,Y ) = 0, and assume without loss of generality that
X is not in BN for any N . Then the possible distinct lengths of intervals in X or Y
form a countable set �0 > �1 > · · · . Let Xi and Yi denote the multisubsets of X and
Y consisting of the intervals of length exactly �i . Let ε0 < (�0 − �1)/2, and in general
let

εi < min(ε0, . . . , εi−1, (�i − �i+1)/2)

(with each εi > 0). For all n and all 0 < ε < εn , any matching C of X and Y with

dC (X,Y ) = sup
(I,J )∈C

d∞(I, J ) < ε

must induce a bijection between Xi and Yi for all i ≤ n; moreover, if Ci denotes the
restriction of C to a matching of Xi and Yi , then dCi (Xi ,Yi ) < ε. Letting ε go to zero,
we see that Xi = Yi for all i and that X = Y . ��
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Lemma 3.4 implies that dB extends to a metric on B. We prove the following
theorem.

Theorem 3.5 B is the completion of B = ⋃ BN in the bottleneck metric. In particular,
B is complete and separable in the bottleneck metric.

Proof of Theorems 3.2 and 3.5 The multisets of intervals with rational endpoints pro-
vide a countable dense subset for BN . To see that B is dense in B, given A in B and
ε > 0, let Aε be the multisubset of A of those intervals of length > ε. Then by the
definition of B, Aε is in B, and by the definition of the bottleneck metric, using the
matching coming from the inclusion of Aε in A, we have that

dB(A, Aε) ≤ ε/2 < ε.

It just remains to prove the completeness of BN and B. For this, given a Cauchy
sequence 〈Xn〉 in B it suffices to show that Xn converges to an element X in B and
that X is in BN if all the Xn are in BN .

Let 〈Xn〉 be a Cauchy sequence in B. Passing to a subsequence if necessary, we can
assume without loss of generality that for n,m > k, dB(Xm, Xn) < 2−(k+2). For each
n we have dB(Xn, Xn+1) < 2−(n+1); choose a matching Cn such that d∞(I, J ) <
2−(n+1) for all (I, J ) ∈ Cn . For each n, define a finite sequence of intervals I n

1 ,…,I n
kn

inductively as follows. Let k0 = 0. Let k1 be the cardinality of the multisubset of X1
consisting of those intervals of length > 1, and let I 1

1 ,…,I 1
k1

be an enumeration of
those intervals. By induction, I n

1 ,…,I n
kn

is an enumeration of the intervals in Xn of

length> 2−n+1 such that for i ≤ kn−1 the intervals I n−1
i and I n

i correspond under the
matching Cn−1. For the inductive step, we note that if I n

i corresponds to J under Cn ,
then d∞(I n

i , J ) < 2−(n+1), so the length ||J || of J is greater than ||I n
i || − 2−n , and

||J || > 2−n+1 − 2−n = 2−n = 2−(n+1)+1.

Thus, we can choose I n+1
i to be the corresponding interval J for i ≤ kn , and we

can choose the remaining intervals of length > 2−(n+1)+1 in an arbitrary order. Write
I n
i = [an

i , bn
i ), and let

ai = lim
n→∞ an

i , bi = lim
n→∞ bn

i .

Since |an
i − an+1

i | < 2−(n+1) and |bn
i − bn+1

i | < 2−(n+1), we have

|an
i − ai | ≤ 2−n, |bn

i − bi | ≤ 2−n .

Let X be the multisubset of I consisting of the intervals Ii = [ai , bi ) for all i (or for
all i ≤ max kn if {kn} is bounded).

First, we claim that X is in B. Given ε > 0, choose N large enough that 2−N+2 < ε.
Then, for i > kN , the interval Ii first appears in Xni for some ni > N . Looking at
the matchings CN ,…,Cni −1, we obtain a composite matching CN ,ni between X N and
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Xni . Since each Cn satisfied the bound 2−(n+1), the matching CN ,ni must satisfy the
bound

ni −1∑

n=N

2−(n+1) = 2−N − 2−ni .

Since all intervals of length > 2−N+1 in X N appear as an I N
j , we must have that the

length of I ni
i in Xni must be less than

2−N+1 + 2(2−N − 2−ni ) = 2−N+2 − 2−ni +1.

Since each endpoint in Ii differs from the endpoint of I ni
i by at most 2−ni , the length

of Ii can be at most

2−N+2 − 2−ni +1 + 2 · 2−ni = 2−N+2 < ε.

Thus, the cardinality of the multisubset of X of those intervals of length> ε is at most
kN .

Next, we claim that 〈Xn〉 converges to X . We have a matching of Xn , with X given
by matching the intervals I n

1 ,…,I n
kn

in Xn with the corresponding intervals I1,…,Ikn

in X . The preceding estimates for |an
i −ai | and |bn

i −bi | show that d∞(I n
i , Ii ) ≤ 2−n .

By construction, each leftover interval in Xn has length ≤ 2−n+1, and the previ-
ous paragraph shows that each leftover interval in X has length < 2−n+2. Thus,
dB(Xn, X) < 2−n+1.

Finally, we note that if each Xn is in BN for fixed N , then each kn ≤ N , and so X
is in BN . ��

4 Failure of Robustness

Inevitably, physical measurements will result in bad samples. As a consequence, we
are interested in invariants that have limited sensitivity to a small proportion of arbi-
trarily bad samples. Many standard invariants not only have high sensitivity to a small
proportion of bad samples but in fact have high sensitivity to a small number of bad
samples. We do not claim particular novelty for the general nature of the results of
this section, as these issues have been folklore for some time. However, we do not
know any work in the literature that makes precise statements. We use the following
terminology to describe the instability of these invariants.

Definition 4.1 A function f from the set of finite metric spaces to R is fragile if it
not robust (in the sense of Definition 1.6) for any robustness coefficient r > 0.

In some cases, an even stronger kind of sensitivity holds.

Definition 4.2 A function f from the set of finite metric spaces to R is extremely
fragile if there exists a constant k such that for every nonempty finite metric space
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X and constant N there exists a metric space X ′ and an isometry X → X ′ such that
|X ′| ≤ |X | + k and | f (X ′)− f (X)| > N .

Informally, extremely fragile in Definition 4.2 means that adding a small constant
number of points to any metric space can arbitrarily change the value of the invariant.
In particular, an extremely fragile function is fragile, but extremely fragile is much
more unstable than just failing to be robust (note the quantifier on the space X ). As we
indicated in the introduction, a Gromov–Hausdorff distance is fragile; here we show
it is extremely fragile.

Proposition 4.3 Let (Z , dZ ) be a nonempty finite metric space. The function
dG H (Z ,−) is extremely fragile.

Proof Given N > 0, consider the space X ′, which as a set is defined as the disjoint
union of X with a new point w and is made a metric space by setting

d(w, x) = α, x ∈ X,

d(x1, x2) = dX (x1, x2), x1, x2 ∈ X,

where α > diam(Z)+ 2dG H (Z , X)+ 2N . We claim

|dG H (Z , X)− dG H (Z , X ′)| > N .

Given any metric space (Y, dY ) and isometries f : X ′ → Y , g : Z → Y , we need to
show that dY ( f (X ′), g(Z)) > N + dG H (Z , X). We have two cases. First, if no point
z of Z has dY (g(z), f (w)) ≤ N + dG H (Z , X), then we have dY ( f (X ′), g(Z)) >
N + dG H (Z , X). On the other hand, if some point z of Z has dY (g(z), f (w)) <
N + dG H (Z , X), then every point z in Z satisfies dY (g(z), f (w)) ≤ N + diam(Z)+
dG H (Z , X). Choosing some x in X , we see that for every z in Z , dY ( f (x), g(z)) ≥
α − (N + diam(Z)+ dG H (Z , X)). It follows that

dY ( f (X ′), g(Z)) ≥ α − (N + diam(Z)+ dG H (Z , X)) > N + dG H (Z , X).��

The homology and persistent homology of a point cloud turn out to be somewhat less
sensitive invariants. Nonetheless, a similar kind of problem can occur. It is instructive
to consider the case of H0 or PH0. By adding � points far from the original metric
space X , one can change either H0 or PH0 by rank �. The further the distance of the
points, the longer the additional bars in the barcode, and we see, for example, that the
distance dB(B,−) in the bottleneck metric from any fixed barcode B is an extremely
fragile function. (If we are truncating the barcodes, dB is bounded by the length of the
interval we are considering, so technically it is robust, but not in a meaningful way.)
We can also consider the rank of H0 or of PH0 in a range; here the distortion of the
function depends on the number of points, but we see that the function is fragile.

For Hk and PHk , k ≥ 0, the same basic idea holds: we add small spheres sufficiently
far from the core of the points in order to adjust the required homology. We work this
out explicitly for PH1.
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Definition 4.4 For each integer k > 0 and real � > 0, let the metric circle S1
k,� denote

the metric space with k points {xi } such that

d(xi , x j ) = � (min(|i − j |, k − |i − j |)) .

