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C?* REGULARITY OF FLAT FREE BOUNDARIES FOR THE
THIN ONE-PHASE PROBLEM.

D. DE SILVA AND O. SAVIN

ABSTRACT. We prove C2:¢ regularity of sufficiently flat free boundaries, for
the thin one-phase problem in which the free boundary occurs on a lower
dimensional subspace. This problem appears also as a model of a one-phase
free boundary problem in the context of the fractional Laplacian (—A)/2,

1. INTRODUCTION

Let g(z,s) be a continuous non-negative function in the ball B; ¢ R*! =
R™ x R, which vanishes on a subset of R™ x {0} and it is even in the s variable. We
consider the following free boundary problem

Ag=0, in Bi‘_(g) =B \ {(IE,O) 2g($,0) = 0}7

(1.1) dg
%:1, on F(g) := Ogn{z € By : g(,0) > 0} N By,
where
dg o 9o + tr(zo),0)
(12) %(ZEO) = tg%l+ T, Xo € F(g)

with v(x¢) the normal to F(g) at 2o pointing toward {z : g(z,0) > 0} and B, C R
the n-dimensional ball of radius r (centered at 0).
If F(g) is C? then it can be shown (see Section 7) that any function g which is
harmonic in B{" (g9) has an asymptotic expansion at a point 29 € F(g),
gz, s) = a(xo)U((x — x0) - v(20), 8) 4 o|a — 0|/ + s1/2).
Here U (t, s) is the real part of v/z which in the polar coordinates
t=rcosf, s=rsinf, r>0, —-7<6<m,

is given by
0
(1.3) Ult,s) =r'/? cos 7

Then, the limit in (2) represents the coefficient a(zp) in the expansion above
(which justifies our notation)
99
U
and our free boundary condition requires that « = 1 on F(g).
Solutions to our free boundary problem (L) are critical points to the energy
functional

(z0) = a(z0)

Blg) == / [Vgf? dds + SH"({g > 0} 1 By).
By
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If the second term is replaced by H" " ({g > 0}), we obtain the classical one-phase
free boundary problem (see for example [AC].) In our case the free boundary occurs
on the lower dimensional subspace R™ x {0} and for this reason we refer to (II]) as
to the thin one-phase free boundary problem.

This free boundary problem was first considered by Caffarelli, Roquejoffre and
Sire [CafRS] as a model of a one-phase Bernoulli type free boundary problem in the
context of the fractional Laplacian. It is relevant in applications when turbulence
or long-range interactions are present, for example in flame propagation and also
in the propagation of surfaces of discontinuities. For further information on this
model see [CafRS| and the references therein.

In this paper we are interested in the question of regularity for the free boundary
F(g). Concerning this issue the authors of [CafRS| proved that in dimension n = 2,
a Lipschitz free boundary is C. In [DR], the first author and Roquejoffre showed
that in any dimension if the free boundary F(g) is sufficiently flat then it is C1@.

This paper is the first of a series of papers, which investigate the regularity
of F(g) and in particular the question of whether Lipschitz free boundaries are
smooth. This basic question was answered positively in the case of minimal surfaces
by De Giorgi [DG] and by Caffarelli [CI] for the standard one-phase free boundary
problem.

Our strategy to obtain the regularity of Lipschitz free boundaries is to use a
Weiss-type monotonicity formula [W] combined with flatness results and ad hoc
Schauder type estimates near the free boundary. To implement this method we
need to obtain first C%* estimates for flat free boundaries, which we achieve in this
paper. Unlike the case of minimal surfaces and of the standard one-phase problem,
C?% estimates do not seem to follow easily from C1. It appears that C%® is the
critical regularity needed to obtain C'*° smoothness of the free boundary, as well as
the regularity needed to implement our blow-up analysis.

The following is the main result of this paper (see Section 2 for the precise
definition of viscosity solution to (IT)).

Theorem 1.1. There exists € > 0 small depending only on n, such that if g is a
viscosity solution to ([LI) satisfying

{zeBy:x, <—-¢ Cc{reB:g(0)=0}C{rebB:x, <&},

then F(g) is a C*% graph in B% for every a € (0,1) with C* norm bounded by a
constant depending on o and n.

The proof of Theorem [[] follows the lines of the flatness theorem in [DRI,
which is inspired by the regularity theory developed by the second author in [S].
In this case the proof is more technical since we need to approximate the free
boundary quadratically. To do so, we introduce a family of approximate solutions
Vs,a,» which have the same role as quadratic polynomials in the regularity theory
of elliptic equations. Such family will be used also in a subsequent paper to obtain
boundary Schauder type estimates for solutions to our problem.

In the last section of this paper we also prove some useful general facts about
viscosity solutions g to our free boundary problem (L), such as C'/2-optimal
regularity, asymptotic expansion near regular points of the free boundary and com-
pactness.

The paper is organized as follows. In Section 2 we recall notation, definitions
and some basic results from [DR], including the linearized problem associated to
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(Td). Section 3 is devoted to the construction of the quadratic approximate so-
lutions Vs 4. In Section 4 we prove a Harnack type inequality for solutions to
([TI). In Section 5 we establish the improvement of flatness result via a compact-
ness argument which makes crucial use of the Harnack inequality of Section 4. Our
argument reduces the problem to studying the regularity of solutions to the lin-
earized problem. This is pursued in Section 6. We conclude the paper with Section
7 where we provide some general facts about viscosity solutions to (LIJ).

2. DEFINITIONS AND BASIC LEMMAS

In this section we recall notation, definitions and some necessary results from
[DR].

2.1. Basic facts. Throughout the paper, constants which depend only on the di-
mension n will be called universal. In general, small constants will be denoted by
¢, ¢; and large constants by C, C; and they may change from line to line in the body
of the proofs.

A point X € R*""! will be denoted by X = (x,5) € R® x R, and sometimes
x = (2, x,) with ' = (z1,...,2p-1).

A ball in R"*! with radius 7 and center X is denoted by B,.(X) and for simplicity
B, = B,(0). Also B, denotes the n-dimensional ball B, N{s = 0}.

Let v € C(B) be a non-negative function. We associate to v the following sets:

Bf (v) := By \ {(z,0) : v(x,0) = 0} c R"*;
B (v) := B (v) N Bi C R™;
F(v) := 0rn B (v) N By C R™.

Often subsets of R are embedded in R™"*!, as it will be clear from the context.
We consider the thin one-phase free boundary problem

Ag=0, in Bf(g),

(2.1) dg
w - 15 on F(Q)v
where ( ( )
dg gz +tv(x),0 B
50 (x0) := t5%1+ G Xo = (20,0) € F(g).

Here v(z() denotes the unit normal to F(g), the free boundary of g, at z¢ pointing
toward By (g).
We now recall the notion of viscosity solutions to (1), introduced in [DR].

Definition 2.1. Given g,v continuous, we say that v touches g by below (resp.
above) at X, € By if g(Xo) = v(Xp), and

g(X) > v(X) (resp. g(X) <v(X)) in a neighborhood O of Xj.

If this inequality is strict in O \ {X(}, we say that v touches g strictly by below
(resp. above).

Definition 2.2. We say that v € C(Bj) is a (strict) comparison subsolution to
21) if v is a non-negative function in B; which is even with respect to s = 0 and
it satisfies
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(i) vis C? and Av >0 in B (v);

(ii) F(v)is C? and if 2o € F(v) we have
v(xo + tr(20),0) = o)Vt +o(Vt), ast—0T,
with
afrg) > 1,

where v(g) denotes the unit normal at xo to F(v) pointing toward B; (v);

(iii) Either v is not harmonic in By (v) or a(wo) > 1 at all zg € F(v).
Similarly one can define a (strict) comparison supersolution.

