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UNIVERSALITY OF THE HOMOTOPY INTERLEAVING DISTANCE

ANDREW J. BLUMBERG AND MICHAEL LESNICK

Abstract. As a step towards establishing homotopy-theoretic foundations for topological
data analysis (TDA), we introduce and study homotopy interleavings between filtered topo-
logical spaces. These are homotopy-invariant analogues of interleavings, objects commonly
used in TDA to articulate stability and inference theorems. Intuitively, whereas a strict
interleaving between filtered spaces X and Y certifies that X and Y are approximately
isomorphic, a homotopy interleaving between X and Y certifies that X and Y are approxi-
mately weakly equivalent.

The main results of this paper are that homotopy interleavings induce an extended pseu-
dometric dHI on filtered spaces, and that this is the universal pseudometric satisfying natural
stability and homotopy invariance axioms. To motivate these axioms, we also observe that
dHI (or more generally, any pseudometric satisfying these two axioms and an additional
“homology bounding” axiom) can be used to formulate lifts of several fundamental TDA
theorems from the algebraic (homological) level to the level of filtered spaces.

Finally, we consider the problem of establishing a persistent Whitehead theorem in terms
of homotopy interleavings. We provide a counterexample to a naive formulation of the
result.
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1. Introduction

Topological data analysis (TDA) is a branch of statistics whose goal is to apply topology
to develop tools for analyzing the global, non-linear, geometric features of data. At a high
level of abstraction, the basic TDA workflow is easy to describe: Given a data set P , for
example a finite metric space, we associate to P a diagram of topological spaces F (P ) whose
topological structure encodes information about the geometric features of P , and then study
F (P ) using familiar tools from algebraic topology. The prime example of this workflow is
persistent homology, which takes F (P ) to be a filtered topological space and then applies
homology with coefficients in a field to obtain simple, easily computed invariants of P called
barcodes.

Of course, diagrams of spaces have been studied extensively in modern algebraic topology;
what distinguishes the TDA theory from classical work is an emphasis on approximate rela-
tions between diagrams of spaces and their invariants. For example, we are typically more
interested in whether the barcodes of a pair of data sets are close in some suitably defined
metric than in whether they are exactly equal.

From this vantage point, the well-known stability theory for persistent homology and its
applications to TDA can be seen as a rudimentary form of “approximate algebraic topology”
for filtered spaces, in which a central role is played by such approximate relations. In analogy
with classical algebraic topology, one imagines that there should exist an “approximate
homotopy theory” for filtered spaces which serves as the foundation for this approximate
algebraic topology; indeed, the beginnings of such a theory are already implicit in the proofs
of well-known TDA results.

The main goal of this paper is to develop the formal language needed to start fleshing
out this approximate homotopy theory. The essential first problem is to select a suitable
notion of approximate weak equivalence of filtered spaces; we focus primarily on this. Our
results establish that our homotopy interleavings and the metric they induce, the homotopy
interleaving distance, provide a notion of approximate weak equivalence that is very well
behaved, relative to the needs of TDA.
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In the remainder of the introduction, we state our main results and motivate them by ex-
plaining how the homotopy interleaving distance can be used to obtain a homotopy-theoretic
strengthening of a fundamental stability result for the persistent homology of finite metric
spaces.

1.1. Persistent Homology. As mentioned above, persistent homology provides invariants
of data called barcodes. A barcode is a multiset of intervals in R. Intuitively, each interval
in the barcode represents a topological feature of our data, and the length of the interval is
a measure of the robustness of that feature to perturbations of the data. In the last fifteen
years, these invariants have been widely applied to the study of scientific data [21, 5].

For categories C and D with C small, let DC denote the category of functors C → D
with morphisms the natural transformations. Let Top denote the category of compactly-
generated weakly Hausdorff (CGWH) topological spaces [30, 35, 39]. Regarding R, together
with its total order, as a category in the usual way, we define an R-space to be an object
X of TopR. If for each r ≤ s ∈ R, the internal map Xr,s : Xr → Xs is an inclusion (i.e., a
homeomorphism onto its image), we call X a filtration.

Let Vec denote the category of k-vector spaces over some fixed field k. A persistence
module is an objectM ofVecR. We sayM is pointwise finite dimensional (p.f.d.) if dimMr <
∞ for all r ∈ R. Let Hi : Top→ Vec denote the ith homology functor with coefficients in k.

Persistent Homology Pipeline. Here is the standard TDA pipeline for constructing barcode
invariants of finite metric spaces:

(1) Given a finite metric space (P, d), we construct Rips(P ), the Vietoris-Rips filtration
of P . For r ≥ 0, Rips(P )r is the clique complex on the graph with vertex set P and
edge set {[p, q] | d(p, q) ≤ 2r}; for r < 0, Rips(P )r := ∅.

(2) For any i ≥ 0, we obtain a p.f.d. persistence module HiRips(P ).
(3) The structure theorem for persistence modules [42, 16] yields a barcode BM as a

complete invariant of any p.f.d. persistence module M ; this barcode specifies the
decomposition of M into indecomposable summands. Thus, we obtain a barcode
invariant BHi Rips(P ) of P .

This construction of barcodes of finite metric spaces in fact generalizes to compact metric
spaces, using a slightly different definition of barcode [10, 12].1 Moveover, by altering the
first step of this pipeline, we can adapt the pipeline to provide invariants of other kinds of
data as well, or to provide other kinds of barcode invariants of finite metric spaces.

Bottleneck Distance on Barcodes . In contrast to classical algebraic topology, metrics on col-
lections of topological invariants play a key role in TDA. One standard choice of metric on
barcodes is the bottleneck distance, denoted dB. Roughly, for two barcodes C and D, dB(C,D)
is the maximum amount we need to perturb any interval in C to transform C into D. We
now give the precise definition.

1In fact, almost everything we say in this paper about finite metric spaces generalizes to compact met-
ric spaces. However, in order to avoid defining barcodes of compact metric spaces, which requires some
explanation [10, 1], we will restrict attention to finite metric spaces here.

3



Define a matching between sets S and T simply to be a bijection between subsets of S and
T ; this definition extends in the expected way to multisets. For I ⊆ R a nonempty interval
and δ ≥ 0, define the interval

Ex(I, δ) := {r ∈ R | ∃ s ∈ I with |r − s| ≤ δ}.

For D a barcode and δ ≥ 0, let Dδ denote the set of intervals in D which contain an interval
of the form [r, r + δ] for some r ∈ R. Define a δ-matching between barcodes C and D to be
a matching σ between these barcodes such that

(1) σ matches each interval in C2δ and D2δ,
(2) if σ(I) = J then I ⊆ Ex(J, δ) and J ⊆ Ex(I, δ).

Finally, we define the bottleneck distance dB by

dB(C,D) := inf {δ | ∃ a δ-matching between C and D}.

The bottleneck distance is easily seen to be an extended pseudometric on barcodes, restricting
to a genuine metric on barcodes arising as the persistent homology of finite metric spaces.
Recall that an extended pseudometric on S is a function

d : S × S → [0,∞]

satisfying the axioms of a metric, except that we may have d(x, y) = 0 for x 6= y, and the
triangle inequality only holds for finite values of d. In this paper, by a distance we will
always mean an extended pseudometric.

Stability of Persistent Homology of Metric Spaces . A metric on the set of barcodes allows
us to quantify how persistent homology changes when the input data is perturbed. For this,
we also need a distance on finite metric spaces. We use the well-known Gromov-Hausdorff
distance, denoted dGH; see Section 6 for the definition.

The following is one of the fundamental results of TDA:

Theorem 1.1 (Rips Stability [9, 12]). For finite metric spaces P and Q,

dB(BHi Rips(P ),BHi Rips(Q)) ≤ 2 dGH(P,Q).

As we discuss in Section 3.1, one can give a more general, purely algebraic formulation of
the stability of persistent homology; this is called the algebraic stability theorem.

1.2. Filtration-Level Refinement of the Rips Stability Theorem. Given our goal of
developing homotopy-theoretic foundations of TDA, a natural question is whether Theo-
rem 1.1 can be regarded as the consequence of some purely topological (homotopy-theoretic)
result about the filtrations Rips(P ) and Rips(Q). More generally, many TDA theorems—for
example, those in [14, 9, 13, 7]—tell us that the barcodes of two filtrations are close in the
bottleneck distance, and it is reasonable to ask whether these theorems can be understood
as corollaries of purely topological results about the filtrations themselves.