For ε < �, the Vietoris–Rips complex associated to S1
k,� is just a collection of

disconnected points. It is clear that as long as k ≥ 4, when � ≤ ε < 2�, |Rε(S1
k,�)| has

the homotopy type of (and is in fact homeomorphic to) a circle. In fact, we can say
something more precise, as follows.

Lemma 4.5 For

� ≤ ε <

⌈
k

3

⌉
�,

the rank of H1(Rε(S1
k,�)) is at least 1.

Proof Consider the map f from Rε(S1
k,�) to the unit disk D2 in R

2 that sends xi to

(cos(2π i
n ), sin(2π i

n )) and is linear on each simplex. The condition ε < � k
3�� precisely

ensures that whenever {xi1 , . . . , xin } forms a simplex σ in the Vietoris–Rips complex,
the image vertices f (xi1), . . . , f (xin ) lie on an arc of angle < 2

3π on the unit circle,
and so f (σ ) in particular lies in an open half-plane through the origin. It follows that
the origin (0, 0) is not in the image of any simplex, and f defines a map from Rε(S1

k,�)

to the punctured disk D2 − {(0.0)}. Since � ≤ ε, we have the 1-cycle

[x1, x2] + · · · + [xk−1, xk] + [xk, x1]

of Rε(S1
k,�), which maps to a 1-cycle in D2 − {(0, 0)} representing the generator of

H1(D2 − {0, 0}). ��
The length � and number k ≥ 4 is arbitrary, so again, we conclude that functions like

dB(B,PH1(−)) are extremely fragile. Results for higher dimensions (using similar
standard equidistributed models of n-spheres) are completely analogous.

Proposition 4.6 Let B be a barcode. The functions dB(B,PHk(−)) from finite metric
spaces to R are extremely fragile.

In terms of rank, the lemma shows that we can increase the rank of the first persistent
homology group of a metric space X on an interval [a, b] by m simply by adding
extra points. One can also typically reduce persistent homology intervals by adding
points in the center of the representing cycle. It is somewhat more complicated to
precisely analyze the situation, so we give a representative example. Suppose the
cycle is represented by a collection of points {xi } such that the maximum distance
d(xi , x j ) ≤ δ. Then adding a point that is a distance δ from each of the other points
reduces the lifetime of that cycle to δ. In any case, the results of the lemma are sufficient
to prove the following proposition.
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Proposition 4.7 The function that takes a finite metric space to the rank of PHk on a
fixed interval [a, b] is fragile.

These computations suggest a problem with the stability of the usual invariants of
computational topology. A small number of bad samples can lead to arbitrary changes
in these invariants.

5 Main Definition and Theorem

Fix a good functorial assignment of a simplicial complex to a finite metric space
and a scale parameter ε. Recall that we write PHk of a finite metric space to denote
the persistent homology of the associated direct system of complexes. Motivated by
the concerns of the preceding section, we define �n

k as the distribution of barcodes
induced by samples of size n. The basic idea motivating �n

k is that in order to obtain
robust invariants, given a sample budget of N samples from (X, ∂X , μX ), instead
of computing a single estimator from the N samples, it is preferable to look at the
distribution of estimators produced by blocks of samples of size n � N . Note that this
is closely related to the idea behind bootstrap resampling. It is also a more sophisticated
version of computing a trimmed mean (i.e., a mean in which extremal samples are
thrown out) – rather than removing extremal samples, we simply subsample at a rate
such that the likelihood of seeing a bad sample is low. Ideally, this approach retains
the information contained in those samples while also estimating the “true” value.

Definition 5.1 For a metric measure space (X, ∂X , μX ) and fixed n, k ∈ N, define
the n-sample kth persistent homology as

�n
k (X, ∂X , μX ) = (PHk)∗(μ⊗n

X ),

the probability distribution on B induced by pushforward along PHk from the product
measure μn

X on Xn .

This definition makes sense because PHk is a continuous function and the measures
on the domain and codomain are both Borel. Indeed, the stability theorem of Chazal
et al. [13, 3.1] (Theorem 2.8 above) and the fact that the Gromov–Hausdorff metric
is less than or equal to the product metric in Xn imply that PHk is Lipschitz with
Lipschitz constant at most 1.

To apply�n
k , we need to know two things. First, for fixed n and k the approximation

to �n
k computed by choosing samples from the empirical measure on a large sample

space S drawn from (X, ∂X , μX ) converges in probability to the actual value (as |S|
goes to infinity). Second, for fixed n and k the approximation to �n

k obtained by
computing the empirical measure from � blocks of n samples converges in probability
to the actual value (as � goes to infinity). The latter follows from the weak law of large
numbers for the empirical process. The goal of this section is to prove the following
theorem, which establishes the former asymptotic consistency. For this (and in the
remainder of this section), we assume that we are computing PH using the Vietoris–
Rips complex.
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Theorem 5.2 Let (X, ∂X , μX ) and (Y, ∂Y , μY ) be compact metric measure spaces.
Then we have the following inequality:

dPr (�
n
k (X, ∂X , μX ),�

n
k (Y, ∂Y , μY )) ≤ n dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY )).

Proof Assume that dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY )) < ε. Then we know that there
exist embeddings ι1 : X → Z and ι2 : Y → Z into a metric space Z and a coupling μ̂
between (ι1)∗μX and (ι2)∗μY such that the probability mass of the set of pairs (z, z′)
under μ̂ such that ∂Z (z, z′) ≥ ε is less than ε.

We can regard the restriction of μ̂⊗n to the full measure subspace (X × Y )n

of (Z × Z)n as a probability measure on Xn × Y n . This then induces a coupling
between (PHk)∗(μ⊗n

X ) and (PHk)∗(μ⊗n
Y ) on B, which we now study. Consider n sam-

ples {(x1, y1), (x2, y2), . . . , (xn, yn)} from Z × Z drawn according to the product
distribution μ̂⊗n . Now consider the probability that

α = sup
1≤i, j≤n

|∂X (xi , x j )− ∂Y (yi , y j )| ≥ 2ε.

The triangle inequality implies that

|∂X (xi , x j )− ∂Y (yi , y j )| = |∂Z (xi , x j )− ∂Z (yi , y j )| ≤ ∂Z (xi , yi )+ ∂Z (x j , y j ).

Therefore, the union bound implies that the probability that α ≥ 2ε is bounded by

Pr(∃i | ∂Z (xi , yi ) ≥ ε) ≤ 1 − (1 − ε)n < nε.

Next, define a relation R that matches xi and yi . By definition, the distortion of this
relation is dis R = α, and so

dG H ({xi }, {yi }) ≤ 1

2
α.

By the stability theorem of Chazal et al. [13, 3.1] (Theorem 2.8 above), this implies
that the probability that

dB(PHk({xi }),PHk({yi })) ≥ ε

is bounded by nε. This further implies that the probability that

dB(PHk({xi }),PHk({yi })) ≥ nε

is also bounded by nε. Therefore, we can conclude that

dPr (�
n
k (X, ∂X , μX ),�

n
k (Y, ∂Y , μY )) ≤ nε. ��
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We note the dependence on n in the statement of the bound in Theorem 5.2. As n
increases, the quantity �n

k becomes a finer approximation of the persistent homology
of the support of X . Specifically, more points per sample means that�n

k is increasingly
sensitive to small features of X . In this light, it is not surprising that the bound becomes
weaker for larger n.

Next we discuss the tightness of the bound in Theorem 5.2. Clearly, this bound
is vacuous when dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY )) >

1
n since the Prohorov metric is

bounded by 1, but we show that it becomes tight as dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY ))

approaches zero. Reviewing the argument, starting from the hypothesis that
dG Pr ((X, ∂X , μX ), (Y, ∂Y , μY )) = ε, we used the union bound to obtain a bound
of nε. The exact bound in question is 1 − (1 − ε)n . The leading term in the expansion
of this quantity is nε, and so as ε → 0 the bound in the theorem becomes increasingly
tight. When ε is close to 1

n , using more terms in the expansion yields better bounds
(for example, when ε = 1

n , 1 − (1 − ε)n ≤ .75 and tends to 1 − 1
e ≈ .632 for large n).

The exact bound 1 − (1 − ε)n yields a tight estimate on dG Pr (Xn,Y n) (using the
sup product metric), as we can see from the following example. Consider the case
of two finite metric spaces X = X1 ∪ X2 and Y = Y1 ∪ Y2, where |Y1| = |X1|
and |Y2| = |X2|. Define dX via dX (x1, x ′

1) = α for x1, x ′
1 ∈ X1, dX (x2, x ′

2) = β

for x2, x ′
2 ∈ X2, and dX (x1, x2) = γ for x1 ∈ X1 and x2 ∈ X2. Here γ should be

substantially larger thanα andβ. We define dY analogously, using the sameα andβ but
with γ ′ distinct from γ (and without loss of generality assume that γ ′ > γ ). Consider
the metric space Z formed from the disjoint union of X1, X2, and Y2, and with the
metric induced from dX and dY except that dZ (x2, y2) = γ ′ − γ . There are evident
isometries i : X → Z and j : Y → Z ; it is easy to see that dPr (i∗μX , j∗μY ) = ε for
ε = |X2||X1|+|X2| and, moreover, that this pair of embeddings minimizes the Prohorov
distance, so dG Pr (X,Y ) = ε. The induced embeddings in : Xn → Zn , jn : Y n → Zn

satisfy

dPr (i
n∗μ⊗n

X , jn∗μ⊗n
Y ) = 1 − (1 − ε)n,

and a straightforward combinatorics argument shows that this embedding also min-
imizes the Prohorov distance, so dG Pr (Xn,Y n) = 1 − (1 − ε)n . (We thank Olena
Blumberg for help with this example.)