Definition 2.3. We say that g is a viscosity solution to (2.)) if ¢ is a continuous
non-negative function in B; which is even with respect to s = 0 and it satisfies

(i) Ag=0 in Bf (g);

(if) Any (strict) comparison subsolution (resp. supersolution) cannot touch g
by below (resp. by above) at a point Xy = (z0,0) € F(g).

Remark 2.4. We remark that if ¢ is a viscosity solution to (21]) in B), then
(X)) =2"2\X), XeB
is a viscosity solution to (1)) in Bj.
Finally, we state for completeness the boundary Harnack inequality which will be

often used throughout the paper. This version follows from the boundary Harnack
inequality proved in [CFMS].

Theorem 2.5 (Boundary Harnack Inequality). Let v be harmonic in By (v) and let
F(v) be a Lipschitz graph in the e,-direction (pointing towards the positive phase)
with 0 € F(v). If w is harmonic in B (w) = B (v), then

w w, 1

Y<c¥ze,) in Bsu,

v = U(26 ) in 3/4
with C' depending only on n and on the Lipschitz constant of F(v).

2.2. The function g. Here and henceforth we denote by P the half-hyperplane
P:={XecR"":z,<0,5s=0}
and by
L:={XeR":2,=0,5=0}.
Also, throughout the paper we call U(X) := U(xy,s), where U is the function
defined in ([L3)).

Let g be a continuous non-negative function in B,. As in [DR], we define the
multivalued map § which associate to each X € R"*1\ P the set §(X) C R via the
formula
(2.2) UX)=g9(X —we,), Ywe g(X).

We write §(X) to denote any of the values in this set.
This change of variables has the same role as the partial Hodograph transform for
the standard one-phase problem. Our free boundary problem becomes a problem
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with fixed boundary for g, and the limiting values of g on L give the free boundary
of g as a graph in the e, direction.
Recall that if g satisfies the e-flatness assumption

(2.3) U(X —e€e,) <g(X)<U(X +e€e,) inB,, fore>0

then §(X) # 0 for X € B,_. \ P and [§(X)| < ¢, hence we can associate to g a
possibly multi-valued function g defined at least on B,_. \ P and taking values in
[—¢, €] which satisfies

(2.4) U(X) = g(X = g(X)en).

Moreover if g is strictly monotone in the e,-direction in B; (g), then g is single-
valued.
We recall the following lemmas from [DRI].

Lemma 2.6. Let g,v be non-negative continuous functions in By with v strictly
increasing in the e,-direction in B;\"(v). Assume that g and v satisfy the flatness
assumption ([23)) in By for e > 0 small. If

v<g 1n By,
then

Viceversa, if

for some 0 < o < XA —¢, then
v<g on B,_e.

Lemma 2.7. Let g,v be respectively a solution and a subsolution to 2.1 in Ba,
with v strictly increasing in the e, -direction in By (v). Assume that g and v satisfy
the flatness assumption (23] in By for ¢ > 0 small. If,

(2.5) v+0<g in(Bsps\Bip)\P,
for some o > 0, then

Finally, given a Lipschitz function ¢ defined on By (X), with values in [-1,1],
then for all € > 0 small there exists a unique function ¢, defined at least on By _.(X)
such that

(2.7) U(X) = p(X —ed(X)en)s X € Ba(X),
that is

Pe = €0
Moreover such function ¢, is increasing in the e,-direction.

If g satisfies the flatness assumption (2.3) in B; and ¢ is as above then (say
A<1/4, X € Byjs,)

(2.8) ¢ <g inBA\(X)\P=¢.<g in By_(X).

The following Proposition will be used in the compactness argument for the proof
of the improvement of flatness in Section 6.
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Proposition 2.8. Let ¢ be a smooth function in By(X) C R**1\ P. Define (for
€ > 0 small) the function . as above by

(2.9) U(X) = (X — ed(X)en).
Then,
(2.10) Ap. = eA(Up) + O(€%), in Byja(X)

with the function in O(e?) depending on ||d||cs and .

Proof. For notional simplicity we drop the subindex € in the definition of ¢.. From
formula (2:9) and Taylor’s theorem, we have that

(2.11) U(X) = ¢(X) = epn(X)p(X) + U(X), in Byy(X)
with ”\I/HC‘*(BA/g(X)) < C and C depending on ||¢||cs and A. Thus,
Un(X) = on(X) + O(e).
Combining this formula for ¢, (X) and (ZTII]) we obtain
U(X) = ¢(X) — eUn(X)p(X) + O(?).
Hence, using that U is harmonic,
0= AU(X) = Ap(X) = A(Und) (X) + O(e2),
as desired. (I

We remark that in fact the function in O(e?) only depends on \ if we choose €
small enough depending on ||¢||cs.

2.3. The linearized problem. We recall here the linearized problem associated
to 2I). Here and later U,, denotes the x,-derivative of the function U. Recall that
P={XeR"":2,<0,s=0}, L:={XecR":g,=0,5=0}
Given h € C(By) and Xy = (x(,0,0) € By N L, we call

h(z(, Xn, s) — h(x(, 0,0)

[V, h|(Xo):=  lim , rP=x2 452
(zn,s)—(0,0) r

Once the change of unknowns (2.2)) has been done, the linearized problem associated
to 1) is
A(U,h) =0, in B;\ P,

(2.12) (Unh) in Bi\

[V,.h|=0, onB;nNL.
Definition 2.9. We say that h is a solution to (212) if h € C(By), h is even with
respect to {s = 0} and it satisfies

(i) A(U,h) =0 in By \ P;

(ii) h cannot be touched by below (resp. by above) at any Xy = (z(,0,0) €
By N L, by a continuous function ¢ which satisfy
H(X) = 6(Xo) +a(Xo) - (2 = 2) + b(Xo)r + O(|a' = ag|* + /%),
with b(Xo) > 0 (resp. b(xo) < 0).

In Section 6, we will prove a quadratic expansion for solutions to the linearized
problem which yields the following corollary.
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Corollary 2.10. Let h be a solution to ZI2) such that |h| < 1. Given any
a € (0,1), there exists ng depending on « , such that h satisfies

1 1
|h(X) — (R(0) + & - 2" + §($/)TM0£L'/ — %rz — borzy)| < an"’o‘ in By,

with r* = x% + 52, for some ag,bg € R, & € Rnfl,MO e §(n=1x(n=1) yih
1ol, ]aol, [bol, | Mo|| < C,  C universal

and
ag + bg — trMy = 0.

3. A FAMILY OF FUNCTIONS.

In this section we introduce a family of functions Vs 4, which approximate our
solution quadratically. These functions will be often used as comparison subsolu-
tions/supersolutions. We establish here some of their basic properties, including
their behavior under the change of coordinates V — V (see Proposition [3.3).

We start by presenting some basic properties of the solution U defined in the
introduction. Recall that

where
t=pcosf, s=psinf, p>0, —-7T<p< 7.
We will use the following properties of the function U:
(i) AU=0, U>0 inR""\P

1
(it) Uy = 3p % cos & = 2—U and U; > 0 in R"T1\ P.
p

Since Uy is positive harmonic in R?\ {(¢,0), ¢ < 0}, homogenous of degree —1/2
and vanishes continuously on {(¢,0), ¢ < 0} one can see from boundary Harnack
inequality (or by direct computation) that values of U; at nearby points with the
same second coordinate are comparable in diadic rings. Precisely we have

Ut (tl ) 8) . 1
3.1 —— < C if |t —ta] < =|(ta,9)].
(3.1) Uilta,s) = [ty = taf < 5(22,5)|

Next we introduce the family Vs qp. For any a,b € R we define the following

family of (two-dimensional) functions (given in polar coordinates (p, 5))
B

a b
(3.2) Vap(t, ) == (1 + 1P + gt)pl/2 cos 7,

that is
b
vap(ts) = (L+ 2o+ SOU(t5) = Ult,5) + o(p'/?).
Given a surface S = {x,, = h(z')} C R", we call Ps x the 2D plane passing
through X = (z,s) and perpendicular to S, that is the plane containing X and

generated by the s-direction and the normal direction from (z,0) to S.
We define the family of functions

(3.3) Vs.ap(X) :=vap(t,s), X =(z,s),
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with t = pcos 3, s = psin 8 respectively the first and second coordinate of X in the
plane Ps x. In other words, ¢ is the signed distance from x to S (positive above &
in the z,-direction.)