The natural way to strengthen Theorem 1.1 to a purely topological result is to introduce
a distance d on R-spaces such that

(i) For all finite metric spaces P and Q,

d(Rips(P ),Rips(Q)) ≤ 2 dGH(P,Q). (1.2)
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(ii) [Homology bounding axiom] For all i ≥ 0 and R-spaces X, Y with HiX and HiY point-
wise finite dimensional,

dB(BHiX ,BHiY ) ≤ d(X, Y ).

Axioms for a Distance on R-Spaces . We next define stability and homotopy invariance ax-
ioms for a distance d on R-spaces. Together these axioms imply Eq. (1.2).

Given a (not necessarily continuous) function γ : T → R with T ∈ obTop, we define the
sublevelset filtration S(γ) : R→ Top by taking

S(γ)r = γ−1(−∞, r], r ∈ R.

where each Sr is given the subspace topology. (In the CGWH context, the subspace topology
is understood to be that of [39, Definition 2.25]; this coincides with the standard subspace
topology on subsets that are already CGWH in the standard topology.)

We define a distance d∞ on the collection of real-valued functions on T by

d∞(γ, κ) = sup
x∈T

|γ(x)− κ(x)|

for γ, κ : T → R.

Definition 1.3. For I any small category and functors X, Y : I → Top, we say a natural
transformation f : X → Y is an (objectwise) weak equivalence if fa : Xa → Ya is a weak
homotopy equivalence for all a ∈ ob I. We say X and Y are weakly equivalent, and write
X ≃ Y if there exists a functor W : I→ Top and a diagram of objectwise weak equivalences

W

X Y.

≃ ≃

It can be shown that ≃ is an equivalence relation; see Section 2 and the references given
there.

Definition 1.4 (Stability and homotopy invariance axioms). We a say distance d on R-
spaces is

(1) stable if for any T ∈ obTop and functions γ, κ : T → R,

d(S(γ),S(κ)) ≤ d∞(γ, κ),

(2) homotopy invariant if d(X, Y ) = d(X ′, Y ) whenever X,X ′, Y are R-spaces with X ′ ≃
X .

The following result is implicit in the original proof of the Rips stability theorem:

Proposition 1.5. Any stable, homotopy invariant distance on R-spaces satisfies (1.2), i.e.,
strengthens the Rips stability theorem to a filtration-level result.

We give a proof of Proposition 1.5 in Section 6, following a proof of the Rips stability
theorem due to Memoli [33].
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Refinements of Other TDA Results . In fact, any stable, homotopy invariant, and homology
bounding distance distance on R-spaces can be used to formulate filtration-level strengthen-
ings of several other fundamental TDA theorems, analogous to (1.2). For example, one can
give filtration-level strengthenings of results of Sheehy et al. on the sparse approximation
of Rips and Cech filtrations [36, 7]. Similarly, one can give a filtration-level formulation
of a result, implicit in the work of Chazal et al. [13] and made explicit in [26, Theorem
4.5.2], about the consistency of an estimator of the superlevelset persistent homology of a
probability density function.

1.3. Properties of the Homotopy Interleaving Distance. The interleaving distance
dI , the standard pseudometric on filtrations in the TDA literature, is stable and homology
bounding, in the above senses, but is not homotopy-invariant, and does not satisfy (1.2); see
Remark 3.3. In Section 3.3, we define homotopy interleavings and the homotopy interleaving
distance dHI on R-spaces by modifying the definition of dI to enforce the homotopy invariance
axiom. Our first main result is the following:

Theorem 1.6. dHI is a distance on R-spaces satisfying the stability, homotopy invariance,
and homology bounding axioms.

Proposition 1.5 and Theorem 1.6 together then tell us in particular that dHI satisfies (1.2).
Whereas it is trivial to show that dI satisfies the triangle inequality, establishing the triangle
inequality for dHI requires some work. Given the triangle inequality for dHI and the algebraic
stability theorem, the rest of the proof of Theorem 1.6 is trivial.

Universality of the Homotopy Interleaving Distance. There are several pseudometrics on R-
spaces, besides dHI , that satisfy the stability, homotopy invariance, and homology bounding
axioms, and comparing these different choices can be difficult; see Section 1.5 and Section 7.
This raises the question of whether one can make a canonical choice of such a distance. The
second main result of this paper, a simple axiomatic characterization of dHI , provides an
affirmative answer to this question. The statement is as follows:

Theorem 1.7 (Universality). If d is any stable, homotopy-invariant distance on R-spaces,
then d ≤ dHI.

This result is a homotopy-theoretic analogue of a universality result for the interleaving
distance on multidimensional persistence modules over prime fields, established in [27]. In
fact, the proof of Theorem 1.7 also extends to the multidimensional setting. For simplicity,
however, we will restrict attention to the 1-D case in this paper.

1.4. Persistent Whitehead Conjectures. With a good definition of “approximate weak
equivalence” of R-spaces in hand, we are led to ask how other aspects of homotopy theory
might extend to the approximate setting. For example, one has a Whitehead theorem for R-
spaces, which says that an objectwise weak equivalence of cofibrant R-spaces is a homotopy
equivalence. It is natural to wonder whether one can use the language of interleavings
to formulate a persistent analogue of this result. We explore this problem in Section 8,
considering along the way the question of how to define persistent homotopy groups. We
present an example showing that in its most naive formulation, the persistent Whitehead
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theorem does not hold, even up to a constant, and offer a persistent Whitehead conjecture
for cofibrant diagrams of CW-complexes of bounded dimension.

1.5. Related Work. This work is, in part, an outgrowth of a chapter in the second author’s
Ph.D. thesis, which introduced a pseudometric dWI on filtrations satisfying the stability, ho-
motopy invariance, and homology bounding axioms considered in this paper [26, Chapter 3].
This chapter showed that the strict interleaving distance on R-spaces satisfies a universality
property, and raised but did not answer the question of whether dWI is universal. It is clear
that dWI ≤ dHI , but the problem of determining whether dHI = dWI is non-trivial, due to
technical issues related to homotopy coherence; see Section 7 and Remark 8.4.

Around the same time [26] was completed, Mémoli [32, 31, 33] and Chazal et al. [12] each
introduced (different) definitions of a pseudometric on simplicial filtrations, both of which
can be used to provide a refinement of the Rips Stability theorem analogous to the one we
give using dHI . However, neither definition extends in a naive way to arbitrary Top-valued
filtrations, and universality of these pseudometrics has not been considered. Our proof
strategy of the triangle inequality for dHI was inspired by Mémoli’s proof of the triangle
inequality for his pseudometric on simplicial filtrations [33]: Mémoli’s proof hinges on a
pullback construction, and our proof arose out of an effort to adapt that construction to our
setting.

Aside from the above, there has been relatively little work so far with an explicit empha-
sis on persistent homotopy theory. One exception is the theory of the contiguity complex
developed in [3]. Another is the work of Letscher, which studies a definition of persistent ho-
motopy groups in the context of knot theory [28]. In addition, a recent result of Frosini et al.
[22] strengthens the well known stability result for the persistent homology of R-valued func-
tions [14] to pairs of functions with homotopy equivalent (but not necessarily homeomorphic)
domains.

1.6. Outline of the Paper. Section 2 provides a brief review of the tools from homotopy
theory needed in our proofs. Section 3 reviews the ordinary interleaving distance and in-
troduces the homotopy interleaving distance dHI . Section 4 gives the proof of the triangle
inequality for dHI , thereby establishing Theorem 1.6, and Section 5 gives the proof of Theo-
rem 1.7, our universality result for dHI . Section 6 gives the proof of Proposition 1.5, which
uses dHI to strengthen the Rips stability theorem to the level of filtrations. Section 7 gives
a characterization of dHI in terms of homotopy coherent diagrams of spaces, and explains
the difficulties of using homotopy commutative rather than homotopy coherent diagrams for
this. Section 8 studies the persistent Whitehead problem.
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Mike Mandell, Facundo Mémoli, and Hiro Tanaka for helpful discussions. Both authors
thank the Institute for Mathematics and its Applications for its hospitality and support.
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grants U54-CA193313-01 and T32MH065214, funding from the IMA, and an award from the
J. Insley Blair Pyne Fund. Blumberg was partially supported by NIH grant 5U54CA193313
and AFOSR grant FA9550-15-1-0302.
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2. Background on Homotopy Theory

Interleavings are diagrams of topological spaces, and so to study their homotopy theory, we
use standard ideas from the modern homotopy theory of diagram categories. In this section,
we briefly review some of these ideas; specifically, we review model categories (which provide
an abstract axiomatic framework for homotopy theory), homotopy colimits, and homotopy
Kan extensions. While we have tried to make our exposition accessible to readers unfamiliar
with model categories and homotopy colimits, this section is no substitute for a systematic
introduction. For a more detailed introduction to model categories we recommend the survey
article [20]; the books [24, 23] provide comprehensive treatments. Thorough discussions of
homotopy colimits can be found in [35, 37, 17].