When the parameters in the previous example are varied, it is now clear that the
bound on �n

0 is tight, and we can achieve the upper bound with a variety of barcode
lengths. Tightness for �n

k for k > 0 is harder to analyze. Theorem 2.8 is expected to
be tight for all k, but nothing has yet appeared in the literature for k > 0. If the bound
in Theorem 2.8 is tight, it is reasonable to expect the bound in Theorem 5.2 also to be
tight; however, we do not know a rigorous argument.

Remark 5.3 For a related discussion involving finite distance matrices, see [28, §6,
§7]. There the constant N (size of the matrix) is analogous to the parameter n above
and enters into their formulas through the distance dM , which depends on N .

We regard the bound as most useful for fixed n. Then a basic consequence of
Theorem 5.2 is that consideration of large finite samples will suffice for computing
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�n
k . For a finite metric space (X, ∂X ), let μ and μ′ denote two measures on X . Then

we have the following inequality [28, 5.4]:

dG Pr ((X, ∂X , μ), (X, ∂X , μ
′)) ≤ 1 −

∑

x∈X

min(μ(x), μ′(x)), (5.1)

which follows by choosing a coupling that has measure that is at least the minimum
of the two measures on each point.

Corollary 5.4 Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be a sequence of samples randomly
drawn from (X, ∂X , μX ). We regard Si as a metric measure space using the sub-
space metric and the empirical measure. Then �n

k (Si ) converges in probability to
�n

k (X, ∂X , μX ).

Proof This result is a consequence of the fact that {Si } converges in probability to
(X, ∂X , μX ) in the Gromov–Prohorov metric (which can be checked directly using
Eq. (5.1), as in [28, §5], or deduced from the analogous convergence result for the
Gromov–Wasserstein distance [42, 3.5.(iii)] and a comparison between the Gromov–
Prohorov distance and the Gromov–Wasserstein distance [29, 10.5]). ��

Another consequence of Theorem 5.2 is that �n
k provide robust descriptors for

metric measure spaces (X, ∂X , μX ). Specifically, observe that if we have finite metric
spaces (X, ∂X ) ⊂ (X ′, ∂X ′) and a probability measure μX ′ on X ′ that restricts to μX

on X (i.e., for A ⊂ X , μX (A) = μX ′(A)/μX ′(X)), then Eq. (5.1) implies that

dPr (i∗μX , μX ′) ≤ 1 − μX ′(X).

Thus, when X ′ \ X has a probability < ε,

dPr (�
n
k (X, ∂X , μX ),�

n
k (X

′, ∂ ′
X , μX ′)) ≤ nε.

In particular, when X and X ′ are finite metric spaces with the uniform measure, we
obtain

dPr (�
n
k (X, ∂X , μX ),�

n
k (X

′, ∂ ′
X , μX ′)) ≤ n(1 − |X |/|X ′|).

As an immediate consequence we obtain the following result.

Theorem 5.5 For fixed n, k, �n
k is uniformly robust with robustness coefficient r and

estimate bound nr/(1 + r) for any r .

Remark 5.6 It would be useful to prove analogs of the main theorem for other methods
for assigning complexes, e.g., the witness complex (see Remark 2.3 and Sect. 8). We
expect that the recent stability results of [16] will be useful in this connection.
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6 Hypothesis Testing, Confidence Intervals, and Numerical Invariants

In this section, we describe various ways to use �n
k to perform statistical inference

about the homological invariants of a point cloud. The basic goal is to provide quanti-
tative ways of saying what observed barcodes or empirical barcode distributions mean.
We are predominantly interested in addressing two kinds of questions:

(1) Are two given empirical barcode distributions coming from the same underlying
distribution?

(2) Is a particular empirical barcode distribution consistent with the hypothesis that
the underlying distribution has k “long bars”?

We approach both of these questions from the perspective of classical hypothesis
testing, likelihood scores, and confidence intervals; for example, see [20, §2] for a
review. We discuss a variety of test statistics derived from �n

k ; thus, the use of these
procedures is justified in practice by Theorem 5.2 (and specifically Corollary 5.4).
Moreover, we are able to use Theorem 5.2 to show that many of the test statistics we
describe are robust.

We began by explaining the basic procedure for computing approximations to�n
k .

Corollary 5.4 justifies the treatment of �n
k of the empirical measure on a sufficiently

large sample S ⊂ X of size N as a good approximation for �n
k (X, ∂X , μX ). (Note

that the dependence on n in the bound in Theorem 5.2 implies that we will have
to choose n � N in order to expect reasonable results; see the discussion in the
next section for some examples of how to choose n.) Next, we can estimate �n

k on
S empirically via Monte Carlo simulation, i.e., simply sampling blocks of n samples
from S over and over again. The weak law of large numbers for empirical distributions
guarantees that this estimate will converge in probability as the number of such samples
increases. Therefore, we have an asymptotically convergent scheme for numerically
approximating �n

k (and hence quantities derived from it). We now turn to questions
of statistical inference.

6.1 Hypothesis Testing Using �n
k

The most basic question we can ask is whether a given observed barcode B is more
consistent with an underlying metric measure space (X, ∂X , μX ) or an alternate metric
measure space (X ′, ∂ ′

X , μ
′
X ). A likelihood ratio provides a good test statistic to deter-

mine an answer to this question. Specifically, we can evaluate the likelihood of the
hypotheses Hypn

k (X; B, ε) and Hypn
k (X

′; B, ε) that B is within ε of a barcode drawn
from (X, ∂X , μX ) and (X ′, ∂X ′ , μX ′), respectively.

Given an observed barcode B (e.g., obtained by sampling n points from an unknown
metric measure space (Z , ∂Z , μZ )), we can compute the likelihood score

LY = L(Y, ∂Y , μY ) = Pr(dB(B, B̃) < ε | B̃ drawn from�n
k (Y, ∂Y , μY ))

for each hypothesis space (X, ∂X , μX ) and (X ′, ∂X ′ , μX ′). The ratio L X/L X ′ then pro-
vides a test statistic for comparing the two hypotheses. To determine how to interpret
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the test statistics (e.g., to compute p values), we require knowledge of the distribution
of the test statistic induced by assuming that B was drawn from �n

k (X, ∂X , μX ) and
�n

k (X
′, ∂X ′ , μX ′), respectively. These distributions can be approximated by Monte

Carlo simulation, i.e., repeated sampling from the two distributions and computation
of histograms.

More generally, for a metric measure space (X, ∂X , μX ) and a particular subset S
of B, we can test the hypothesis that the distribution �n

k (X) has mass ≥ ε on S as
follows. For any hypothetical distribution on B with mass ≥ ε on S, the probability
of an empirical sample of size N having q or fewer elements in S is bounded above
by the binomial cumulative distribution function

BD(N , q, ε) =
q∑

i=0

(
N

i

)
εi (1 − ε)N−i .

Then, given an empirical approximation E to �n
k obtained from N samples, we can

test the hypothesis that �n
k has mass ≥ ε in S by taking q to be the number of such

elements in E . When BD(N , q, ε) < α, we can reject this hypothesis at the 1 − α

level.

6.2 Distribution Comparison Test Statistics

Another kind of question we might ask is to determine whether to reject the hypothesis
that two empirical distributions on a barcode space (i.e., �n

k computed based on two
different large samples S and S′) came from the same underlying distribution. In our
setting we cannot assume very much about the class of possible distributions, and so
we are forced to rely on nonparametric methods. This imposes significant constraints
– most asymptotic results on nonparametric tests for distribution comparison work
only for distributions on R. Thus, the first step is to project the data from the barcode
space into R. The following definition is the first of several kinds of projections we
discuss.

Definition 6.1 Let (X, ∂X , μX ) be a compact metric measure space. Fix k, n ∈ N.

(1) Define the distance distribution D2 on R as the distribution on R induced by
applying dB(−,−) to pairs (b1, b2) drawn from �n

k (X, ∂X , μX )
⊗2.

(2) Let B be a fixed barcode in B, and define DB as the distribution induced by
applying dB(B,−).

Since both D2 and DB are continuous with respect to the Gromov–Prohorov metric [29,
6.6], Corollary 5.4 justifies working with empirical approximations to D2 and DB .