If

1
S = {xn — 5(J/./)T]\4J:/ +§I . ZC/},
for some M € S(=Dx(=1) ¢/ ¢ Rn=1 we use the notation
(34) VM,g/,a,b(X) = VS,a,b(X)-
This will be the case throughout most of the paper.
Definition 3.1. For ¢ > 0 small, we define the following classes of functions
Vs = {VM,S’,a,b : ||M||7 |€/|7 |a|7 |b| < 5}7
and
V9= {Virgrap € Vs: a+b—trM = 0}.

Most of the times we will work with functions in the class Vs, since we deal with
the flat case. Notice that if we rescale V' = Vi ¢/ 4.5 that is

(X)) =212V (\X), X € By,
then it easily follows from our definition that
VA = Vam,er na,nb-

In the next proposition we provide a condition for a function V' € Vs to be a
subsolution/supersolution.

Proposition 3.2. Let V = Vs e ap € Vs, with § < 6o universal. There exists a
universal constant Cy > 0 such that if

(3.5) a+b—trM > Cyé?
then V' is a comparison subsolution to (2] in Bs.

Proof. Clearly from our formula for v, ; the function V satisfies the free boundary
condition of Definition 221 with a(zg) = 1. We need to check that AV(X) > 0 at
all X € B (V).
Since that V(X)) depends only on (¢, s) and
At = —k(x)

where x(x) is the sum of the principal curvatures of the parallel surface to S (in
R™) passing through z, we compute that

(36) AV(X) = A(m)vah - ((%’Uayb)li(z).

From our formula for v, 3, using polar coordinates we get that

1
(3.7) At 5)Vab = §(a+b)p_1/2 cosg = (a+b)Us.
Also, since p < 2,
(3.8) 18yvap — Uy| < (la] + |b])p/? cosg < 86U;.

Finally we use that x;(z) the principal curvatures at x are given by,

(39) (o) = T L
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where z* is the projection of = onto S. Since |£'|, ||M|| < § we obtain that
|ki(z*)| < CO, |k(x*) —trM| < C5*

for C universal, which in view of ([B9) give

(3.10) |k(z) — trM| < C52.

From (3.6) combined with (371), B.8)) and B.10) we get that
1

(3.11) JAV(X) = (a+b—trM)U,| < 50052Ut

for a Cp universal. It follows that if
a+b—trM > Cyd?
then AV(X) > 0 as desired.

Next, we estimate V,, and AV outside a small cone with axis L.

Proposition 3.3. Let V = Vi ¢ 0 € Vs with § < &g universal, then

(3.12) c< % <C, in B\ (PU{|(zn,5)| < 1002/]}).
If V eV) then
(813)  JAV(X)| < CRUL(X) in Ba\ (PU{|(xn,s)| < 108]2']}).
Proof. From our formula

Vi (X) = Opva p(t, s)%

where ¢ represents the signed distance from z to S. Since V.t is the unit vector at
x that has the direction of the normal from x to S, it makes an angle of order §
with respect to e,. Hence since

— =V, t e,
oxy, €
we get
ot
(3.14) 1>—>1-C%
Zn

and we obtain )
Opvap(t,s) > Vi (X) > §atva7b(t,s).
From (B.8) we see that 0;v,, ~ Uy and we obtain that

(3.15) 20,U(t, ) > Vi(X) > i@tU(t,s).

Thus to obtain our claim we need to replace t with z,, in the inequality above.
Since in By the surface S is in a 46|z| neighborhood of x, = 0 we find that
|t — x| < 46|z|. If X belongs to the domain in (312) then

(@, 8)| = 80z = 2[t — |
and we obtain from (B.1))

Ut(t,S)
. < —=<
(3.16) S s < C
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which together with (BI5) gives the desired conclusion ([BI2)).
Now (BI3)) follows immediately. Indeed by formula [B.I1]) we have that
AV (X)| < C8*U(t, 5),
which combined with ([B.I6]) gives the desired bound. O

Remark 3.4. We remark that if V' € V9, then the rescaling Vi (X) = A™'/2V(A\X)
with A < 1, satisfies

(V)\)n
Un

in the dilation ball of factor 1/A
Boyx \ (P U{|(zn, s)| < 106]2"[}).

(3.17) c<

<O, |AV(X)| < C82UL(X),

Indeed
AVA(X) = N2AVAX), Un(X) = AY2U0,(0X), (Va)n(X) = A2V, (AX).

Now we study the behavior of V' € Vs under the transformation V. — V. This
will be quite useful in the rest of the paper.

Proposition 3.5. Let V = Vyerap € Vs, with § < 6o universal. Then V s
strictly monotone increasing in the e, -direction in B;‘(V). Moreover, V' satisfies
the following estimate in By \ P

[V(X) — (X)) < C16%, w(X)= grz + brz, — %(z’)TMx’ ¢ .7
with r = \/W and C7 a universal constant.
Proof. First we show that v, ; satisfies
(3.18) Ut + Yap — C0°,5) < vap(t,s) S U(t+7ap + C6,s)
where p? = t? 4+ s? and 7, is the following expression depending on ¢ and s:

Yab(t,s) == gpz + bpt.
Indeed since (see properties of U listed at the beginning of this action)
U] < Cp~ U,
we have that if |u| < p/2 then
U(t+ p.5) = (U(t,s) + nUe(t, 5))| < p?|Un(t',s)] < Cu®p~ Ui(t, 5),

where in the last inequality we used (BI]). Thus, since Uy = U/(2p),

po, poo
1+ —+C=)U(t,s) > U(t > 14+ =-C5)U(,s).
(14 £ +C5 ) 2 Ul ) = (14 ££ = Cyue.s)
Choosing
/12
uw=pa+4C—
o
we obtain that
~2 ~ ~2

Ul 4 40T 5) > (14 ) (1) 2 Ul + = 405 s),
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provided that |fi/p| < ¢, with ¢ sufficiently small. Since

a b
b =1+-p+=t)U
Va,b (+4p+2)

we can apply the inequality above with

- a
fi= 50"+ btp,

hence |fi|/p < C¢ and obtain the claim.
When ¢ is the signed distance from z to the surface S we have

1
t= 0 on S = {I’n = h,(x/) = E'I/TMI/ —+ gl . I/}

and by [B.14)
ot

1>—>1-C6é in By,

oxy,

thus, by integrating this inequality on the segment (2/, h(2)), (¢/, z,,) we get
|t — (z, — h(2'))| < C&%.

Since in Bj, the surface S and x, = 0 are within distance § from each other we
have |t — x| < C§ and hence

Vap(t:8) = Yab(@n, 8)] < [ Vvapllpeelt —aa| < C8%.
From the last two inequalities we have that
|(t + Ya,p(t, 5)) = (2n + v (X))] < C67,
with )
W(X) = Yap(Tn,s) — E:E'TMx’ ¢ 7.