Recall that in Section 1.1 we defined Top to be the category of compactly-generated weak
Hausdorff spaces (CGWH spaces). It is standard in modern homotopy theory to restrict
attention to this category because it contains most spaces that arise in practice and its
mapping spaces behave well. In this paper, all topological constructions are carried out in
the context of CGWH spaces; except when necessary, we will not comment on this point
further.

2.1. Model Categories. The basic object of study in the homotopy theory of topological
spaces is the homotopy category Ho(Top), obtained from Top by formally inverting the
continuous maps that are weak homotopy equivalences. However, it turns out that many
constructions are difficult to carry out directly in Ho(Top), and so it is convenient to work
with constructions in Top and study their interaction with weak equivalences. Moreover,
in order to construct homotopy-invariant notions of limit and colimit (known as homotopy
limits and colimits, see below), additional scaffolding is employed, in the form of distinguished
maps called cofibrations (which generalize closed inclusions and are intended to have “nice”
quotients) and fibrations (which generalize bundles and are intended to have “nice” fibers).

A model category is an abstraction of this structure. Specifically, a model category is
a complete and cocomplete category C, together with three distinguished collections of
morphisms in Ho(C), called the weak equivalences, fibrations, and cofibrations, satisfying
several axioms. We say a (co)fibration is acyclic if it is also a weak equivalence. We will not
list the model category axioms here, except for one: Any morphism in C factors functorially
as a composite of a cofibration followed by an acyclic fibration [24, Definition 1.1.3]. (It is
sometimes convenient to drop the requirement that the factorization be functorial, but we
will work in situations where this does hold.)

Any model category C has an initial object ∅ and a final object ∗. We say X ∈ obC is
cofibrant if the unique morphism ∅ → X is a cofibration; dually, an object is fibrant if the
unique morphism X → ∗ is a fibration. Applying the functorial factorization axiom above
to morphisms ∅ → X yields a cofibrant replacement functor Q : C → C, with each QX
a cofibrant replacement of X , and a natural transformation Q → IdC which is an acyclic
fibration on each object of C [24].

For any model category C, we construct an associated homotopy category Ho(C), which
formally inverts the weak equivalences. The homotopy category Ho(C) has the same col-
lection of objects as C but a different collection of morphisms, and is equipped with a
localization functor ΠC : C → Ho(C) which is the identity on objects. Up to equivalence
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of categories, Ho(C) depends only on the weak equivalences of C, not on the (co)fibrations.
We write c ≃ d if c, d ∈ obC are isomorphic in Ho(C). This is true if and only if c and d
are weakly equivalent in the sense of Definition 1.3; see [20, Definition 5.6].

Given model categories C and D and a functor F : C→ D, the total left derived functor of
F is the functor ΛF : Ho(C)→ Ho(D) given by the right Kan extension of ΠDF : C→ Ho(D)
along ΠC : C → Ho(C). We say a functor F̃ : C → D computes ΛF if ΠDF̃ ∼= ΛFΠC. If F
preserves weak equivalences between cofibrant objects, then the total left derived functor of
F exists, and for Q : C→ C a cofibrant replacement functor, FQ computes ΛF [20, Section
9].

The category Top of compactly-generated weak Hausdorff spaces is complete and cocom-
plete (although note that the colimits are not always the same as those in the category of
all topological spaces; e.g., see [39]). The standard model structure on Top is specified by
taking the weak equivalences to be the weak homotopy equivalences and the fibrations to
be the Serre fibrations; the cofibrations are then determined from the acyclic fibrations by
the model category axioms. (The cofibrations in the standard model structure also admit a
concrete description, as retracts of generalized CW inclusions ; see [20]). Henceforth, weak
equivalences, fibrations, and cofibrations of topological spaces will be understood to be those
in the standard model structure.

For any small category I, there exists a model category structure on TopI, the projective
model structure, for which the weak equivalences are the objectwise weak equivalence and
the fibrations are the objectwise fibrations. For most choices of I, objectwise cofibrations are
not necessarily cofibrations; it takes some care to concretely specify the cofibrations in this
model structure. However, it is straightforward to check that if X ∈ TopI is cofibrant, then
each object in X is cofibrant, and each internal map in X is a cofibration.

2.2. Homotopy Colimits and Homotopy Left Kan extensions. Homotopy colimits
are analogues of colimits which are invariant under weak equivalences of diagrams. There
are several (weakly equivalent) ways to define these. We will work with definitions given
using the derived functor formalism and the Bousfield-Kan formula. Alternatively, one can
define these via homotopy coherent analogues of the universal properties of colimits [41], or
using the language of homotopical categories and homotopy initial objects [19].

Let colim: TopI → Top denote the colimit functor . We define

hocolim: Ho(TopI)→ Ho(Top),

the homotopy colimit functor, to be the total left derived functor of colim. Since the functor
colim sends weak equivalences between cofibrant diagrams in TopI to weak equivalences [20,
Remark 9.8, Lemma 9.9 and Proposition 10.7], colim ◦Q computes hocolim.

Similarly, homotopy Kan extensions are analogues of Kan extensions which are invariant
under weak equivalences of diagrams: For a functor F : I→ J, let LF : TopI → TopJ denote
the left Kan extension along F . (Later, when F is clear from context, we will sometimes
write LF as LJ.) We define the homotopy left Kan extension to be the total left derived
functor of LF . As above, LFQ computes the homotopy left Kan extension.

It is often useful to have an explicit formula for the homotopy colimit. In fact, early work
took the following such formula as the definition of homotopy colimit: Define

Hocolim: TopI → Top

9



by

HocolimX := coeq

(
∐

a→b

N (b ↓ I)×Xa ⇒
∐

a∈I

N (a ↓ I)×Xa

)

, (2.1)

where for a small category C, N (C) denotes the classifying space of C, i.e., the geometric
realization of the nerve, and a ↓ I denotes a comma category. To parse (2.1), note that any
morphism a→ b in I induces a map

N (b ↓ I)×Xa → N (b ↓ I)×Xb

and also a map

N (b ↓ I)×Xa → N (a ↓ I)×Xa.

As the morphism a→ b varies, the collection of all such pairs of maps induces the two maps
whose coequalizer we take in (2.1).

A natural transformationX → Y induces a map HocolimX → HocolimY , giving Hocolim
the structure of a functor. In addition, Hocolim is functorial under restriction, in the sense
that a functor ι : J→ I between small categories induces a map Hocolim ι∗X → HocolimX .
Hocolim in fact computes hocolim; see [35, Corollary 5.1.3 and Remark 6.3.4], or [37, Theo-
rem 9.1] and [18, Appendix A].

Remark 2.2. If X is objectwise cofibrant, then the coequalizer in Top which appears in the
formula (2.1) for HocolimX coincides with the coequalizer in the category of all topological
spaces; we use this tacitly in Section 5. We can deduce this fact by recalling that HocolimX
is homeomorphic to the geometric realization of a simplicial space [35, Theorem 6.6.1]. It
is a standard fact that geometric realization can be described as the sequential colimit of a
sequence of pushouts; for example, see [35, Chapter 14]. Moreover, these pushouts are along
closed inclusions [35, Lemma 5.2.1], and so the claim then follows from [39, Proposition 2.35
and Lemma 3.3].

3. The Homotopy Interleaving Distance

In this section, we define homotopy interleavings and the homotopy interleaving distance.
We begin by recalling the definition of ordinary interleavings.

3.1. Interleavings. A category C is said to be thin if for every a, b ∈ obC, there is at
most one non-zero morphism in C from a to b. If C is thin, F : C→ D is any functor, and
g : a→ b is a morphism in C, we denote F (g) as Fa,b.

For δ ≥ 0, let the δ-interleaving category, denoted Iδ, be the thin category with object set
R× {0, 1} and a morphism (r, i)→ (s, j) if and only if either

(1) r + δ ≤ s, or
(2) i = j and r ≤ s;

There are evident functors

E0, E1 : R→ Iδ

mapping r ∈ R to (r, 0) and (r, 1), respectively.
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Definition 3.1. For C any category, we define a δ-interleaving between functors X, Y : R→
C to be a functor

Z : Iδ → C

such that Z ◦ E0 = X and Z ◦ E1 = Y .