One application of these projections is simply a direct use of the two-sample
Kolmogorov–Smirnov statistic [20, §6]. This test statistic provides a way to determine
whether two observed empirical distributions were obtained from the same underlying
distribution; the salient feature about this statistic is that for distributions on R the p
values of the test statistic are asymptotically independent of the underlying distribution
as long as the samples are identically independently drawn.
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To compute the Kolmogorov–Smirnov test statistic for two sets of samples S1 and
S2, we first compute the empirical approximations E1 and E2 to the cumulative density
functions,

Ei (t) = |{x ∈ Si | x ≤ t}|/|Si |,

and use the test statistic supt |E1(t)−E2(t)|. In practice, since |Si | is large, we approx-
imate Ei using Monte Carlo simulation. The distribution independence of the statistic
now implies that standard tables (e.g., in the appendix of [20]) or the built-in Matlab
functions can then be used to compute p values to decide whether the statistic will
allow us to reject the hypothesis that the distributions are the same.

One might similarly consider the Mann–Whitney test or various other nonparamet-
ric techniques for testing the same hypotheses [20, §5]. For example, another way to
handle this problem is to use a χ2 test for discrete distributions. There are many ways
to construct suitable distributions for this test; we present two natural choices here.

(1) Take histograms from D2
S1

and D2
S2

with identical fixed numbers of bins and bin
widths.

(2) Fix a finite set {B j } ⊂ B of reference barcodes, where 1 ≤ j ≤ m. These reference
barcodes should be chosen without reference to the observed data. Next, for each
barcode with nonzero probability measure in (the given empirical approximation
to) �n

k , assign the count to the nearest reference barcode.

The second method makes sense if we have a priori information about the expected
shape of the barcode distributions.

Let Ai ( j) denote the count either for bin j or for the reference barcode B j in sample
i (for i = 1, 2). The test statistic in the χ2 test for comparing S1 and S2 is then defined
as

χ2 =
m∑

j=1

(A1( j)− A2( j))2

A1( j)+ A2( j)
.

As the notation suggests, asymptotically this has a χ2 distribution with m′ −1 degrees
of freedom (where m′ is the number of bins of reference barcodes with nonzero
counts) [45, §17]. As such, we can again look up the p values for this distribution
in standard tables when performing hypothesis testing.

6.3 Numerical Summaries as Test Statistics

Natural test statistics for studying hypotheses about empirical barcode distributions
come from numerical summaries associated to�n

k . For instance, a natural test statistic
measures the distance to a fixed hypothesis distribution.

Definition 6.2 Let (X, ∂X , μX ) be a compact metric measure space, and let P be a
fixed reference distribution on B. Fix k, n ∈ N. Define the homological distance on X
relative to P as
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HDn
k ((X, ∂X , μX ),P) = dPr (�

n
k (X, ∂X , μX ),P).

Corollary 5.4 again applies to show that large finite samples S ⊂ X suffice to
approximate HDn

k . In fact, the convergence is better since we are working over R and
the Glivenko–Cantelli theorem applies.

Lemma 6.3 Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be a sequence of randomly drawn samples
from (X, ∂X , μX ). We regard Si as a metric measure space using the subspace metric
and the empirical measure. Then for P a fixed reference distribution on B, HDn

k (Si ,P)
converges almost surely to HDn

k ((X, ∂X , μX ),P).
An immediate consequence of Theorem 5.2 is the following robustness result (par-

alleling Theorem 5.5).

Theorem 6.4 For fixed n, k,P , HDn
k (−,P) is uniformly robust with robustness coef-

ficient r and estimate bound nr/(1 + r) for any r .

Another source of tractable test statistics is the moments of the distributions intro-
duced in Definition 6.1. A virtue of distributions on R is that they can be naturally
summarized by moments; in contrast, moments for distributions on barcode space
are hard to compute (for instance, see [44]). Even simply constructing meaningful
centroids for a set of points in a barcode space is challenging; for example, geodesics
between close points are not unique, although the barcode metric space is a length
space (it is straightforward to construct midpoints between any pair of barcodes).
Because we have emphasized robust statistics, we work with the median or a trimmed
mean and introduce the following test statistics.

Definition 6.5 Let (X, ∂X , μX )be a compact metric measure space, and fix a reference
barcode B ∈ B. Fix k, n ∈ N. Define the median homological distance relative to B
as

MHDn
k ((X, ∂X , μX ), B) = median(D2).

For 0 < α < 1
2 , define the α-trimmed mean homological distance as

M̃HDn
k ((X, ∂X , μX ), B) = 1

1 − 2α

∫ 1−α

α

q(D2),

where q denotes the quantile function. (Roughly speaking, we discard the fraction α
of the highest and lowest values and take the mean of the remainder.)

Again, Corollary 5.4 implies that consideration of large finite samples S ⊂ X
suffices to approximate these test statistics.

Lemma 6.6 Let S1 ⊂ S2 ⊂ · · · ⊂ Si ⊂ · · · be a sequence of randomly drawn samples
from (X, ∂X , μX ). We regard Si as a metric measure space using the subspace metric
and the empirical measure. Let B ∈ B be a fixed reference barcode.
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(1) Assume that D2((X, ∂X , μX ), B) has a distribution function with a posi-
tive derivative at the median. Then MHDn

k (Si , B) almost surely converges to
MHDn

k ((X, ∂X , μX ), B).

(2) M̃HDn
k (Si , B) almost surely converges to M̃HDn

k ((X, ∂X , μX ), B).

Proof As in the proof of Corollary 5.4, the fact that {Si } converges to (X, ∂X , μX )

in the Gromov–Prohorov metric implies that D(Si ) weakly converges to D. Now the
central limit theorem for the sample median (see, for instance, [40, III.4.24]) and
the hypothesis about the derivative at the median imply the convergence of medians.
Analogously, the central limit theorem for the trimmed mean [30, §4] (which holds
without further assumption provided that α < 1

2 ) gives the second part of the result. ��
The hypothesis on the median is the standard hypothesis for consistency of the

central limit theorem (and the bootstrap estimator) for the sample median; it is known
that this hypothesis is required [45, 5.11]. Although it is our experience that this
hypothesis holds in practice, it can be difficult to rigorously verify for an unknown
underlying distribution. For this reason, the use of the trimmed mean may be preferable
in cases where a constraint on the possible hypotheses is unavailable. As α approaches
1
2 , the trimmed mean converges to the median, and so choosing α = 1

2 − ε for small
ε yields a reasonable alternative to the median.

As discussed in the introduction, a counting argument yields the following robust-
ness result.

Theorem 6.7 For any n, k, B, the function MHDn
k (−, B) from finite metric spaces

(with uniform probability measure) to R is robust with a robustness coefficient >
(ln 2)/n.

Proof For a finite metric space X , expanding X to X ′, the proportion of n-element
samples of X ′ that are samples of X is (|X |/|X ′|)n ; when this number is greater than
1/2, the median value of any function f on the set of n-element samples of X ′ is then
bounded by the values of f on n-element samples of X . Since (N/(N +r N ))n > 1/2
for r < 21/n − 1, any such function f will be robust with robustness coefficient r
satisfying this bound, and in particular for r = (ln 2)/n. ��

To obtain the p value cutoffs for performing hypothesis testing, we can again use
Monte Carlo simulation to estimate the distribution of these estimators under different
hypotheses. Another possibility is to use asymptotic estimates, which we discuss in
the next subsection in the context of confidence intervals.

We conclude this subsection by remarking that there are many other possible numer-
ical invariants one might associate to �n

k (and apply as test statistics). For instance,
we define for a barcode B the quantity

gm(B) = |B(m)| − |B(m + 1)|,

where B(i) denotes the i th largest interval in B. Then the quantity

gm = median(gm(�
n
k (−)))
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and the related quantity

g = max(gm)

are useful test statistics for determining whether there is a group of “long bars” in
the underlying distribution by checking which (if any) m has a large value of gm . For
instance, when g is small, this suggests that the underlying metric measure space is
generated by a topological space with no homology in dimension k. Large values of gm

suggest that the underlying space has rank m homology in dimension k. Of course, in
order to make precise statistical statements to replace “suggests,” we must use Monte
Carlo simulation to compute p values and confidence intervals.

6.4 Confidence Intervals

For HDn
k , the only way to produce p values and confidence intervals is to use Monte

Carlo simulation (to estimate the distribution of HDn
k on finite approximations to

�n
k ). A particular advantage of MHDn

k is that we can define confidence intervals
using standard nonparametric techniques for determining confidence intervals for the
median and trimmed mean [21, §7.1]. For the median, we use appropriate sample
quantiles (order statistics) to determine the bounds for an interval that contains the
actual median with confidence 1−α. These confidence intervals then immediately yield
cutoffs for p values for hypothesis testing. For example, a simple approximation can be
obtained from the fact that order statistics asymptotically obey binomial distributions,
which lead to the following definition using the normal approximation to the binomial
distribution.

Definition 6.8 Let (X, ∂X , μX ) be a metric measure space and B a fixed barcode. Fix
0 ≤ α ≤ 1 and n, k. Given m samples from DB , let {sm} denote the samples sorted from
smallest to largest. Let uα denote the α

2 significance threshold for a standard normal
distribution. The 1 − α confidence interval for the sample median (i.e., MHDn

k ) is
given by the interval

[
s� m+1

2 − 1
2
√

muα�, s� m+1
2 + 1

2
√

muα�
]
.