Using this fact and BI8) (and the monotonicity of U in the e, direction) we
obtain

UX + (w(X) = C8%)en) < V(X) SUX + (w(X) + C6%)en),

and the estimate for V is proved.
Finally, we remark that the monotonicity of V follows from B.I5]). O

Remark 3.6. Notice that from the last inequality in the proof above, we obtain that
if V € Vs, then V satisfies the 40-flatness assumption in B (see also (Z3))):

U(X —4de,) < V(X) S U(X + 4de,).
This could be also checked easily directly from the definition of V.

We conclude this section with by comparing the functions V' corresponding to
two nearby surfaces.

Lemma 3.7. Let S;,i = 1,2 be surfaces with curvature bounded by 2. Let
Vi=Vs, a: ;s lail,|bil <2, i=1,2.
Assume that,
Si N Bay = {xy, = hi(2")}, o<c
with h; Lipschitz graphs, h;(0) =0, |Vh;| <1 and ¢ universal. If

lar — azl, |b1 — ba| <€, |h1 — hal|p~ < €0?,
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for some small € < ¢, then
Vi(X) < Vo(X 4 Ceo’e,) in By.
Proof. After a rescaling of factor 1/0, we need to prove our lemma for ¢ = 1 and

with the curvature of .S;, a;,b; and e smaller than ¢ universal.
First we prove that for 0 < A <1,

Vay by (8, 8) < Vay o (E + CeX?)s), A< p=|(ts)] <2\

By 3I3), Oyve, is proportional to §,U in the disk of radius 2. Since on the
segment with endpoints (¢, s) and (¢t + Ce)?, s) all the values of 9;U are comparable
(see (BI) we obtain (using 2pU; = U)

Vas by (t + CeX?, 8) > Vay by (t,8) + C’e)\zUt(t, s)

as b2 )\2
>U(1+ — —t+Ce—
> (+4p+2 + ep)
aq bl

>U(1+ — —t
22U+ Fpt 1)
2 ’Ulll,bl (t7 S)?

and our claim is proved.
Since vg, b, is increasing in the first coordinate, we obtain that

valqbl(t5 S) < Ua2yb2(t—|—06, S)a |(t75)| <L
On the other hand, from the hypotheses on h; we see that in B
t1 + Ce < 1o,

where #5 is the distance to So — C’¢ee,,, for some C’ large depending on the C above.
Hence in By we have

Vi (X) = Va,,by (tlv S) < Vas,bs (tl + Ce, S) < Vay,by (EZ, S) = ‘/Q(X + Cleen)'

4. HARNACK INEQUALITY

In this section we state and prove a Harnack type inequality for solutions to our
free boundary problem (Z)). This will allow us to obtain some compactness of
flat solutions after the transformation g — ¢ (see Corollary [£2)) which is a crucial
ingredient in Theorem [I.1]

Theorem 4.1 (Harnack inequality). There exist € > 0 small and C > 0 large
universal, such that if g solves 2] and it satisfies

(4.1) V(X 4+ aoen) < g(X) < V(X +boen) in By(X™) C By,
with V.= Ve ap € V9, and
Cs? < M <e
P

)

with |agl, |bo| < 1, then
(4.2) V(X +aien) < g(X) <V(X +bie,) in Byp(X™),
with

ap <ar < by <bg, b1 —ar=(1-7)(bo— ao),
for a small universal constant ij € (0,1/2).



THE THIN ONE-PHASE PROBLEM 13

In the particular case when V' = U, this statement was proved in [DR]. Our proof
follows the same lines as the one in [DR] but it requires a more careful analysis since
the function V is no longer a precise solution.

From this statement we get the desired corollary to be used in the proof of our
main result. Precisely, assume g satisfies [@1]) in By with ag = —e, by = € for some
small € < €, and § such that C'6? < e. Notice that from Remark [3.6, the functions
V and g are (46 + €)-flat in B;.

Then at any point X* € By, we can apply Harnack inequality repeatedly for a
sequence of radii p,, = %ﬁm and obtain

V(X +amen) < g(X) S V(X +bpen) in Bigm (X7),

with
(4.3) b — am = (bo — ao)(1 — )™ = 2¢(1 =)™,
for all m’s, m > 1 such that
(4.4) 46(1%77:77)7:_1 <e
This implies that for all such m’s, the function g satisfies
(4.5) Vit an <Gg<V+bm, inBigm s (X*)\P,
with @, by, as in [@3)). Define the following (possibly multivalued) function
(4.6) Gy ()= 10V e p
and notice that
e, v < 1.

In view of (LE) we then get that in Bigm (X*)\ P
(4.7) 0s¢ Je,v < 2(1 —7)™,
provided that
(4.8) 46 + e < /2 <qgm/4.

If e < €70 for some nonnegative integer mo then our inequalities above ([@4),
(#8) and hence also [H) hold for all m < mg. We thus obtain the following
corollary.

Corollary 4.2. Let g solve 1) and satisfy for e < €
V(X —een) <g(X)<V(X +ee,) in By,
with B
V= VM,g’,a,b S Vf;), 052 <,
for € C > 0 universal constants. If
€ S g ,'727710,
for some nonnegative integer mqo (with 7 > 0 small universal), then the function
Ge,v defined in ([A0) satisfies
ae(X) Sge,V(X) Sbe(X)a Z’I’l BI/Z\P
with
be — Qe S 2(1 - ﬁ)moa
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and ac,be having a modulus of continuity bounded by the Hélder function at® for
a, B depending only on 7.

The proof of Harnack inequality will follow from the Proposition below.

Proposition 4.3. There exist €,0 > 0 and C > 0 universal, such that if g solves
@) and it satisfies
(4.9) V(X —ee,) <g(X)<V(X +ee,) inBy, for0<e<e
with B
V=Vaeas €Vs, 6<6, C6 <e
then either
g(X) < V(X+(1_77)66n) in Bm
or
g2 V(X —(-nlen) in By,

for a small universal constant n € (0,1).

First we show that if ¢ > V and they separate of order € at one point, then they

separate also of order e away from a neighborhood of L = {x,, = 0,s = 0}. This
follows from the boundary Harnack inequality. Below are the details.

Lemma 4.4. If g solves (1)) and it satisfies

(4.10) g(X) > V(X —e€ep) in By,
_ _ _ 1
(4.11) g(X)>V(X) atsomeX e Bé(ze”)’
with V = Varerap € VS, C6?% < e for C > 0 universal, then
(4.12) g(X)>V(X -1 —7)ee,) inC,
with J ) ) )
={( 1, 8) : = < |(Tn,8)] < =, 2| < 2}, d= ——e

and T a small universal constant T € (0, 1).

Proof. We have
V(X —(1—1)een) = V(X —eep) + 7V (X + Aeey),
for some A with [A| < 1. Hence by B1I),(3I2) for ¢ small enough and X € C
V(X —(1—7)een) S V(X —eep) + CrelU, (X + Xeey,)
< V(X —eey,) + Cr7eUp (X).
Thus, if h(X) := g(X) — V(X — ee,) we need to show that
(4.13) h>c1elU,, inC,

and then choose 7 = ¢1/C1.
To obtain (£I3]), notice that by a similar computation as the one above in view

of (AI1) and BI),(BI2) we get that for e small enough

(4.14) WX) > V(X) = V(X —een) > cUn(X)e > coe.

Also, by ([@10) we have
h>0 in Bj.
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Finally, by (BI3)
|AR| < C6%U, < 0282, inC\ P,

where C 52 C is the d/4-neighborhood of C. -
Thus in view of ([@I4]) and Harnack inequality we have that (for C large enough)
1
(4.15) h > coe — C6? > c3e, in Bl/g(zen).