Let X(δ) : R → C, be the functor obtained by shifting each object and morphism of X
downward by δ, i.e., X(δ)r := Xr+δ and X(δ)r,s := Xr+δ,s+δ for all r ≤ s ∈ R. Note that
Z restricts to a pair of morphisms X → Y (δ) and Y → X(δ) and that, conversely, these
morphisms fully determine Z; we call these morphisms δ-interleaving morphisms. In the
case δ=0, these are simply an inverse pair of natural isomorphisms between X and Y .

Definition 3.2. We define

dI : obCR × obCR → [0,∞],

the interleaving distance, by taking

dI(X, Y ) = inf {δ | X and Y are δ-interleaved}.

It easy to show that if W and X are δ-interleaved, and X and Y are ǫ-interleaved, then
W and Y are (δ + ǫ)-interleaved; it follows easily that dI is a distance on obCR. Moreover,
if we have X,X ′, Y ∈ obCR with X ∼= X ′, then dI(X, Y ) = dI(X

′, Y ), so dI descends to a
distance on isomorphism classes of objects in CR.

Remark 3.3. As noted earlier, it’s easy to see that the interleaving distance dI on R-spaces
is stable and homology bounding. However, dI is not homotopy invariant: Consider R-spaces
X and Y with Xr = 0 and Yr = R for all r ∈ R. The inclusion 0 →֒ R induces an objectwise
homotopy equivalence X →֒ Y is but dI(X, Y ) =∞. More generally, it is easy to check that
dI(X, Y ) =∞ for any two filtrations X and Y with colimX not homeomorphic to colimY .

3.2. Algebraic Stability. The algebraic stability theorem, a generalization of the Rips sta-
bility theorem (Theorem 1.1), is arguably the central result in the theory of persistent ho-
mology. It was first introduced in [8], building on earlier work on the stability of persistent
homology of R-valued functions by Cohen-Steiner et al. [14]. Since then, the result has been
revisited by several papers, which have provided simpler proofs and more general formula-
tions [27, 11, 1, 2, 4]. In particular, it has been observed that the converse to the algebraic
stability theorem also holds [27]; this is an easy consequence of the structure theorem for
persistence modules [16].

We state the algebraic stability theorem in its sharp form for pointwise finite dimensional
(p.f.d.) persistence modules [1]:

Theorem 3.4 (Forward and converse algebraic stability). A pair of p.f.d. persistence modules
M and N are δ-interleaved if and only if there exists a δ-matching between BM and BN . In
particular,

dB(BM ,BN) = dI(M,N).

3.3. Homotopy Interleavings. We now introduce our homotopical generalization of inter-
leavings.

Definition 3.5. For δ ≥ 0, we say R-spaces X and Y are δ-homotopy-interleaved if there
exist R-spaces X ′ ≃ X and Y ′ ≃ Y such that X ′ and Y ′ are δ-interleaved.
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Remark 3.6. An equivalent definition of homotopy interleavings can be given using the
language of homotopy coherent diagrams ; see Section 7.4. Though this alternative definition
is more technical, some readers may find it helpful for building intuition about homotopy
interleavings.

Definition 3.7. The homotopy interleaving distance between R-spaces X and Y is given by

dHI(X, Y ) := inf {δ | X, Y are δ-homotopy-interleaved}.

Partial Proof of Theorem 1.6. It is clear that dHI is symmetric and non-negative, and that
for any R-space X , dHI(X,X) = 0. To establish that dHI is a distance, then, it suffices to
check that dHI satisfies the triangle inequality; we verify this in Section 4 below.

It is easy to check that dHI is stable and homotopy invariant. A δ-interleaving between
R-spaces X, Y induces a δ-interleaving between HiX,HiY , and a weak equivalence between
R-spaces X, Y induces a 0-interleaving between HiX,HiY . From these observations, the
triangle inequality for dI on persistence modules, and Theorem 3.4, we have that dHI is
homology bounding. �

4. The Triangle Inequality for dHI

In this section, we prove the triangle inequality for dHI . Our proof hinges on an interpre-
tation of the triangle inequality as a statement about a certain homotopy left Kan extension.

4.1. Preliminaries on Left Kan Extensions. As preparation for the proof, we recall
some facts about left Kan extensions which we need for the argument.

For C a full subcategory of a thin category D and d ∈ obD, the comma category C ↓ d
is (up to canonical isomorphism) the full subcategory of C with object set

{c ∈ obC | ∃ a morphism c→ d in D}.

d ↓ C is defined analogously.
Consider a functor F : C→ E with E cocomplete. By the usual pointwise formula for left

Kan extensions, LDF is given at any d ∈ obD by

(LDF )d = colimC↓d F, (4.1)

and moreover, the internal morphisms in LDF are given by the universality of the colimit
[29, Theorem X.3.1]. In particular, we have the following:

Lemma 4.2. For d ∈ obD \ obC, let Ĉ denote the full subcategory of D with object set

ob(C ↓ d)∪ {d}. The restriction of F to Ĉ is naturally isomorphic to the colimit cocone of
F |C↓d.

4.2. Generalized Interleaving Categories. For our proof of the triangle inequality for
dHI , it will be convenient to introduce a generalization of our definition of an interleaving
category from Section 3.1. For a finite thin category I, we define a marking of I to be a map
∆: S → [0,∞), where S is a some subset of the set of unordered pairs of isomorphic objects
in I. We denote a pair (a, b) ∈ S with ∆(a, b) = δ as follows:

a b.δ

12



Define Ī, the interleaving category of the marked category I, to be the thin category with
obj Ī = obj I× R and hom Ī generated by the set of arrows

{(a, r)→ (b, r) | r ∈ R, a→ b ∈ hom(I) \ S}

∪ {(a, r)→ (b, r +∆(a, b)) | r ∈ R, (a, b) ∈ S}.

We define a diagram of R-spaces indexed by I to be a functor D : Ī → Top. D restricts
to an R-space Da for each a ∈ ob I, to a natural transformation Da,b : Da → Db for each
a→ b ∈ hom(I) \ S, and to a ∆(a, b)-interleaving between Da and Db for each (a, b) ∈ S.

4.3. Proof of the Triangle Inequality. It suffices to show that if W and X are δ-
homotopy-interleaved and X and Y are ǫ-homotopy-interleaved, then W and Y are (δ + ǫ)-
homotopy-interleaved.

Let I′ be the marked category:

• • •

w • • • • y,δ ǫ

where objects we don’t (yet) wish to name explicitly are denoted by •. If W and X are
δ-homotopy-interleaved and X and Y are ǫ-homotopy-interleaved, then using the fact that
≃ is an equivalence relation, we obtain a diagram D′ of R-spaces indexed by I′ such that
D′

w = W , D′
y = Y , and all diagonal arrows in D′ are weak equivalences. We need to show

that there exists a diagram E of R-spaces indexed by the following marked category

• •

w • • y,δ+ǫ

such that Ew = W , Ey = Y , and all diagonal arrows in E are weak equivalences.
Let I be the marked subcategory of I′ obtained by removing the two extremal objects:

• • •

• • • •.δ ǫ

Let D denote the restriction of D′ to Ī. By taking a cofibrant replacement QD of D, we may
assume that D′ has been chosen so that D is cofibrant.

Now we introduce notation for some of the objects of I. Let J be the following marked
extension of I:

• • •

a • • c

b • d

δ ǫ

δ ǫ
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and let ι : I →֒ J denote the inclusion functor. The inclusion ι induces an inclusion functor
ῑ : Ī →֒ J̄. Since we assume D to be cofibrant, LJ̄D in fact computes the homotopy left Kan
extension of D along ῑ.

Since ῑ is fully faithful, we have that LJ̄D ◦ ῑ ∼= D [29, Corollary X.3.3]. Therefore, writing
L := LJ̄D, to establish thatX and Z are (δ+ǫ)-homotopy-interleaved, it suffices to show that
the morphisms of R-spaces La,b : La → Lb and Lc,d : Lc → Ld are both weak equivalences;
the desired (δ + ǫ)-homotopy-interleaving is then given by composition. We will show that
La,b is a weak equivalence; by symmetry, the argument for Lc,d is exactly the same.