For the trimmed mean, the situation is similar: asymptotic confidence intervals
can be obtained from the sample standard deviation and an explicit formula [43].
Since we find that the median converges in practice, we do not write out the formula
here (because it involves a number of complicated auxiliary quantities) and refer the
interested reader to the cited reference.

6.5 Validity of Asymptotic p Values

In the preceding discussion, the p values and confidence intervals for our tests are
always computed either via Monte Carlo simulation (i.e., sampling to estimate the
distribution of the test statistic) or using formulas derived from asymptotic results. The
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latter are substantially easier and less computationally intensive to apply. However,
we may be concerned about whether sample sizes are large enough for the asymptotic
p value to be good approximations of the exact p value; this issue is a pervasive
problem when applying such nonparametric tests based on asymptotic results (e.g.,
see [45, §1.3]).

A standard approach to mitigating such concerns is to perform a Monte Carlo
simulation of the distribution of these test statistics computed from representative
models for�n

k (e.g., synthetic distributions generated by various standard manifolds);
this provides heuristic guidance about suitable sample sizes. We provide some example
calculations of this form in Sect. 7 below. However, the careful analyst with access
to adequate samples and computer resources may simply choose to rely on Monte
Carlo simulation methods. When adequate samples are lacking, resampling methods
also often provide a more reliable means to compute cutoffs than asymptotic results.
For instance, standard results about the consistency of the bootstrap for the sample
median and sample trimmed mean [30] allow us to compute p value thresholds and
confidence intervals for MHDn

k via bootstrap resampling.

7 Demonstration of Hypothesis Testing on Synthetic Examples

In this section, we provide numerical experiments on synthetic data sets to demonstrate
the statistical inference procedures and robustness results described in the previous
section. We study a pair of examples embedded in R

2 (an annulus and a pair of nested
circles) and three families of examples in R

3 (spheres, tori, and uniform noise in a
box). Although the examples embedded in R

2 are essentially trivial, the simplicity of
the expected results allows us to focus on the methodology. The examples in R

3 are
more realistic but correspondingly more complicated to interpret.

All of our experiments rely on the following procedures for producing empirical
approximations to �n

k . We fix a Monte Carlo parameter K that is large (we discuss
estimates of how large K needs to be below). We then have the following basic
algorithm:

Algorithm 7.1 For a fixed metric measure space (X, ∂X , μX ).

(1) Uniformly select K subsamples of size n from μX .
(2) Compute the empirical approximation to �n

k from the K subsamples.

To better represent the use of these procedures in practice, we have the following
variant algorithm. Fix a subsample size N .

Algorithm 7.2 For a fixed metric measure space (X, ∂X , μX ).

(1) Uniformly sample N points from μX .
(2) Uniformly select K subsamples of size n from the empirical measure on the N

samples.
(3) Compute the empirical approximation to �n

k from the K subsamples.

To actually carry out these algorithms, we used the Perseus codebase [38] to com-
pute persistent homology from a finite metric space, executed from within a series of
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Fig. 1 Annulus with inner radius 0.8 and outer radius 1.2 (left); the same annulus together with diameter
linkage (right) (in experiments, points on diameter are chosen randomly)

Python and Cython scripts that ran our various experimental setups. To avoid com-
binatorial explosion in the number of simplices when the scale parameter results
in complete graphs, we typically capped the maximum scale parameter (i.e., trun-
cated each of the bars in the barcodes). The experiments were run on various stock
Linux machines; no individual experiment took more than a few minutes to complete.
Our random numbers were generated using the GSL library [27] to produce uniform
and Gaussian samples and rejection sampling to simulate all other distributions (as
described below).

Synthetic Example 1: Annulus and annulus plus diameter linkage

We first consider a simple example that illustrates the robustness of distributional
invariants. The underlying metric measure space A is an annulus of inner radius 0.8
and outer radius 1.2 in R

2 (Fig. 1), equipped with the subspace metric and the area
measure. The underlying manifold of A is clearly homotopy equivalent to a circle.

We sampled from the annulus via rejection sampling; we sampled uniformly from
the bounding box [−1.2, 1.2] × [−1.2, 1.2] and only kept points (x, y) such that
0.8 ≤ √

x2 + y2 ≤ 1.2.
We began by examining the rate of convergence in Corollary 5.4. Specifically,

for k = 1 and various n, we considered subsamples Si in the annulus of increasing
cardinality and studied the convergence of various distributions derived from�n

k (Si ),
using Algorithms 7.1 and 7.2 as a base. We computed the distance distribution D2 from
�n

k (Si ) and�n
k (A) as the cardinality Ni of Si increased and n varied, using a barcode

cutoff of 0.375. We then used both the Kolmogorov–Smirnov test and the χ2 test on
histograms to repeatedly compare the estimates computed from samples of cardinality
Ni to each other and to the reference distribution from A. Fixing K = 1,000, our results
indicate that |Si | = 1,000 sufficed to approximate the distribution for n ≤ 100; with
these parameters, we are essentially never able to reject the null hypothesis that the
two distributions were drawn from the same underlying distribution.
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Fig. 2 Barcode for annulus via Vietoris–Rips complex with 1,000 points, showing 1 long bar. Horizontal
scale goes from 0 to 0.375 (vertical scale is not meaningful)

Fig. 3 Barcode for annulus plus diameter linkage via Vietoris–Rips complex with 1,000 points, showing
2 long bars. Horizontal scale goes from 0 to 0.375 (vertical scale is not meaningful)

Next, we turn to an illustrative example of the behavior of �n
k in the face of mali-

ciously chosen noise points. We generated sets S1 of 1,000 points by sampling uni-
formly (via rejection sampling) from the annulus. Using the Vietoris–Rips complex,
computing the barcode for the first homology group (with cutoff of 0.375) yielded a
single long interval, displayed in Fig. 2. (We repeated this procedure many times with
different subsamples of size 1,000; the picture displayed is wholly representative of
the results, which vary only very slightly across the samples.)

We then generated sets by drawing S1 as previously and unioning with sets X drawn
uniformly from the region {0}×[−0.8, 0.8] ⊂ R

2 to form the sets S2 = S1 ∪ X . When
the added points were sufficiently numerous and well distributed, the point cloud then
appears to have been sampled from an underlying manifold homotopy equivalent to a
figure 8 when the scale parameter is sufficiently large (Fig. 1). Computing the barcode
for the first homology group now yields two long intervals, displayed in Fig. 3. (Again,
this barcode was stable over many repetitions.)
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Table 1 Comparison tests for samples S1 and S2 = S1 ∪ X , where S1 is a random sample of 1,000 points
from annulus A and X consists of a given proportion of random “noise” points along the diameter

Noise χ2 99 % χ2 95 % χ2 90 % KS 99 % KS 95 % KS 90 %

0.0 % 0.0 0.0 0.0 0.0 0.0 0.0

0.5 % 0.05 0.05 0.05 0.2 0.2 0.2

1.0 % 0.05 0.15 0.15 0.2 0.45 0.55

1.5 % 0.15 0.2 0.35 0.25 0.4 0.65

2.0 % 0.2 0.45 0.55 0.35 0.5 0.65

0.0 % 0.0 0.0 0.0 0.0 0.0 0.0

0.5 % 0.0 0.0 0.0 0.0 0.0 0.0

1.5 % 0.0 0.0 0.05 0.0 0.05 0.1

2.0 % 0.0 0.1 0.15 0.0 0.1 0.2

2.5 % 0.1 0.15 0.2 0.35 0.55 0.65

Top: comparison tests for D2 distribution (tests 1 and 2 in text). Bottom: comparison tests for D(B1,−)
distributions, where B1 is the barcode with a single long bar (test 3 in text)

To test our methodology, we considered varying sizes for X (as a proportion of
|S1| = 1,000), and using Algorithm 7.2 we computed 1,000 empirical approximations
to �75

1 (S1) and �75
1 (S2), using the parameters K = 1, 000 and n = 75 and barcode

cutoffs of 0.375.
We then ran the following tests:

(1) We compared the empirical distance distributions D2 for S1 and S2 using the
Kolmogorov–Smirnov statistic.

(2) We computed histograms from D2 for S1 and S2 (with 25 bins equally spaced
over the maximum bounding region) and compared using the χ2 test.

(3) Fixing a reference barcode B1 with a single long bar, we computed the distance
distribution DB1 for S1 and S2 and repeated the aforementioned comparisons
using the Kolmogorov–Smirnov and χ2 statistic (after forming histograms).

The results of these tests are summarized in Table 1. We see that whereas the first
two tests detect differences even with relatively small amounts of malicious noise, the
third test is less sensitive and only begins to suggest rejection of the null hypothesis
at around 2.0 % or 2.5 % noise added. (Note that in the third test, the median of the
distribution is precisely the statistic MHDn

k .) On the one hand, these results provide
a context for interpreting the results using the Kolmogorov–Smirnov and χ2 statistic
with more reasonable noise models (in other subsequent examples). On the other hand,
we see that using the third test we can extract robust topological information from the
data.