Denote by

D:=C\ (31/8(£en) UP)
and let g1, g2 satisfy in D
(4.16) Agr =0, Ag=-1
with boundary conditions respectively
g1=0 ondCUP, ¢1=1 on 831/8(2671)
and

g2=0 ondD.

By boundary Harnack inequality, ¢, is comparable to the distance function s in a
neighborhood of PNC CC C. Since ¢, is Lipschitz continuous in a neighborhood of
P NC, we then obtain

(4.17) q1 > caq2 inC\ Bl/8(ien)u
with ¢4 > 0 universal. By the maximum principle,
h>gq:=cseq — C26°qx in D,
since h > q on D and Ah < Aq in D. Hence, by [@I7) we get that (for C' large
enough)
h > e%?’ql > c5elU,, inC\ Bl/g(ien),

where in the last inequality we used that (by boundary Harnack inequality) ¢; and
U, are comparable. This inequality together with ([4I0) gives the desired claim

E13).
O

We are now ready to present the proof of Proposition [£.3

Proof of Proposition [[.3 Assume that
- = |
(4.18) 9X) - V(D) 20, X =3en.

Then in view of assumption (£9) from Lemma [L4] after the change of variables
g — g we get that

(4.19) JX)>V(X)+1e—€¢ inC'\P

with
1

hod=go—=

1
C/ = {(I/,.In,s) td S |(In,8)| S Zv |I/| S

N =

Denote by
W(X) = VM-{-ﬁeI,f’,a,b—che(X) € V(H—eu
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with ¢ small to be made precise later. Then in view of Proposition we have
1
2(n—1)

First we choose ¢ small depending on 7 such that

(4.20) —2C1(6+€)* < (V= W) + ce(2ra,, — |2|?) < 2C1 (6 + €)%

174 > W — %e,
where we used that C6% < ¢ < € with C' > C(7) and € small enough. Then, if C is
sufficiently large depending on c,
L 1
(4.21) V>W+71%, on {|(zn,s)] <d,|2| = 5}\P,
for some 7* > 0 small, say 7* < 7/2. These combined with ([@I9) give
—~ 1
(4.22) JX)>W(X)+ 71 —€ in (C'U{|(zn,s)| < d,|2'| = 5}) \ P.

Moreover, if C' is large enough we get that W satisfies ([3.5) and hence W is a
subsolution. Thus from Lemma 277 and the inequality above we conclude that

(423) g2 W(X) +7%e—c i {|(mn,s)| <d || < 53\ P,

Finally, from (£20) we see that there is a small neighborhood around the origin
By, C {|(zn, )] < d,|2'| < 1} (n small universal depending on the constants above,
1 < 7*/2) such that

sz/—%*e, in By, \ P.
Hence, from [@23]) we conclude that
G>V4ne—e in B\ P
for some small universal constant 7, and the lemma is proved after the change of
variable g — g. O
We conclude this section with the proof of Theorem (4.1

Proof of Theorem [{-1] After a translation of the origin we may assume that we

satisfy our flatness hypothesis (1) in B,(X*) C By with
(z*) =0, ap+by=0, VeVl
We dilate the picture by a factor of 2/p and work with the rescalings
Pr_1/2 P P p
9p(X) = (5) 1/29(§X), Vo(X) = (5) 1/2V(§X)7

which are defined in a ball of radius 2 included in By/,. Notice that, if V' € Vs
then V, € V.

After dropping the subindex p for simplicity of notation, we may assume that
the flatness condition (I holds in some ball Bo(X*) C R"*!, with V € VY,

ap=—¢€, byp=¢ (") =0
and
Cé? <e<eé

We need to prove the conclusion [@.2)) in a ball Baz(X™).
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We distinguish three cases depending on whether X* is close to L, close to P,
or far from P.
In Case 2 and Case 3 we will use the following properties from Remark [3.41

Vi .
(4.24) ¢< i <O, |AV]|<C8U, in Bo(X*)\ (PU{|(xn,s)| <206|2'[}).
Below 7 is the universal constant from Proposition A3

Case 1. | X*| < n/4.
In this case, since By C Bo(X™*) we follow under the assumptions of Proposition
Hence we can conclude that for any 7 < n/4 in Boz(X*) C B, either

9(X) S V(X + (1 —n)een),

9(X) =2 V(X = (1 = n)een),

and our conclusion is satisfied for all 77 < n/4.

Case 2. |X*| > n/4, and Bx (X*)N P = 0.
In this case, if € is small enough then it follows from ([@24)) that the function
MX):=g(X) - V(X —e€ep,) >0,
satisfies
|Ah| < C6*U,, in B:= B (X%).
Notice also that by Harnack inequality
Un(X)
Un(Y)

with C universal. Assume that

(4.25) <C for X,Y € B,

g(X*) > V(X™).
Then, in view of (£24)) and (£25)
h(X™) = g(X") = V(X" = eep) > ceUn(X7).
Hence by Harnack inequality, (Z.25)) and the condition C'62 < e

h > ceUp(X*) = C8*|Upn Loy > ¢/eUn(X*)  in By (X7).
Thus, using ([£24]) we have that for 7 small enough
h>cdesupVy, > V(X — (1 —T)een) = V(X —ee,) in B (X7),
B

from which our desired conclusion follows with any 7 such that 277 < min{rn/128,7}.

Case 3. |X*[ >n/4 and Ba (x-) NP # 0.

In this case we argue similarly as in the previous case but we need to make use
of the boundary Harnack inequality.

Assume that X* € {s > 0} and call X} = (2*,0) the projection of X* onto
{s = 0}. If € is small enough then it follows from (£24)) that the function

hMX):=g(X) - V(X —e€ep,) >0,
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satisfies
|AR| < C6*U, in B:= Bx(Xg)N{s >0},
for a universal constant C. Denote by Y* = X + %en and assume that
g(Y") = V(Y").

As in the previous case, by Harnack inequality
(4.26) h > celU,(Y™) in B%(Y*).

Now we argue similarly as in Lemma [£4]

Denote by

D = (Bys(Xg) \ Byys2(Y7)) N {s > 0}.
Let g1, g2 satisfy in D
Agi =0, Ag=-1
with boundary conditions respectively,
qu =1 ondB,3(Y"), =0 ond(B,;s(X;)N{s>0})
and
g2=0 ondD.
By the maximum principle, in view of (£26]) we obtain that
h > celU,(Y*)q1 — Cé%qy in D.
Moreover,
q1 > cqg2 in DN By e(Xg).
Hence using that C'§2 < e we get
h(X) > eUn(Y*)q1(X) > ceUp(X) in B, 16(Xg) N {s >0}

where in the last inequality we used that U, (Y*)g: is comparable to U, in view of

boundary Harnack inequality.
Now we use (B) and ([@24)) to conclude

hX)=h(x,zp+1) > ce sup Up(y,Tnt1) > ce sup Vi(y, Tni1)

B (X5) By (X§)
> V(X = (L—r1)een) — V(X —€en) in Ba(Xg) D Ba(X7).
Then our desired statement holds for 7 < min{r/2,7n/64}. O

5. IMPROVEMENT OF FLATNESS.

In this section we prove our main Theorem [[LI1 We start with the following
quadratic improvement of flatness proposition. We show that if a solution g stays
in a A2t® neighborhood of a function V' € VY in a ball By then in B, g is in a
(An)?** neighborhood of another function V' in the same class.