Let J′ denote the marked category:

• e •

a f g c

h

δ ǫ

and let J′′ denote the marked category:

• e •

a f g c

b h

δ ǫ

δ

Note that we have inclusions I →֒ J′ →֒ J′′ →֒ J factoring ι : I →֒ J; these induce inclusions
Ī →֒ J̄′ →֒ J̄′′ →֒ J̄ factoring ῑ : Ī →֒ J̄. By universality, LJ̄(LJ̄′′(LJ̄′D)) ∼= LJ̄D. We thus
obtain the following diagram of left Kan extensions, commuting up to natural isomorphism:

Ī Top

J̄′

J̄′′

J̄.

D

L
J̄′
D

L
J̄′′

(L
J̄′
D)

L
J̄
D

To show that La,b is a weak equivalence, we first show that Lf ,h
∼= (LJ̄′D)f ,h is an objectwise

acyclic cofibration. The key step in the argument is to show that for each r ∈ R, the
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restriction of L′ := LJ̄′D to the full subcategory of J̄′ with the four objects

{(e, r), (f , r), (g, r), (h, r)}

is a pushout square. Let K := Ī ↓ (h, r), and let K̂ be the full subcategory of J′ with object

set ob(K)∪ {(h, r)}. By Lemma 4.2, the restriction of L′ to K̂ is naturally isomorphic to
the colimit cocone of D|K. In addition, it is easy to see that

K′ := (f , r)← (e, r)→ (g, r)

is a final subcategory of K. Hence, the natural map colimD|K′ → colimD|K is an isomor-
phism [35, Section 8.3], and by construction, this isomorphism commutes with the maps in
the colimit cocones. It follows that the square in question is a pushout, as claimed.

Since D is cofibrant, the map D(e,r),(g,r) is a cofibration; by assumption it is in fact an
acyclic cofibration. In any model category, acyclic cofibrations are stable under cobase change
[20, Proposition 3.14 (ii)], so since the square in question is a pushout, L′

(f ,r),(h,r) is an acyclic

cofibration as well. This holds for all r, so L′
f ,h is an objectwise acyclic cofibration.

Essentially the same argument applied to LJ̄′′(LJ̄′D) shows that for any r ∈ R, the restric-
tion of LJ̄′′(LJ̄′D) to the full subcategory of J̄′′ with the four objects

{(a, r), (f , r − δ), (b, r), (h, r − δ)}

is a pushout square. Then as above, since L′
f ,h is an objectwise acyclic cofibration, so is

La,b
∼= LJ̄′′(LJ̄′D)a,b.

Remark 4.3. Notice that in the argument above, we have not used the full strength of the
hypothesis that D is cofibrant, only that each element of D is cofibrant and each internal
map of D is a cofibration.

5. Universality of the Homotopy Interleaving Distance

In this section, we prove our universality result for dHI , Theorem 1.7.

5.1. A Choice of Cofibrant Replacement Functor. To establish the universality of dHI ,
we will work with a specific choice of cofibrant replacement functor Q : TopI → TopI for the
projective model structure on TopI. For now, we take I to be an arbitrary small category,
though later we will need to consider only the cases where I is either R or an interleaving
category. We consider Q because, as we show below, it has a special property, which we call
1-criticality, that is essential to our universality argument.

We define Q using Hocolim, the formula for the homotopy colimit given in Section 2.2. Q
is a standard construction in homotopy theory: It is used to establish that Hocolim in fact
computes the left derived functor of colim [35, Section 5.1, Remark 6.3.4], and it also arises
naturally in the study of homotopy coherent maps of diagrams of spaces; see [35, Equation
7.7.5] and [17, Section 9], for example.

To give the definition of Q, let q : Top→ Top be any cofibrant replacement functor. We
define Q : TopI → TopI by

QXa := Hocolim(I↓a) qXπa,

where πa : (I ↓ a) → I is the forgetful functor. The internal maps in QX are given by
the functoriality of Hocolim under restriction, and the functoriality of Q follows from the
functoriality of Hocolim.
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Proposition 5.1. Q is a cofibrant replacement functor for the projective model structure on
TopI.

Proof. In any model category, the cofibrations are exactly those morphisms satisfying the
left lifting property with respect to all acyclic fibrations [20, Proposition 3.13]. Thus, we
need that for any diagram X : I→ Top, the map ∅ → QX satisfies the left lifting property
with respect to any acyclic fibration. The required lift can be constructed directly; Dugger
sketches of a proof of this in his notes on homotopy colimits [17, Section 9]. The details
are easy to fill in, using the fact that the standard model structure on Top is a simplicial
model structure, as defined in [23]. (Dugger’s argument appeals to a correspondence between
natural transformations QX → Y and homotopy coherent natural transformations X → Y ,
but the lift can be constructed directly, without considering homotopy coherent natural
transformations.)

By the definition of a cofibrant replacement for Top, we have a weak equivalence qX → X .
Thus, to complete the proof, it suffices to observe that we have a weak equivalenceQX → qX .
For a proof of this, see for example [35, Lemma 5.1.5] or [17, Section 9]. We outline the
argument: For any small category J and diagram Y : J → Top, we have a natural map
Hocolim(Y )→ colim Y , given by collapsing each nerve appearing in the definition of Hocolim
to a point. When J has a terminal object, this map is a homotopy equivalence. Since in
this case we also have colimY = Y , for each a ∈ ob I, we obtain a homotopy equivalence
QXa → qXa. These maps are natural, so they define an objectwise homotopy equivalence
QX → qX . �

If I is a poset, then I ↓ c = {a ∈ I | a ≤ c} and for any a ≤ c ∈ I,

a ↓ (I ↓ c) := a ↓ I ↓ c = {b ∈ I | a ≤ b ≤ c}.

Then

QXc := Hocolim(I↓c) qX = coeq

(
∐

a≤b≤c

N (b ↓ I ↓ c)× qXa ⇒
∐

a≤c

N (a ↓ I ↓ c)× qXa

)

.

5.2. 1-Critical Filtrations. For any small category I, we say a functor X : I → Top is a
closed filtration if each of the internal maps Xa,b : Xa → Xb is a closed inclusion.

Proposition 5.2. For any X : I→ Top, QX is a closed filtration.

Proof. By Proposition 5.1, QX is cofibrant. As noted in Section 2, each internal map in a
cofibrant diagram in Top is a cofibration, and hence a closed inclusion [24, Lemma 2.4.6,
Theorem 2.4.23, Lemma 2.4.25]. �

A directed set is a poset I such that for all a, b ∈ I, there exists c ∈ I with a, b ≤ c. Given a
directed set I, a functor X : I→ Top, and a ∈ I, let µX

a : Xa → colimX denote the canonical
map.

Lemma 5.3 ([39, Lemma 3.3]). If I is a directed set and X : I→ Top is a closed filtration,
then colimX is the colimit in the category of all topological spaces, and each map µX

a is a
closed inclusion.
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Adapting terminology introduced in [6], for I a directed set, we say a functor X : I→ Top
is 1-critical if X is a closed filtration and for each x ∈ colimX , the set

{a ∈ I | x ∈ imµX
a }

has a minimum element. We then have a function ζX : colimX → I sending each x ∈ colimX
to this minimum element.

Proposition 5.4. For any directed set I and functor X : I→ Top, QX is 1-critical.

Proof. Proposition 5.2 gives that QX is a closed filtration. As explained in Section 5.1, we
have

QXc = coeq

(
∐

a≤b≤c

N (b ↓ I ↓ c)× qXa ⇒
∐

a≤c

N (a ↓ I ↓ c)× qXa

)

.

Note that

colimQX = Hocolim qX = coeq

(
∐

a→b

N (b ↓ I)× qXa ⇒
∐

a∈I

N (a ↓ I)× qXa

)

,

with the natural maps QXc → colimQX induced by the inclusions

a ↓ I ↓ c →֒ a ↓ I.

Recall from Remark 2.2 that the coequalizers appearing here are the usual ones in the
category of all topological spaces.

The projections
N (a ↓ I)× qXa → N (a ↓ I)

induce a surjection α : colimQX → N (I). We also define a function β : N (I) → I in the
following way: Since N (I) is the geometric realization of a simplicial set, each point y ∈ N (I)
can be associated to a unique nondegenerate simplex; set β(y) = bn when y is associated to

b1 < b2 < · · · < bn.

It is easy to check that for x ∈ colimQX ,

β ◦α(x) = min {a ∈ I | x ∈ imµQX
a }.

Hence QX is 1-critical, with ζQX = β ◦α. �

We next define a category Fns, whose objects are functions γT : T → I, where T ∈ obTop,
and homFns(γS, γT ) is the set of continuous functions f : S → T such that γT ◦ f ≤ γS. We
emphasize that when I happens to carry a topology (e.g., when I = R), we do not require
γT ∈ obFns to be continuous, but we do require morphisms in Fns to be continuous.