Finally, for a different application of the χ2 test to compare these distributions,
we used k-means clustering to produce discrete distributions, as follows. Performing
k-means clustering on the empirical approximations to �n

k for A indicated that the
resulting distributions had nontrivial mass clustered in three regions: around a barcode
B0 with no long intervals, a barcode B1 with one long interval, and a barcode B2 with
two long intervals. This led to the following test, which we repeated 1,000 times.
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(1) Fixing K = 1,000, for S1 and S2, we counted the number of long bars (i.e., bars
with a length over a threshold of 0.125, which was determined by the k-means
cluster centroids).

(2) We used theχ2 test to determine if we could reject the hypothesis that the resulting
histograms were drawn from the same distribution even at the 90 % level.

The results were analogous to the more sensitive preceding experiments; at 1.0 %
noise added, we found that the χ2 test never permitted rejection of the null hypothesis.
(As an example, a sample distribution of masses on the centroid from a single run was
0.017, 0.983, and 0 for S1 and 0.020, 0.975, and 0.005 for S2.) On the other hand, at
2.0 % noise added, we always rejected the null hypothesis. However, looking at the
actual values, we see that even at 5.0 % noise added, representative masses for S2 were
0.024, 0.827, and 0.149. We will see below how to use confidence intervals to extract
precise inferences about the underlying homology from such data.

The example of the annulus also begins to illuminate the relationship between the
distributional invariants and density filtering. Notice that the second interval at the
bottom of Fig. 3 starts somewhat later, reflecting a difference in the average interpoint
distance between the original samples and the additional points added. As a conse-
quence, one might imagine that appropriate density filtering would also remove these
points. On the one hand, in many cases, density filtering is an excellent technique
for concentrating on regions of interest. On the other hand, it is easy to construct
examples where density filtering fails; for instance, we can build examples akin to the
one studied here where the “connecting strip” has a comparable density to the rest of
the annulus simply by reducing the number of sampled points or by expanding the
outer radius while keeping the number of sampled points fixed. In the former case our
methods also degrade, but the latter produces results akin to the results above. More
generally, studying distributional invariants (such as �n

k ) by definition allows us to
integrate information from different density scales. In practice, we expect there to be
a synergistic interaction between density filtering and the use of �n

k ; see Sect. 8 for
an example of this interaction in practice.

Synthetic Example 2: Friendly circles

Next, we consider a somewhat more complicated example. The underlying metric
measure space X is the subset of R

2 specified as the union of the circle of radius 2
centered at (0, 0) and the circle of radius 1 centered at (0.8, 0), equipped with the
intrinsic metric and the length measure. We sampled from X by choosing uniformly
θ ∈ [0, 2π ] and assigning the indicated point to the first circle with probability 2

3
and the second circle with probability 1

3 (proportionally to their lengths). Conver-
gence experiments analogous to those discussed in the previous example indicated
that choosing subsamples of cardinality greater than roughly 500 resulted in good
approximations to �n

k .
Our experiments here are designed to indicate the robustness of our invariants to

both Gaussian and uniform noise – the point of this example is that noise points will
introduce many classes in H1 by linking the two circles where they are near one another.
Once again, it is illuminating to simply begin with persistent homology computed from
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Fig. 4 Two circles with
Gaussian noise

Fig. 5 Two circles with uniform
noise (indicated by gray box)

the entire subsample. We sampled 1,500 points from X . We then considered two noise
models:

(1) All points have ambient Gaussian noise added (i.e., we convolved with a Gaussian
of mean 0 and covariance matrix σ 2 I2 in R

2) (Fig. 4).
(2) A fraction of the points are replaced with uniform noise sampled from the bound-

ing rectangle [−2, 2] × [−2, 2] ⊂ R
2 (Fig. 5).

Computing the persistent homology from the Vietoris–Rips complex on these points
without noise we saw the expected pair of long bars in the barcode for the first persistent
homology group. With Gaussian noise, the results of computing the barcodes degraded
as the width of the Gaussians increased; for example, when the width was σ 2 = 0.1,
there were many long bars in the barcode. (We omit a graph of the barcode in the
interest of space because the phenomenon is similar to the uniform noise case.) As
uniform noise was added, the results of computing barcodes using the Vietoris–Rips
complex degraded very rapidly, as we see in Fig. 6 – there are many long bars. This is
precisely what one would expect in light of the discussion in Sect. 4 and the geometry
of the situation.

Even with only 10 noise points, we see 3 bars, and with 90 noise points there
are 12. (These results were stable across different samples; we report results for a
representative run.)
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Fig. 6 Barcode for two circles with 10, 50, and 90 noise points. Horizontal scale goes from 0 to 0.75
(vertical scale is not meaningful)

In contrast, we computed �300
1 for the same point clouds (i.e., the two circles plus

varying numbers of noise points), using K = 1,000 samples of size 300 and a cut-
off of 0.75. The resulting empirical distributions had essentially all of their weight
concentrated around barcodes with a small number of long intervals (revealed once
again by k-means clustering). For the points in the empirical estimate of �300

1 we
counted the number of “long bars” with length over the threshold of 0.25 (again
determined from the k-means centroids). The results are summarized in Table 2
below.

A glance at the table shows that the majority of the weight is clustered around a
barcode with two long bars and that the data overwhelmingly support a hypothesis of ≤
3 barcodes under all noise regimes. More precisely, the likelihood statistic of Sect. 6.1
allows us to evaluate the hypothesis H that the observed empirical approximation
to �n

k was drawn from an underlying barcode distribution with weight ≥ 5 % on
barcodes with more than three long bars. In the strictest tests with 80 and 90 noise
points, 31 out of 1,000 samples were near barcodes with more than 3 long bars, and
so we estimate that the probability of the distribution having ≥ 5 % of the mass at
four or more barcodes is ≤ BD(1,000, 31, .05) < 0.22 %. Put another way, we can
reject the hypothesis that the actual distribution has more than 5 % mass at four or
more barcodes at the 99.7 % level.
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Table 2 Distribution
summaries for �300

1 in
“Friendly Circles” example for
number of long bars occurring in
1,000 tests with given number of
noise points added

Number of noise pts 0 bars 1 bars 2 bars 3 bars 4 bars 5 bars

0 0 303 696 1 0 0

10 0 305 589 106 0 0

20 0 278 590 132 0 0

30 0 285 594 119 2 0

40 1 259 584 149 6 1

50 0 289 553 154 4 0

60 0 254 591 146 7 2

70 0 277 564 154 5 0

80 1 229 543 196 29 2

90 0 229 533 207 28 3

Table 3 Distribution summaries for�300
1 in “Friendly Circles” example for number of long bars occurring

in 1,000 tests with Gaussian noise added of mean 0 and covariance σ 2 I2

σ 2 0 bars 1 bars 2 bars 3 bars 4 bars 5 bars

0.05 2 59 930 9 0 0

0.075 44 351 585 20 0 0

0.1 204 537 249 10 0 0

We also ran a similar experiment with Gaussian noise, looking at�300
1 and varying

widths; the results are summarized in Table 3. As one would expect, sufficiently wide
Gaussians cause the smaller circle to appear to be a (contractible) disk attached to the
larger circle.

Spheres and tori in R
3

We now turn to more realistic synthetic examples that are less easily summarized (and
better represent the ambiguity present in the typical application of topological data
analysis). We studied two standard geometric examples of smooth manifolds.

(1) Two-dimensional spheres of varying radii r , which we denote by S(r);
(2) Tori of inner radius r and outer radius R for varying parameter values, which we

denote by T (r, R) (Fig. 7).

These examples have interestingly different characteristics; detecting a sphere’s
top homology class is relatively easy even in the face of noise, whereas noise can
introduce many spurious homology classes in degree 1. In contrast, the torus T (0.5, 1)
is sufficiently different in the scale of its two axes that detecting the degree 2 homology
class and both degree 1 homology classes is quite challenging.

There are various reasonable choices to make about how to sample from these
objects. In our experiments, we used the intrinsic metric and sampled using the area
measure in each case:
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Fig. 7 Torus T (0.5, 1)

(1) To draw a uniform point on the sphere using the area measure, we draw
points z1, z2, z3 from the standard normal distribution and considered the point
( z1√

z2
1+z2

2+z2
3

, z2√
z2

1+z2
2+z2

3

, z3√
z2

1+z2
2+z2

3

).

(2) To draw a uniform point on the torus using the area measure, we parameterized
the torus as

(θ, ψ) �→ ((R + r cos(θ)) cos(ψ), (R + r cos(θ)) sin(ψ), r sin(θ)) ,

for 0 ≤ θ, ψ ≤ 2π , and used the rejection sampling procedure explained in [23,
2.2]. (Note that drawing θ and ψ uniformly in [0, 2π ] does not work.)