Proposition 5.1. Given « € (0,1), there exist A\g,nm0 € (0,1) and C > 0 large
depending on o and n, such that if g solves 2.11), 0 € F(g) and g satisfies

(5.1) V(X = AT%,) < g(X) < V(X +X*"%,,), in By with0< X< X\

Jor V="V, € VY| then in a possibly different system of coordinates denoted by
E={é1,...,én,€nt1},

(5.2) V(X = (mA)**e,) < g(X) < V(X + (noA)**%en), in Byox
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Jor some V = Vs ;5 (defined in B3)) with S given in the E coordinates by

_ 1 _
S={z,= 5(g‘c’)TMg‘c’},
and
|M — M|, |a—al,|b—b <CX*, a+b—trM =0.
Moreover, for any o € (0,1], the surfaces S and S separate in B, at most C(\*o?+
ATag).

Proof. Let ng,C be the constants in Corollary .10l

The proof is by compactness. Assume that no such A\g exists, then we can find
a sequence of A\g’s, tending to 0, g, and Vi satisfying (5I)) for which (52) fails.
We rescale g, and V. For simplicity of notation we drop the dependence on k and
denote

(X)) =A"Y2g(0X), W(X)=X"Y2V(\X), X €B.
Notice that
Vi = Vamo,nan € V5,

and
(X = AT%,) < ga(X) < V(X + M%) in By.

Let

e= AT 5=
and define
(5.3) wy = IAT W

€
Thus by Proposition
= V—m 82
wy = —+ D (g>\)€)‘~/A + O(?)

€ €
and hence by Corollary 2 we get that wy converges uniformly to a Holder contin-
uous function wy as k tends to oo (and A — 0), with wp(0) = 0 and |wg| < 1.

We claim that wy is a viscosity solution of the linearized problem

' |Vywo| =0, on Byn L.

We start by showing that U,wg is harmonic in By, \ P.
Let ¢ be a smooth function which touches wy strictly from below at X € By 5\ P.
We need to show that

(5.5) A(Unp)(Xo) <0.
Since wy converges uniformly to wo in B/, \ P we conclude that there exist a

sequence of constants ¢y — 0 and a sequence of points Xx € Bys \ P, Xa — Xo

such that z/?,\ =e(@+en)+ 7y, touches gx by below at Xy for a sequence of \’s
tending to 0.
Define the function vy by the following identity

(5.6) UA(X — a(X)en) = U(X).
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Then according to (28] 1» touches gy from below at Y\ = X — 1/~)A(X>\)en €
By (g»). Thus, since gy satisfies (1)) in B; it follows that

(5.7) AYr(Yy) < 0.

In a neighborhood of Xo, yv, /A has bounded C* norms (depending on |Xp|) hence
¥ /A has also bounded C* norms. By Proposition 2.8

Ay = AAUn($2/2) + O(N)
= A(Unth) + 0()
= A(Un(eg +77,))(X2) + O(N?)
= eAULP) + OV
where we have used that
A(UH’YVX) =0.
This can be checked either explicitly or by using Theorem
In conclusion
eA(Unp)(Ya) + O(N?) <0.
We divide by € = AT and let A — 0. Using that Y\, — X we obtain
A(Unsé)(XO) < 07
as desired.
Next we need to show that
|er0|(X0) =0, Xo= ({E6, 0, 0) S Bl/2 NL,
in the viscosity sense of Definition

We argue by contradiction. Assume for simplicity (after a translation) that there
exists a function ¢ which touches wy by below at 0 with ¢(0) = 0 and such that

$(X) =€ -2’ + Br+O(|2'* +r%/2),

with
B> 0.
Then we can find constants o, 7 small and A large such that the polynomial

gX)=¢ -2 — §|;10'|2 +2A(n — Vapr

touches ¢ by below at 0 in a tubular neighborhood Nz = {|2/| < 7,7 < 7} of 0,
with

¢$—q>0>0, on N\ Ngjs.
This implies that

(5.8) wp—¢q >0 >0, on N7\ Nzs,

and

(5.9) wo(0) — q(0) = 0.

In particular, by continuity near the origin we can find a point X* such that
(5.10) wo(X™) —q(X™) < %, X" € N;i \ P close to 0.

Now, let us define
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Wi = Vamt Ael, —ee’ Aa,Mo+2eA(n—1) € Vas-
Then in view of Proposition we have

Wi = eq+ v, +0(5°)
and moreover, W), is a subsolution to our problem since € > §2.
Thus, from the uniform convergence of wy to wy and (5.8) we get that (for all A
small)

gr — Wy 52

(5.11) —wr—q+0(=) =2 in (N;\ Nga) \ P

21 Q

€
Similarly, from the uniform convergence of wy to wy and (EI0) we get that for k
large

(G — W) (X7)

On the other hand, it follows from Lemma 27 and (GI1]) that
gr — W

€

(5.12) < at X* € N; \ P.

19

g in N-\ P,

which contradicts (12]).

In conclusion wy solves the linearized problem. Hence, by Corollary since
wp(0) = 0, wo satisfies
1 PR 1 1T ao 1 24a
: wo 0@ +=a'T Moz’ — =12 —boxpr in By,
(5:13) — S <y (X) = (€00’ +20 Moa' =20 gar) < 113 in By,
for some g € (0,1) universal and with

ag +bo — trMo =0, €ol, [[Moll, [aol, [bo| < C.
From the uniform convergence of wy to wy, we get that for all £ large enough

1 Ty — 1
(5.14) = SnEt S (X) = ST < St in By, \ P,
€
with
T == VaM—eMy,—e€o,Aa—cag, \bo—ebo -
In conclusion, from the definition (B3] of wy, we get

(5.15) Ty — §n2+a <g <D+ 2172*“,

or
€ o [e% :
Th(X — 5773* en) < ga(X) < Th(X + 277” en) in Bay,.

We rescale gy back from the ball By to By and obtain
A €A
(5.16) T(X — Liptee,) < g(X) <T(X + <2 16 en) i Boxy,
with
T = VST,aT,bru

for )
Sri={z, = 5($')TMT;E' +ér-a'},

€ €
Mg =M — My, &r:=—€eo, ari=a— <

€
b\ )\ao, bT I:b—Xbo.
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Next we show that in a different system of coordinates, called E, the function T
can be approximated by Vs 0,az,br-

Assume for simplicity that & points in the e; direction. Then we choose an
orthogonal system of coordinates E := {€;, &z, ...,&,41} with

e,=e;, ifi#1ln
and e, normal to ST at 0.
Notice that the E system of coordinates is obtained from the standard one after

an orthogonal transformation of norm bounded by C|&r |_Which is smaller than Ce.
A point in this system on coordinates is denoted by X. We let,

- 1
S:={z, = 5(g‘c’)TMTa‘;’},
and we write S as a graph in the e,, direction, that is
S = {z, = h(z")}.

We claim that in a ball of radius o the distance (in the e, direction) between Sp
and S in B, is less that Ceo?, for any 0 <o < 1.
Indeed, since Z = Ox with O orthogonal and ||O—I|| < Ce, we obtain by implicit
differentiation
|D2,h — Mr||p(p,) < Ce,  Varh(0) = &p.

Thus in By, we have that the surfaces
St + %)\n§+°‘en

lie between
S+ e pEtee,
since Ce(noX)? < SAngTe.
In view of this inclusion, using that vay b, (¢, 8) is monotone in ¢, we obtain from
(EI0) the desired conclusion (52) with M = My, a = ap,b = br.
Since the distance between Sy and S in B, is less than C(§U2 + €0) the proof

is finished. O

We can now prove our main Theorem[I. Il In fact we show that under our flatness
assumption, a solution g can be approximated in a C%® fashion by a function
Vevd.

Theorem 5.2. There exists € > 0 small universal such that if g solves [21)) in By
with

(5.17) {zeBy:z, <—-eCc{xebB:g(x,0)=0} C{x € By:x, <&},

then in an appropriate system of coordinates denoted by €;

V(X — CN?T%,) < g(X) < V(X +CA\*"¢,) in By, forall0<X<1/C,
for some V.= Vg 0.a0.0 € V&, with C depending on n and «. In particular,

F(g) N Bz is a C** graph in the e, direction for any a € (0,1).