Let TopI
crit denote the full subcategory of TopI whose objects are the 1-critical diagrams.

The functoriality of colimits tells us that for diagrams X, Y : I → Top, a natural transfor-
mation f : X → Y induces a map

colim f : colimX → colimY.

If X, Y are 1-critical, then ζY ◦ colim f ≤ ζX . We thus have a functor

fcolim: TopI
crit → Fns

which sends each 1-critical diagram X to ζX : colimX → I.
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We also have an obvious functor S : Fns→ TopI with

S(γT )a := {y ∈ T | γT (y) ≤ a}.

This generalizes the sublevelset filtration construction introduced in Section 1.2.

Proposition 5.5. If I is a directed set, then S ◦ fcolim ∼= IdTopI

crit
.

Proof. Consider a diagram X ∈ obTopI
crit. For a ∈ I,

(S ◦ fcolimX)a = imµX
a .

By Lemma 5.3, µX
a is a homeomorphism onto its image. For a ≤ b ∈ I we have µX

b ◦Xa,b = µX
a

so these homeomorphisms define a natural isomorphism µX : X → S ◦ fcolimX . Further,
the natural isomorphisms {µX}X∈TopI

crit
are natural in X , so this collection assembles into a

natural isomorphism IdTopI

crit
→ S ◦ fcolim. �

5.3. Proof of Universality. The main step in our proof that dHI is universal is the follow-
ing:

Proposition 5.6. For any δ-interleaved R-spaces X, Y , there exists a topological space T
and functions γX , γY : T → R such that S(γX) ≃ X, S(γY ) ≃ Y , and d∞(γX , γY ) ≤ δ.

Proof. It will be convenient for us to treat the cases δ = 0 and δ > 0 separately. First, let
δ = 0, so that we have an isomorphism X → Y . We take T = colimQX . By Proposition 5.4,
QX is 1-critical. We let γX = γY = ζQX . Since R, together with its total order, is a
directed set, by Proposition 5.4 and Proposition 5.5, S(γY ) = S(γX) ∼= QX . We also have
a weak equivalence QX → X . Composing, we thus obtain weak equivalences S(γX) → X ,
S(γY )→ Y , as desired. This completes the proof in the case δ = 0.

Now assume δ > 0. Recall the definitions of the interleaving category Iδ and the functors
E0, E1 : R → Iδ from Section 3.1, and note that when δ > 0, Iδ is a poset category; in fact
the underlying poset is a directed set.

Since X and Y are δ-interleaved, there exists a functor Z : Iδ → Top such that Z ◦E0 = X
and Z ◦ E1 = Y . We define T := colimQZ.

E0 and E1 are both final functors [35, Section 8.3]. Hence, we have canonical identifications
of colim(QZ ◦ E0) and colim(QZ ◦ E1) with T such that for each r ∈ R,

µQZ

(r,0) = µQZ◦E0

r , µQZ

(r,1) = µQZ◦E1

r .

We claim that QZ ◦ E0 and QZ ◦ E1 are each 1-critical. We show this for QZ ◦ E0; the
proof for QZ ◦ E1 is the same. First note that QZ is a 1-critical by Proposition 5.4. In
particular, for each a ∈ Iδ, µQZ

a : Za → T is a closed inclusion. Therefore, for each r ∈ R,

µQZ◦E0

r : (QZ ◦ E0)r → T is a closed inclusion.
Since QZ is 1-critical, for each z ∈ T there is a minimum element (r, j) ∈ ob Iδ such that

z ∈ imµQZ

(r,j). We then have

r + jδ = min {s ∈ R | z ∈ imµQZ◦E0

s }.

It follows that QZ ◦E0 is 1-critical.
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Since QZ ◦ E0 and QZ ◦ E1 are each 1-critical, we may define γX , γY : T → R by

γX = ζQZ◦E0

,

γY = ζQZ◦E1

.

By Proposition 5.5, we have

S(γX) ∼= QZ ◦ E0, S(γY ) ∼= QZ ◦ E1.

By construction, there exists a weak equivalence QZ → Z; restricting, we obtain weak
equivalences QZ ◦ E0 → X and QZ ◦ E1 → Y . Hence, there exist weak equivalences
S(γX)→ X and S(γY )→ Y .

It remains to check that d∞(γX , γY ) ≤ δ. Consider z ∈ T = colimQZ. There is a

minimum index (r, j) ∈ ob Iδ such that z ∈ imµQZ

(r,j). If j = 0 then γX(z) = r and γY (z) =

r+ δ. If on the other hand j = 1, then γY (z) = r and γX(z) = r+ δ. Clearly, in either case,
we have ‖γX(z) − γY (z))‖∞ = δ. Since this holds for all z ∈ T we have d∞(γX , γY ) ≤ δ as
desired (with strict equality unless colimQZ = ∅). �

Proof of Theorem 1.7. Let X and Y be R-spaces with dHI(X, Y ) = δ. Then for all δ′ > δ, X
and Y are homotopy δ′-interleaved, i.e., there exist δ′-interleaved R-spaces X ′, Y ′ with X ′ ≃
X and Y ′ ≃ Y . Proposition 5.6 gives us a topological space T and functions γX′

, γY ′

: T → R

with S(γX′

) ≃ X , S(γY ′

) ≃ Y , and d∞(γX′

, γY ′

) ≤ δ′.
Suppose d is a stable, homotopy invariant distance on R-spaces. Then by stability,

d(S(γX′

),S(γY ′

)) ≤ δ′. Therefore, by homotopy invariance and the triangle inequality for
d, we have d(X, Y ) ≤ δ′. Since this holds for arbitrary δ′ > δ we have that d(X, Y ) ≤ δ =
dHI(X, Y ). �

6. Rips Stability for Filtrations

In this section, we use homotopy interleavings to strengthen the Rips stability theorem
(Theorem 1.1) to a purely homotopy-theoretic result (Proposition 1.5). Together with the
similar results mentioned at the end of Section 1.2, this refinement justifies our perspective
that homotopy interleavings are the fundamental homotopical concept in topological data
analysis. Recall that Proposition 1.5 says that if d is any distance on filtrations satisfying
the stability and homotopy invariance axioms introduced in Definition 1.4, then for all finite
metric spaces P and Q,

d(Rips(P ),Rips(Q)) ≤ 2 dGH(P,Q).

We are aware of three different proofs of the Rips stability theorem. The original proof [9]
embeds the metric spaces into a Euclidean space endowed with the ℓ∞ norm and applies the
nerve theorem. A proof of Proposition 1.5 is already implicit in this proof. A later proof [12]
of the Rips stability theorem avoids use of embeddings and the nerve theorem, and instead
considers multi-valued maps between simplicial complexes. An elegant third proof, due to
Facundo Mémoli [33], relies on Quillen’s Theorem A for simplicial complexes [34, Page 93].
Using a suitable definition of barcode [10, 1], each of these three proofs extends readily to
arbitrary compact metric spaces.

We verify Proposition 1.5 by following Mémoli’s proof of the Rips stability theorem. To
prepare for the proof, we first review the definition of the Gromov-Hausdorff distance. Given
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sets S, T , a correspondence between S and T is a set C ⊂ S × T such that the coordinate
projections projS : C → S and projT : C → T are surjections. Let Γ(S, T ) denote the set of
all correspondences between S and T .

Definition 6.1. The Gromov-Hausdorff distance between compact metric spaces P and Q
is given by

dGH(P,Q) =
1

2
inf

C∈Γ(P,Q)
sup

(p,q),(p′,q′)∈C

|d(p, p′)− d(q, q′)|.

Proof of Proposition 1.5. If P and Q are finite metric spaces with dGH(P,Q) = δ
2
, then there

exists a correspondence C ⊂ P ×Q with |d(p, p′)− d(q, q′)| ≤ δ for all ((p, q), (p′, q′)) ∈ C.
Let [C] denote the simplex with vertices C. We define a simplicial filtration XP on [C] by

taking σ ∈ XP
r if and only if

dP (projP (u), projP (v)) ≤ 2r

for all u, v ∈ σ. XP induces a function γP : [C]→ R which sends a simplex σ to the minimum
r ∈ R such that σ ∈ XP

r . Note that X
P is equal to the simplicial sublevelset filtration S(γP ).

Define a simplicial filtration XQ and function γQ : [C]→ R analogously.
By the way we chose C, we have that

d∞(γP , γQ) ≤ δ.