We again worked with two noise models, adding both Gaussian noise (by convolving
with a mean 0 Gaussian with covariance matrix σ 2 I3 in R

3) to all points and replacing
some of the points with uniform noise (obtained from uniform samples in R

3 using
the bounding box [−2, 2]3) to the samples. We note that these two noise models are
somewhat different in character; the Gaussian noise affects all points, whereas the
uniform noise corrupts some fraction of the total number of points.

Our first set of experiments studied the rate of convergence in Corollary 5.4; our
methodology was the same as in the previous section, and we found that acceptable
minimum cardinalities for S ⊂ X in order for �n

k (S) and �n
k (X) (for varying n) to

be indistinguishable to the χ2 and Kolmogorov–Smirnov tests were around 1,000 for
the sphere and 2,000 for the torus. We fixed K = 1,000 throughout. We used these
results as a guide when carrying out experiments analyzing the metric measure spaces
in this region.

Next, to explore how the inference procedures described in Sect. 6 can be used
in the context of our running examples in R

3, we carried out the following different
experiments, again using Algorithms 7.1 and 7.2 as the base.

(1) We used the Kolmogorov–Smirnov and χ2 tests to study how the distribution D2

of distances induced from � changed as noise was added.
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Table 4 Comparisons tests for sphere (for Betti 2) and torus (for Betti 1) for distributions with uniform
noise replacing a fraction of points compared against noiseless distributions

Shape Noise ( %) χ2 99 % χ2 95 % χ2 90 % KS 99 % KS 95 % KS 90 %

S(1) 1 0.0 0.0 0.0 0.0 0.05 0.05

S(1) 5 0.0 0.0 0.0 0.0 0.0 0.05

S(1) 10 0.0 0.0 0.1 0.0 0.1 0.1

S(1) 20 0.0 0.1 0.15 0.1 0.2 0.35

T(0.5,1) 1 0.0 0.0 0.0 0.0 0.0 0.0

T(0.5,1) 5 0.0 0.0 0.0 0.0 0.0 0.05

T(0.5,1) 10 0.0 0.05 0.05 0.0 0.05 0.1

T(0.5,1) 20 0.0 0.1 0.2 0.15 0.2 0.3

(2) We use estimates of MHDn
k both to extract information about the salient topolog-

ical features of the sphere and the torus and to test the robustness of this invariant
to added noise.

We began by looking at what the Kolmogorov–Smirnov and χ2 tests tell us about
the sphere and torus. Working with the uniform noise model, we used subsamples of
1,000 points for the sphere and considered �150

2 as our base. For the torus, we used
subsamples of 2,000 points and�150

1 for our base. We replaced an increasing fraction of
the points with noise and compared to the distribution from the underlying (noiseless)
model, with the results summarized in Table 4. Here the percentage in the table once
again indicates the fraction of runs in which we can reject the null hypothesis of the
same distribution at the indicated significance level. A clear conclusion to draw is that
�n

k is relatively insensitive to even large amounts of uniform noise. In contrast, when
the corresponding experiments were run with the Gaussian noise model, we found
that there is a threshold effect; for noise widths smaller than roughly σ 2 = 0.05, the
distributions cannot be distinguished by these tests, but for larger noise widths they
basically always appear to be distinct.

Although the previous experiments indicate the degree to which�n
k is robust against

noise, in practice it is more likely that we will want to extract information about easily
expressed hypotheses concerning the rank of the homology groups of the underlying
space. To this end, we considered MHDn

k with regard to various reference barcodes;
let m[a, b) denote a barcode consisting of m copies of the interval [a, b). We used
Algorithms 7.1 and 7.2 to compute MHDn

k , and we used the asymptotic estimates of
Definition 6.8 to produce the confidence intervals. We chose subsets of size 1,000 to
subsample from.

We began by considering results for uniform noise in a box as a reference bench-
mark; the results are summarized in Table 5. We then computed for the sphere; the
results are summarized in Table 6 below. Finally, we did the computations for the torus;
the results are summarized in Table 7 below. We obtained the reference barcodes by
inspection of a single run; this procedure is a proxy for the kind of exploratory data
analysis that we expect would generate the hypotheses to test using our test statistics.
The confidence intervals in the table were generated using 100 samples; the reported
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Table 5 Confidence intervals
for MHD150

k applied to uniform
noise in [−2, 2] × [−2, 2] for
reference barcodes m[0.40.55)

k m Median 95 % Confidence
interval

1 0 0.09 [0.0875,0.0925]

1 1 0.08 [0.0775,0.0825]

1 2 0.075 [0.075,0.0775]

2 0 0.0175 [0.0125,0.025]

2 1 0.085 [0.075,0.1]

2 2 0.095 [0.085,0.115]

Table 6 Confidence intervals
for MHD150

k for reference
barcodes m[0.4, 0.55) applied to
sphere with a given percentage
of points replaced with uniform
noise

Shape Noise (%) k m Median 95 % Confidence
interval

S(1) 0 1 0 0.0925 [0.09,0.0975]

S(1) 0 1 1 0.195 [0.195,0.2]

S(1) 0 1 2 0.205 [0.205,0.21]

S(1) 5 1 0 0.095 [0.0925,0.1]

S(1) 5 1 1 0.175 [0.17,0.175]

S(1) 5 1 2 0.185 [0.185,0.19]

S(1) 10 1 0 0.0975 [0.095,0.1025]

S(1) 10 1 1 0.15 [0.14,0.165]

S(1) 10 1 2 0.18 [0.175,0.185]

S(1) 20 1 0 0.0975 [0.0925,0.1025]

S(1) 20 1 1 0.115 [0.105,0.12]

S(1) 20 1 2 0.145 [0.135,0.155]

S(1) 0 2 0 0.07 [0.065, 0.075]

S(1) 0 2 1 0.02 [0.02, 0.025]

S(1) 0 2 2 0.075 [0.075, 0.075]

S(1) 5 2 0 0.065 [0.0625, 0.07]

S(1) 5 2 1 0.025 [0.015, 0.03]

S(1) 5 2 2 0.075 [0.075, 0.075]

S(1) 10 2 0 0.06 [0.0575,0.065]

S(1) 10 2 1 0.03 [0.025,0.035]

S(1) 10 2 2 0.075 [0.075,0.08]

S(1) 20 2 0 0.0525 [0.045,0.0575]

S(1) 20 2 1 0.045 [0.04,0.065]

S(1) 20 2 2 0.075 [0.075,0.075]

results are representative for these parameter settings. We ran a number of experiments
with Gaussian noise as well. In the interest of space, we report only the results on the
torus, which are summarized in Table 8, as these are representative.

Before we begin to discuss these results, a few observations about the data sets are
in order. We expect that the sphere should be a relatively easy example; uniform noise
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Table 7 Confidence intervals
for MHD150

k for reference
barcodes m[0.3, 0.55) applied to
torus with a given percentage of
points replaced with uniform
noise

Shape Noise (%) k m Median 95 % Confidence
interval

T(0.5,1) 0 1 0 0.1575 [0.1525,0.16]

T(0.5,1) 0 1 1 0.0925 [0.09,0.0975]

T(0.5,1) 0 1 2 0.1 [0.0975,0.1]

T(0.5,1) 5 1 0 0.15 [0.145,0.1525]

T(0.5,1) 5 1 1 0.095 [0.0925,0.0975]

T(0.5,1) 5 1 2 0.0975 [0.095,0.1]

T(0.5,1) 10 1 0 0.145 [0.14,0.15]

T(0.5,1) 10 1 1 0.0975 [0.0925,0.1025]

T(0.5,1) 10 1 2 0.0975 [0.095,0.1]

T(0.5,1) 20 1 0 0.14 [0.1375,0.1425]

T(0.5,1) 20 1 1 0.0925 [0.09,0.095]

T(0.5,1) 20 1 2 0.0975 [0.0925,0.1]

Table 8 Confidence intervals
for MHD150

k for reference
barcodes m[0.3, 0.55) applied to
torus with Gaussian noise of
mean 0 and covariance matrix
σ 2 I3

Shape σ 2 k m Median 95 % Confidence
interval

T(0.5,1) 0.01 1 0 0.145 [0.1425,0.15]

T(0.5,1) 0.01 1 1 0.085 [0.0825,0.0875]

T(0.5,1) 0.01 1 2 0.115 [0.11,0.125]

T(0.5,1) 0.05 1 0 0.1275 [0.1225,0.135]

T(0.5,1) 0.05 1 1 0.0775 [0.075,0.0825]

T(0.5,1) 0.05 1 2 0.11 [0.105,0.115]

T(0.5,1) 0.1 1 0 0.095 [0.0925,0.1]

T(0.5,1) 0.1 1 1 0.0875 [0.085,0.0925]

T(0.5,1) 0.1 1 2 0.105 [0.105,0.11]

is unlikely to interfere with the top-dimensional homology class. This expectation is
borne out by simply computing the persistent homology using 1,000 points – even
with 10 % uniform noise added, we see a single, much longer, bar. (We omit the image
of this.) In this situation, we regard our experiments as validating the use of MHDn

k
to make precise statistical statements about topological hypotheses. In contrast, the
torus T (0.5, 1) is a difficult test; the scale of the two one-cycles is different, and
we need a large number of points in order to resolve them both. When running the
persistent homology using all 1,000 points, even tiny amounts of uniform noise caused
substantial disruptions in the results, i.e., many long bars. (We again omit the image
of this.) As a consequence, in the presence of noise, working without the statistical
methodology makes it basically impossible to draw conclusions about the data.