Proof. Tt suffices to prove the theorem for any fixed o € (0, 1) for some &(a), C(c)
depending on . The dependence of € on « can be easily removed by fixing € := (&),
say with @ = 1/2. Then by the conclusion (5.2)) for &, appropriate rescalings of g
satisfy the flatness assumption (517 also for () for any a € (0,1).
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By Lemma the rescaling

_1
gu(X) = p2g(pX)
satisfies
U(X —12%%,) < g,(X) <U(X +7*"%,) in By,

provided that €, u are chosen small depending on 7 < \g, with A\g the universal
constant in Proposition[5.Iland 7 small universal to be made precise later. Thus g,
satisfies in B, the hypotheses of Proposition 5.1l with M =0, a = 0, b = 0. Then
we can apply Proposition 5.1l repeatedly for all 74, := 71} since by choosing 7 small
enough we can guarantee that ), C'7¢* < 1 and hence the corresponding My, ay,
b, have always norm less than 1. Thus we obtain

(518) VSk;ak;bk (X - T13+aefz) < gM(X) < V3k7ak7bk (X + T13+aek) in BTk'

n

Using that Sy, and Sy41 separate (in the e,-direction) in B, at most C(rf0? +
T]i—i_ad) we conclude that as k — oo, the paraboloids Sy converge uniformly in B
to a limit parabolid S.. Moreover, S, also separates from S; in B, by at most
C(t80? + 7.7%0) in the e}, direction where € is the normal to S, at the origin.
Finally, as k — oo, ar — as, b — by, with

|ak — a*|, |bk — b*| <Crtg.

Now notice that in Bs,,, the paraboloids S and S, separate at most CT£+Q,

thus we can apply Lemma 37 and use the inequality (I8 to obtain

Vg*ﬁa*ﬁb* (X — CT;?J'_O[EZ) < g#(X) < VS*,a*,b* (X + OT,?J'_O‘(?:;), in BT,C.

Rescaling back we obtain the desired claim.

6. THE REGULARITY OF THE LINEARIZED PROBLEM

We recall that the linearized problem associated to (2.1I) is

6.1) A(U,h) =0, in By \ P,
' |V.h| =0, onBiNL,
where
|V h|(XO) - lim h(xf)vxms) - h(xf),o,()) 7‘2 _ CL‘2 + 82
" T (2n,5)—(0,0) r ’ n '

In this section we obtain a second order expansion near the origin for a solution

h to (E1)).
Theorem 6.1. Let h be a solution to [G1]) such that |h| < 1. Then h satisfies

1
(6.2) [A(X) = (h(0) + & - 2 + 5 (") Moz’ %TQ — boran)| < CIX P,

for some ag,bo, &, Mo with |&ol, |aol, |bol, | Mo|| < C, C universal and

ap + bg — trMy = 0.
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Proof. This proof is a refinement of Theorem 8.1 in [DR] where the authors obtained
a first order expansion for h, in particular
(6.3) Ih(X) = h(Xo)| = O(X — Xol), Xoe L.

Also in [DR] it is shown that h and its derivatives of all orders in the " direction
are Holder continuous with norm controlled by a universal constant in By (see
Corollary 8.7.)
We wish to prove that
/
(6.4) |h(2', xn,2) — h(x',0,0)+ @72 +b(a Nz, < Cr3,  (2,0,0) € BiaNL,

with C universal and h(-,0,0),a, b smooth functions of z’.
The function h solves
A(U,h)=0 in By \ P,
and since U, is independent on 2’ we can rewrite this equation as
(6.5) Ay, s(Unh) = =U,Ayph.

Moreover, since A, h solves the same linear problem as h then any estimate for h
also holds for A, h.
For each fixed z’, we investigate the 2-dimensional problem

A(Uih) = Uyf, in Byjp\ {t <0,5s =0} C R?
with h, f € C%8. Without loss of generality, for a fixed 2’ we may assume
h(z',0,0) = 0. Thus in view of ([G.3]), the function
H :=Uh
is continuous in By s C R? and satisfies
AH =Uif inByp\{t<0,s=0}, H=0 onBy,n{t<0,s=0}

Now, we consider the holomorphic transformation z — %22
1
@5 (Cy) = (t8) = (5(E — 7). Cw)
which maps By N {¢ > 0} into By \ {t < 0,5 = 0} and call
hCy) = hit.s), F(Cy)=f(t,s), H(Cy)=H(t,s)
with (7, 9), the polar coordinates in the (¢, y) plane. Then, easy computations show
that

(6.6) A =Cf inBin{c>0}h, H(Cy) = f—2h

and

H=0 on{{=0}
Since the right-hand side is in C%# and h, f have the same regularity, we conclude
from repeatedly applying Lemma below that h, f € C*° with

Hf”ck,ﬁ(Bj/z)a ||B|‘ck,ﬁ(31+/2) < C(k, B).

Notice that we can reflect H oddly and h, f evenly across {¢ = 0} and the resulting
functions will still solve ([6.6]) in B;. Moreover from our assumptions, f and h are
even with respect to y. Thus, we conclude that the Taylor polynomials for f,h
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around the origin, are polynomials in ¢?,y?. Now we use the Taylor expansion for
H around 0, which is odd with respect to ( and even in y, that is

H(C,y) = C(do + di ¢ + doy® + O(F))
with

6dy + 2dy = f(0) = £(0).
Thus,
h(¢y) = Cdo + diC® + day® + O(7)).
In terms of the (¢, s) coordinates this means that

h(t,s) = 2r(dy + 2di7(cos g)z + 2dyr(sin 2)2) +003) =

= 2r(do + (di + do)r + (dy — do)t) + O(1%)
= 2dgr — grz —btr + O(r?).

In conclusion,

/
h(X) — h(z’,0,0) — 2do(2’ r—i—MrQ—i—bx’ x| < Cr? in By o
2 /
with C universal,

llall oo (g1ari<1/2p), 10l oo (g1ar1<1/2) < O

and
a+b=Auh(x',0,0).
Since h solves (6.1 we must also have dy(2’) = 0 and hence

!
|h(X) — h(z',0,0) + @7‘2 +b(2" )z, | < Cr®,  in Bys.

Notice that a,b are smooth functions of 2’ with all order derivatives bounded
by appropriate universal constants. Indeed due to the linearity of the problem it
is easy to see that Dg/a,Dg/b are the corresponding a and b for Df,h. Writing
the Taylor expansions at 0 for h(z’,0,0) up to order 2 and a,b up to order 1 with
ag = a(0), by = b(0) we get

1
‘h(X) - (h(()) +& -2+ g(x/)TMox' - %72 - boxnr) ‘ <C|x.

In our proof above we used the following easy lemma.

Lemma 6.2. Let H = H(C,y) be a function defined on B_fr C R2%, which vanishes
continuously on {¢ = 0}. If H € Ck’o‘(B_f'), k € Nya € (0,1], then ¢"'H €
Ck_l’o‘(B_f'), and

¢ Hllgrro < [|H || cne-

Proof. Since H(0,y) = 0 we see that

~ 1 ~
UG y) = / (¢, ) dt

and the lemma follows easily by taking derivatives in the equality above. (I
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7. BASIC PROPERTIES OF A SOLUTION g.

We collect here some useful general facts about solutions g to our free boundary
problem (1), such as C'/2-optimal regularity, asymptotic expansion near regular
points of the free boundary and compactness.

First we recall some notation. Let v € C(B1) be a non-negative function. We
denote by

Bf (v) := By \ {(z,0) : v(x,0) = 0} c R"**
and by
F(v) := O (B (v) N B1) N By C R™.
Also, we denote by P the half-hyperplane
P:={XeR":z, <0,s=0}.