Thus, by the stability axiom for d and the fact that

S(γP ) = XP , S(γQ) = XQ,

we have that d(XP , XQ) ≤ δ.
Quillen’s theorem A for simplicial complexes [34] says that if f : S → T is a simplicial

map of simplicial complexes such that f−1(σ) is contractible for each (closed) simplex σ ∈ T ,
then f is a homotopy equivalence. Note that projP : C → P induces a morphism g : XP →
Rips(P ). By Quillen’s theorem A for simplicial complexes, g is an objectwise homotopy
equivalence. Symmetrically, projQ : C → Q induces an objectwise homotopy equivalence

XQ → Rips(Q). Thus by the homotopy invariance of d,

d(Rips(P ), XP ) = d(Rips(Q), XQ) = 0.

By the triangle inequality for d, we have

d(Rips(P ),Rips(Q)) ≤ δ. �

7. Homotopy Commutative and Homotopy Coherent Interleavings

A simpler candidate definition of the homotopy interleaving distance can be formulated in
terms of homotopy commutative interleaving diagrams, i.e., interleaving diagrams taking val-
ues in Ho(Top), the homotopy category of spaces. In this section, we explore this definition
and explain why we expect that it is not equal to dHI , hence not universal.

In homotopy theory, one typically avoids working with homotopy commutative diagrams,
and works instead with richer objects called homotopy coherent diagrams, which are homo-
topically better behaved. Roughly speaking, a homotopy coherent diagram is a homotopy
commutative diagram together with explicit choices of all homotopies, homotopies between
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the homotopies, and so on. At the end of this section, we observe that dHI admits an
equivalent definition in terms of homotopy coherent interleaving diagrams.

7.1. Homotopy Commutative Interleavings. As in Section 2, let Π: Top → Ho(Top)
denote the functor that takes a space to its representative in the homotopy category (i.e.,
the localization with respect to the standard weak equivalences in Top).

Definition 7.1. A homotopy commutative δ-interleaving between R-spaces X and Y is a
δ-interleaving in Ho(Top) between ΠX and ΠY .

This definition induces a definition of an interleaving distance dHC on R-spaces, in the
usual way. dHC is easily seen to be stable, homotopy invariant, and homology bounding.

Remark 7.2. For many choices of small category I, the natural functor Ho(TopI) →
(Ho(Top))I discards some higher order homotopy theoretic information, and this can make
it difficult to work directly in the category (Ho(Top))I. As a rule, the constructions one con-
siders in homotopy theory are well defined on Ho(TopI) but not necessarily on (Ho(Top))I .
For example, whereas we define hocolim as a functor from Ho(TopI) to Ho(Top), Ho(Top)
is not cocomplete (it does not even have all pushouts), and so homotopy colimits generally
cannot be defined as functors out of (Ho(Top))I.

In view of the above remark, one does not expect homotopy commutative δ-interleavings to
be homotopically well-behaved objects. Thus, the definition of dHC, while especially simple,
is somewhat unnatural. Nevertheless, one might wonder about the relationship between dHC

and dHI . By the universality of dHI , we have that dHC ≤ dHI . We expect that dHC 6= dHI .
Though we do not have a proof of this, we will present an example which shows that in
the category of based topological spaces, homotopy commutative interleavings needn’t lift to
homotopy interleavings; we imagine that a similar example can be found which shows that
dHC < dHI .

7.2. Rectification of Homotopy Commutative Diagrams. In the next two subsections,
it will be convenient for us to work with the categoryTop∗ of based CGWH topological spaces
and its associated homotopy category Ho(Top∗) [20, Remark 3.10].

For X : I→ Ho(Top∗), a rectification of X is a functor X̃ : I→ Top∗ such that ΠX̃ ∼= X .
Rectifications do not always exist. The following folklore example, brought to our attention
by Tyler Lawson, demonstrates this:

Example 7.3. Consider the sequence of based maps

S4 f
−→ S4 g

−→ S3 h
−→ S3, (7.4)

where f and h are degree 2 maps, and g is the suspension of the Hopf map. The maps g ◦ f
and h ◦ g are null homotopic.

Let [1] denote the category with object set {0, 1} and a single non-identity morphism
0 → 1. We extend the sequence (7.4) above to a diagram indexed by the cube [1]3 which
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commutes up to homotopy, as follows:

∗ S3

∗ ∗

∗ S3

S4 S4

h

f

g

(7.5)

A homotopy commutative diagram of this form can be rectified if and only if the Toda
bracket 〈f, g, h〉 contains the trivial map [38]. In this case, the Toda bracket consists of the
non-zero element of π5(S

3) ∼= Z/2Z [40], so the diagram cannot be rectified.

7.3. Rectification of Interleavings. To establish that dHC = dHI for based spaces, it
would suffice to show that for anyX, Y : R→ Top∗ and homotopy commutative δ-interleaving
W : Iδ → Ho(Top∗) between X and Y , there exists a rectification W̃ : Iδ → Top∗ of W such
that W̃ ◦E1 ≃ X and Z̃ ◦E2 ≃ Y . However, the next example shows that such a rectification
does not always exist, even if we ignore the conditions on the restrictions W̃ ◦ Ei.

Example 7.6. We can define homotopy commutative interleavings between functors Z →
Top∗ in the same way as for R-spaces. Leveraging Example 7.3, we give an example of
functors X, Y : Z → Top∗ and a homotopy commutative 2-interleaving between X and
Y which cannot be rectified. It’s easy to see that that this example extends to yield an
unrectifiable homotopy commutative interleaving in the R-indexed case, as well.

Letting f , g, and h be as in Example 7.3, consider the following homotopy commutative
diagram:

∗ S3

S4 S4 ∗ ∗ ∗ S3.

h

f

g (7.7)

This diagram clearly extends to a homotopy commutative 2-interleaving between a pair of
functors X, Y : Z → Top∗, by taking the remaining spaces in X and Y to be points. To
check that this cannot be rectified, it suffices to check that (7.7) cannot be rectified. To do
so, we will observe that (7.7) can be rectified only if (7.5) can be rectified. Since (7.5) cannot
be rectified, this establishes that (7.7) cannot be rectified.
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Let us draw (7.7) in a different way, placing each object at a vertex of the cube:

∗ S3

∗ ∗

∗ S3

S4 S4.

h

f

g

(7.8)

Noting that by composition, a commutative diagram of the form

a b

c d

determines one of the form

a b

c d,

it’s clear that if a rectification of (7.8) were to exist, it would yield a rectification of (7.5).
Thus (7.7) cannot be rectified, as we wanted to show.

Note however that there does exist a homotopy 1-interleaving between X and Y , obtained
by taking all maps between spaces inX and Y to be trivial. Thus, dHI(X, Y ) = dHC(X, Y ) =
1. Consequently, this example does not establish that dHC 6= dHI for based spaces.

7.4. Homotopy Coherent Interleavings. Though homotopy commutative diagrams can-
not always be rectified, a theorem of Vogt tells us that a functorial rectification does exist for
homotopy coherent diagrams [41, 15]. Specifically, let Coh(I) denote the homotopy category
of homotopy coherent diagrams in Top indexed by I, as defined for example in [15]. Vogt’s
theorem gives an equivalence Coh(I) → Ho(TopI) making the following diagram commute
up to natural isomorphism:

Coh(I) Ho(TopI)

(Ho(Top))I
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where the arrows into (Ho(Top))I are the evident ones. This result in fact generalizes to
diagrams taking values in the cofibrant-fibrant objects Ccf of an arbitrary simplicial model
category C. The theorem tells us that model categories provide a formalism for studying
homotopy coherent diagrams, using strict diagrams and zig-zags of objectwise weak equiva-
lences.

We now formulate a homotopy-coherent notion of interleavings.

Definition 7.9. We define a homotopy coherent δ-interleaving between functors X, Y : R→
Top to be a homotopy coherent diagram Z ∈ Coh(Iδ) such that Z ◦E0 ∼= X and Z ◦E1 ∼= Y
in Coh(R).

Using the equivalence Coh(Iδ)→ Ho(TopIδ) provided by Vogt’s theorem, it is straighfor-
ward to prove the following comparison.

Proposition 7.10. There exists a homotopy coherent δ-interleaving between R-spaces X
and Y if and only if there exists a δ-homotopy-interleaving between X and Y .

As a consequence, we can give an equivalent definition of dHI in terms of homotopy
coherent interleavings.

8. Towards a Persistent Whitehead Theorem

To conclude the paper, we explore of the problem, mentioned in Section 1.4, of formulating
a persistent Whitehead theorem.