For the sphere, the measured results indicate that MHD150
2 does an excellent job

of detecting the class in dimension 2. Specifically, until the noise reaches 20 %, the
confidence interval for the hypothesis 1[0.4, 0.55) was the closest to 0 and did not
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overlap with the other confidence intervals. When the confidence intervals for different
population quantities did not overlap, the difference between the two was statistically
significant at the 99 % level. We could also use Monte Carlo simulation to estimate the
difference between the medians (for the two hypotheses) if a more refined test statistic
explicitly comparing the hypotheses were desired. The measured results do not detect
any classes in dimension 1, even with really substantial amounts of noise. (The results
are comparable to the results for the box in dimension 1.)

For the torus, we begin by discussing the case of uniform noise. In dimension 1,
we see that both one- and two-bar variants are close to the observed data. When we
performed Monte Carlo simulation to obtain confidence intervals for the difference
between the medians, the 95 % intervals contained 0 – this suggests that we cannot
distinguish between the two hypotheses with this test statistic. One interpretation of
this result is that there is in fact a larger number of long bars, and indeed inspection
of the barcode results reflect approximately 5 long bars. It is encouraging that our
results are very robust in the face of large amounts of uniform noise, however. We can
obtain better results by increasing the number of sample points; when using MHD500

1
and a subsample of size 1,000, the medians and confidence intervals for two bars was
substantially smaller than for one bar or three bars – the difference is now statistically
significant at the 99 % level. (For reasons of space we omit reporting the specific
tables.)

For the torus with Gaussian noise, the results admit a comparable analysis, with the
exception of the fact that we see a substantial degradation as the width increases (and
at noise of width σ 2 = 0.1 our procedures are basically useless).

8 Application: Confidence Intervals for Natural Image Data Set

One of the most prominent applications of persistent homology in topological data
analysis is the study of the natural images data set described in [46]. This data set
consists of 3×3 patches sampled from still photographs of natural scenes (i.e., pictures
of rural areas without human artifacts). The results of Carlsson et al. [12] extract
topological signals from this data set, which can be interpreted in terms of collections
of patches that are known to be meaningful based on the neurophysiology of the
eye. The goal of this section is to apply our statistical methodology to validate the
conclusions of their work.

8.1 Setup

We computed the confidence intervals based on MHDn
k for a subset of patches from

the natural images data set as described in [12]. We briefly review the setup. The data
set consists of 15,000 points in R

8, generated as follows. From the natural images,
3 × 3 patches (dimensions given in pixels) were sampled, and the top 30 % with the
highest contrast were retained. These patches were then normalized twice, first by
subtracting the mean intensity and then scaling so that the Euclidean norm was 1. The
resulting data set can be regarded as living on the surface of an S7 embedded in R

8.
After performing density filtering (with a parameter value of k = 15; refer to [12] for
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details) and randomly selecting 15,000 points, we are left with the data set M(15, 30).
At this density, one tends to see a barcode corresponding to five cycles in the H1. In the
Klein bottle model, these cycles are generated by three circles, intersecting pairwise at
two points (which can be visualized as unit circles lying on the xy-plane, the yz-plane,
and the xz-plane).

8.2 Results

We computed empirical approximations to �500
1 (M(15, 30)) using Algorithm 7.1,

with K = 1,000 and using a barcode cutoff of 2 (we use the value reported in [12]
as the maximal filtration value). We found that (after applying k-means clustering, as
earlier) the weight is distributed as 0.1 % with one long bar, 1.1 % with two long bars,
7.4 % with three long bars, 34.2 % with four long bars, and 57.2 % with five long bars.
(Here the threshold for a long bar was 1.) Analyzing likelihood test statistics as in
Sect. 6.1, we find that the underlying distribution has at least 95 % of its mass on two,
three, or four bars at the 99.7 % confidence level.

We also analyzed the results using MHD. We used as the hypothesis bar-
code the multiset 5[0, 2) = {[0, 2), [0, 2), [0, 2), [0, 2), [0, 2)}. We found using
the nonparametric estimate from Definition 6.8 that the 95 % confidence inter-
val for MHD500

1 (M(15, 30) is [0.442, 0.476]. The 99 % confidence interval for
MHD500

1 (M(15, 30)) is [0.436, 0.481]. These results represent high confidence for the
data to be further than 0.442 but closer than 0.476 to the reference barcode. On the other
hand, when we computed the confidence intervals using as reference barcode the empty
set, we found that both endpoints for the 95 and 99 % confidence intervals are the cut-
off value of 2. We found the same results for hypothesis barcodes with � bars [0, 2) for
0 ≤ � ≤ 10, � �= 5. In particular, this means that the differences between the distance
to the five-bar hypothesis and any other is statistically significant at the 99 % level.

We interpret these results as suggesting that the hypothesis barcode is consistent
with the underlying distribution among barcode distributions that put all of their mass
on a single barcode. Of course, these results also suggest that when sampling at 500
points, we simply do not expect to see a distribution that is heavily concentrated around
a single barcode. In the next subsection, we discuss the use of the witness complex,
which does result in such a narrow distribution.

Remark 8.1 To validate the nonparametric estimate of the confidence interval, we
also used bootstrap resampling to compute bootstrap confidence intervals. Although
we do not justify or discuss further this procedure herein, we note that we observed
the reassuring phenomenon that the bootstrap confidence intervals agreed closely
with the nonparametric estimates for both the 95 % confidence intervals and the 99 %
confidence intervals in each instance.

8.3 Results with the Witness Complex

Because of the size of the data sets involved, the analysis performed in [12] used
the weak witness complex W rather than the Vietoris–Rips complex VR. The weak
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witness complex for a metric space (X, ∂) depends on a subset X0 ⊂ X of witnesses;
the size of the complexes is controlled by |X0| and not |X |.
Definition 8.2 For ε ∈ R, ε ≥ 0, and witness set X0 ⊂ X , the weak witness complex
Wε(X, X0) is the simplicial complex with vertex set X0 such that [v0, v1, . . . , vn] is
an n-simplex when for each pair vi , v j there exists a point p ∈ X (a witness) such
that the distances ∂(vi , p) ≤ ε.

When working with the witness complex, we adapt our basic approach to study the
induced distribution on barcodes that comes from fixing the point cloud and repeatedly
sampling a fixed number of witnesses. The theoretical guarantees we obtained for the
Vietoris–Rips complex in this paper do not apply directly; we intend to study the
robustness and asymptotic behavior of this process in future work. Here, we report
preliminary numerical results.

Specifically, we again computed empirical approximations to�n
1(M(15, 30))using

Algorithm 7.1, with K = 1,000 and using a barcode cutoff of 2. However, to produce
the underlying complex, we used the n points for each subsample as the landmark
points X0 in the construction of the witness complex rather than as the vertices for the
Vietoris–Rips complex.

We used as the hypothesis barcode the multiset 5[0, 2) as was previously done.
We found using the nonparametric estimate of Definition 6.8 that the 95 % confidence
interval for MHD100

1 (M(15, 30)) is [0.024, 0.027]. The 99 % confidence interval for
MHD100

1 (M(15, 30))was also [0.024, 0.027]. When we compute the 95 % confidence
interval for MHD150

1 (M(15, 30), we obtain [0.021, 0.023]. The 99 % confidence inter-
val for MHD150

1 (M(15, 30)) is [0.021, 0.024]. This represents high confidence for the
data to be farther than 0.021 (for �150

1 ) and 0.024 (for �100
1 ) from the reference bar-

code but closer than 0.024 (for �150
1 ) and 0.027 (for �100

1 ) to the reference barcode.
We obtained essentially the same results MHD500

1 as for MHD150
1 . On the other hand,

when using hypothesis barcodes with � bars [0, 2) for 0 ≤ � ≤ 10, � �= 5, the confi-
dence intervals start and end at 2. Again, this means that the difference between the
distances to the five-bar hypothesis and the other hypotheses is statistically significant
at the 99 % level. We interpret these results as meaning that the underlying distribu-
tion is essentially concentrated around the hypothesis barcode; the distance of 0.025
is essentially a consequence of noise.

Remark 8.3 In contrast, when we compute MHD25
1 (M(15, 30)) (using the same

experimental procedure as described earlier), we find the confidence interval is
[1.931, 1.939]. When we compute MHD75

1 (M(15, 30)), we find that the confidence
interval is [1.859, 1.866]. This represents high confidence that MHD25

1 and MHD75
1

are far from this reference barcode, which in light of the confidence previously given
intervals for MHD150

1 and MHD500
1 appear to indicate that sample sizes 25 and 75 are

too small.
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