8.1. Persistent Homotopy Groups. We first need to define persistent homotopy groups.
In the setting of based spaces, this is straightforward.

Definition 8.1. For a functor X : R→ Top∗ and i ≥ 0, we call the composite functor πiX
the ith based persistent homotopy group of X . For i > 0, this is a functor R → Grp, while
π0 takes values in Set.

A related definition of persistent homotopy group appears in [28], but concerns only pairs
of indices in R. We have seen that interleavings are defined on objects of CR, for arbitrary
categories C. Thus, interleavings can be defined in the usual way for based persistent
homotopy groups.

We next briefly consider the definition of persistent homotopy groups in the unbased
setting. Let us say X : R→ Top∗ is (path) connected if for each r ∈ R, Xr (path) connected.
For X path connected, our definition of πiX is the natural one. However, R-spaces arising in
TDA are rarely connected. For X not connected, the isomorphism type of πiX depends on
the choice of basepoints inX , and may miss important topological information in components
of the spaces Xr not containing the basepoint. Thus, we wish to define an unbased version
of the persistent homotopy group, which keeps track of information at all components. We
also wish to give a definition of interleavings between these objects.

One way to proceed is to use the definition of a local system, as given in [25, Section 4].
This definition is functorial, so one can associate a persistent local system ΠiX to an R-space
X for each i ≥ 0. Moreover, one has a natural notion of equivalence of local systems, and
using this, one can give a definition of interleavings between persistent local systems similar
to our definition of the homotopy interleaving distance. Our triangle inequality argument for
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the homotopy interleaving distance adapts to give the triangle inequality for this interleaving
distance.

That said, a careful study of unbased persistent homotopy groups and their interleavings
is beyond the scope of this work; below we restrict attention to connected R-spaces and work
with based persistent homotopy groups.

8.2. Persistent Whitehead Conjectures. In a model categoryC, for cofibrant-fibrant ob-
jects X, Y ∈ C there is a well-behaved abstract notion of homotopy of morphisms f, g : X →
Y , generalizing the usual definition of homotopy for maps of topological spaces; see for exam-
ple [20, Section 4]. As in the case of spaces, we write f ≃ g. This in turn yields a definition
of homotopy equivalence. The axioms of a model category imply an abstract Whitehead
theorem [24, Proposition 1.2.8]:

Theorem 8.2 (Whitehead theorem for model categories). For any model category C, a weak
equivalence between cofibrant-fibrant objects in C is a homotopy equivalence.

The situation in Top is somewhat simpler: We have a well-behaved homotopy relation (the
familiar one) for maps between arbitrary spaces X and Y . Moreover, in the standard model
structure, a cofibrant object is a retract of a CW-complex and all objects are fibrant. Thus
in this setting, Theorem 8.2 recovers the classical result that a weak equivalence between
CW-complexes is a homotopy equivalence.

These good properties carry over to the category of R-spaces; we have a canonical homo-
topy relation for morphisms between arbitrary R-spaces, which is an equivalence relation,
and all R-spaces are fibrant in the projective model structure.

In light of this, we can introduce a persistent generalization of homotopy equivalence
for arbitrary R-spaces. First, note that for X an R-space and δ ≥ 0, the internal maps
{Xr,r+δ}r∈R assemble into a morphism ϕX,δ : X → X(δ).

Definition 8.3. Given R-spaces X and Y , we will say a pair of morphisms f : X → Y (δ)
and g : Y → X(δ) are (inverse) δ-homotopy equivalences if

g(δ) ◦ f ≃ ϕX,2δ and f(δ) ◦ g ≃ ϕY,2δ,

where f(δ) : X(δ)→ Y (2δ) is the map induced by f , and is g(δ) defined analogously.

Remark 8.4. It is easy to check that if cofibrant R-spaces X and Y are δ-homotopy-
interleaved, then X and Y are δ-homotopy equivalent. However, in view of homotopy
coherence and rectification issues similar to those discussed in Section 7, it is not clear
to us whether the converse is true.

It is natural to wonder whether for R-spaces, the Whitehead theorem extends to a persis-
tent version as follows:

Naive Persistent Whitehead Conjecture 1. For X and Y connected cofibrant R-spaces,
δ ≥ 0, and morphism f : X → Y (δ) with πif : πiX → πiY (δ) a δ-interleaving morphism for
all i, f is a δ-homotopy equivalence.

In view of Remark 8.4 and the universality of the homotopy interleaving distance, one
might also wonder whether the following is true,
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Naive Persistent Whitehead Conjecture 2. Given X , Y and f as in the previous
conjecture, X and Y are δ-homotopy-interleaved.

However, the following example makes clear that both conjectures are far from true.

Example 8.5. We specify X : R → CW, Y : R → CW, and f : X → Y (1) satisfying the
hypotheses of the above conjectures for δ = 1, with X and Y not ǫ-homotopy equivalent,
and hence also not ǫ-homotopy-interleaved, for any ǫ.

Let X be the trivial filtration, i.e., Xr = ∗ for all r. X is cofibrant. As a first step towards
defining Y , for each n ∈ {1, 2, . . .}, we define a functor Y n : R→ CW as follows:

Y n
r :=







S2i × S2i × · · · × S2i

︸ ︷︷ ︸

2n−i copies

for r ∈ [2i, 2i+ 2), i ∈ {0, 1, . . . n}

∗ for r ∈ (−∞, 0) ∪ [2n+ 2,∞),

For i ≥ 0, we have a map

S2i × S2i → S2i+1

= S2i ∧ S2i,

given by collapsing S2i ∨S2i ⊂ S2i ×S2i to a point; here ∨ and ∧ denote the wedge product
and smash product, respectively. For i ∈ {0, 1, . . . n−1}, r ∈ [2i, 2i+2), and s ∈ [2i+2, 2i+4),
we take the internal map Y n

r,s to be the product of 2n−i−1 copies of this map. The remaining
internal maps in Y n are specified by composition.

For example, regarding the torus S1 × S1 as a quotient of a square in the usual way, the
map

Y 1
0,2 : S

1 × S1 → S2

is the one induced by sending the whole boundary of the square to a single point, and the
map

Y 2
0,2 : S

1 × S1 × S1 × S1 → S2 × S2

is equal to Y 1
0,2 × Y 1

0,2.

For all i, the map S2i∨S2i →֒ S2i×S2i induces a surjection on all homotopy groups. Thus,
πiY

n
r,r+2 is trivial for all r ∈ R and i ≥ 0. It follows that the trivial morphisms X → Y n(1)

and Y n → X(1) induce 1-interleavings on all based persistent homotopy groups.
However, X and Y n are not δ-homotopy equivalent for any δ < n+1. To see this, assume

that all spheres in the definition of Y n are given the usual minimal CW-structure, and note
that Y n

r = S2n for r ∈ [2n, 2n+ 2). The map Y n
0,r acts by collapsing the (2n − 1)-skeleton of

Y n
0 to a point, so it follows from an easy cellular homology computation that H2n(Y

n)0,r 6= 0.
Thus, H2n(Y

n) and the trivial module H2n(X) are not δ-interleaved. It is straightforward
to check that a δ-homotopy equivalence between R-spaces A and B induces a δ-interleaving
between HiA and HiB for all i. Therefore, X and Y n are not δ-homotopy equivalent, as
claimed. On the other hand, X and Y n are strictly (n+1)-interleaved, via trivial morphisms.

We next construct an R-space Y ′ such that the trivial morphisms X → Y ′(1) and Y ′ →
X(1) induce 1-interleavings on all based persistent homotopy groups, but HiX and HiY

′ are
not δ-interleaved for any finite δ. To do so, we simply patch together the non-trivial portions
of each Y n, taking each morphism between spaces from two different Y n to be trivial; that
is, we take Y ′

r := Y 1
r for r ∈ (−∞, 4), Y ′

r := Y 2
r−4 for r ∈ [4, 10), and so on.

Finally, we obtain the desired cofibrant Y by taking a cofibrant replacement of Y ′.
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Example 8.5 motivates the following weaker pair of persistent Whitehead conjectures:

Conjecture 8.6 (Persistent Whitehead Conjectures). Suppose we are given connected cofi-
brant R-spaces X, Y : R → CW with each Xr and Yr of dimension at most d, and f : X →
Y (δ) with πif : πiX → πiY (δ) a δ-interleaving morphism for all i. Then there is a constant
c, depending only on d, such that

(i) f is a cδ-homotopy equivalence,
(ii) X and Y are cδ-homotopy-interleaved.
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