Given a C? surface S in R* !, we often work with functions of the form V =
Vs a.b (see Definition3.3). We remark that we can still apply the boundary Harnack
inequality with V' in a neighborhood of & since in this set V' is comparable with a
harmonic function H with F(H) = S.

Indeed, after a dilation we may assume that V = Vs 4 € Vs, that is the curva-
tures of S in Bz and |a, |b| are bounded by ¢ small, universal. Let

Vi =Vsa—2n5p, V2 :=Vsatansp

and notice that V7 is a supersolution and V3 is a subsolution in B; (see Proposition

B2). Also
1/2Va <V <21 <214,

hence there exists H between 1/2V5 and 2V;, with 1/4V < H < 4V, H harmonic
in {H >0} and F(H) = S.
We obtain the following version of the boundary Harnack inequality.

Lemma 7.1. Let V := Vs 45 € Vs,, for some small §y universal and with 0 €
S. Let w € C(B1) be a non-negative function which is harmonic in B (w). If
B (V) C B (w) then

1

w Z Cw(§en)V, m B1/2'

If B (V) € Bf (w) then
w < Clwl[Le(p,)V, in By

Proof. Let w be the harmonic function in B;r/ (V) with boundary value w on 0Bs 4
and @ = 0 where {V = 0}.
If B (V) C Bj(w) then in view of the observation above we can apply the
boundary Harnack inequality with V' and conclude that
1

w > w > cw(ien)V, in By 5.

On the other hand,
1
w(=ey) > ¢ inf .
2 B1/4(3en)N0B3 )4
Using that w and w coincide on dBj,4 together with Harnack inequality we obtain
our desired estimate.
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If B (V) C Bf (w) then

1

On the other hand,

1 _
@(5en) < N0l sy,0) = lwllpe(By)

which yields our conclusion.

An immediate consequence is the following useful lemma.

Lemma 7.2. Let V = Vs, € V5, be a subsolution in By, for some small universal
o and with 0 € S. If w is harmonic in Bf (w) and By (V) C By (w) and

w>V —€ in B,

then

Proof. Let q : B3y — R be the harmonic function in Bs/4 N Bf (V) which has
boundary values ¢ = 1 on dB3/4 and ¢ = 0 on the set where V' = 0. From our
hypotheses on w and the maximum principle we obtain

w>V —e€eq in By

On the other hand by Lemma [T1] since B;M(V) = B;/4(Q) we have ¢ < CV in

By /3, which together with the inequality above implies the desired result.
O

Remark 7.3. From the proof of Lemma [[.2] we see that if the hypotheses on w hold
only outside of the ball By g, i.e

w>V —¢e on B\ Bys, w harmonic in B (V) \ Biyg
then the conclusion holds in the shell Bs, 4 \ By /4.

Next we prove optimal C''/2 regularity for viscosity solutions.

Lemma 7.4 (C/2-Optimal regularity). Assume g solves Z1)) in By and 0 € F(g).
Then
g(x,0) < Cld(@)|"? in By

where d(x) represents the distance from x to F(g). Also

1
lgllcrrzs, ) < C+ 9(§€n+1))-

Proof. The first assertion follows in a standard way from the free boundary con-
dition. By scaling, we need to show that if g is defined in By, 0 € F(g) and
Bi(en) C By (g) then u(e,) < C for some large C universal.
By a rescaled version of Lemma [(.T] and Harnack inequality we have that in a
neighborhood of 0,
g2z Cg(en)V8,2n,07 S= algl (en)

with Vg o0 a subsolution near 0. The free boundary condition gives 1 > cg(ey,)
which provides a bound for g(e,).
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For the second inequality we write
g=go+g1 inD:=Bs,N{s>0},
with gg, g1 harmonic in D and satisfying the following boundary conditions
go=g on{s=0}NaJD, go=0 on{s>0}NaID,
g1=0 on{s=0}NdD, g1=g on{s>0}NaoD.
From our estimate for g on {s = 0}, we obtain
90llcr/2(B, np) < Cllgllor/2s,,.) < C
which together with the bound

1 1
g1l onp) < Co1(5enta) < Cgl5enta),

gives the desired conclusion.
O

Next we prove that if F/(¢g) admits a tangent ball at 0 either from the positive or
from the zero phase, then g has an asymptotic expansion of order o(|X|'/?). This
expansion also justifies our definition of viscosity solution to the free boundary
problem (ZI)). We remark however that this expansion holds also for an arbitrary
harmonic function w which does not necessarily satisfy the free boundary condition.

Lemma 7.5 (Expansion at regular points from one side). Let w € C'/?(B;) be
1/2-Holder continuous, w > 0, with w harmonic in By (w). If

OGF(U)), 31/2(1/2671) CBT(’LU),
then
w=aU + o(|X|/?),  for some a > 0.
The same conclusion holds for some a > 0 if
81/2(_1/2677,) C {’LU = 0}
Proof. We define
w
= inf liminf —(tv).
S i
First we notice that a > 0. Indeed, by a rescaled version of Lemma [7.]

1 1
w > cw(ien)Vs,O,o, §= 35%(5%)

1
near the origin, for some ¢ > 0. This implies that o > cw(=e,) > 0.

Assume by contradiction that the conclusion of the lemma does not hold with
this choice of . Then there exist 6; > 0 and a sequence of points y — 0 such that

(7.1) w(yw) — U (y)| = 81lyx] >,

Since w is 1/2-Holder continuous on By, the rescalings

w () = y| = w(lyel2),
are uniformly 1/2 Holder continuous and after passing to a subsequence we can
assume that wy converge uniformly on compact sets to a limiting function w, €
C(R™). We obtain
wy > alU;, Aw, =0 inR"\P,
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and in view of (1)) there exists a point y., |y.| = 1 such that
Wi (ys) > alU(y«) + 01.
Using boundary Harnack inequality we find
(7.2) wye > a(l+6)U in By,
for some do > 0 small. Now we let
V= V;‘%z,o,&,o

and we notice that V is subharmonic in By (by Proposition B:2) and satisfies

o
V(X) = s, 0t 8) = (1+ Lp)U(t,5)
52 52
<1+ ?)U(t,s) <1+ E)U(xn,s)
Thus ([C2) gives,
(7.3) wy > a(l+ %)V in By.

From the existence of a tangent ball at the origin included in {w > 0} we see that
for all large k, wy is harmonic in the set where {V > 0}. Thus we conclude from

(m) that in Bl
wi > a(l + Z—Q)V — €, for some ¢ — 0.
By Lemma we find that for all large &,
€k

wg > (1-C=)a(l+ %)V > a(l+ %)V in By 5.
a

This implies that for any v ¢ P

L LW W 02
htIE(I)IJ}f ﬁ(tl/) = htrgéllf F(tl/) >a(l+ g),
which contradicts the minimality of a. ([

Remark 7.6. If we assume that F(w) admits a uniform tangent ball from its 0 side
at all points in B; /o then the hypothesis w € Cc1/? (B1/4) is satisfied and therefore
w has an expansion at all points in F'(w) N By /4. Indeed, by Lemma [Z1] we know
that

w < Cllwl| L Vas, (26),0,0

with 9B,.(z9) a tangent sphere to F(w) from the 0 side, and this implies
w(z) < Ollwl|z= dist(z, {w =0})"2, V&€ By,
which gives w € CV2(B ).

In general, the term o(|X|'/?) in the expansion for w can be improved in o(U)
in the non-tangential direction to F(w). For example assume that 0 € F(w) € C?
and e, is the normal to F(w) at 0 which points towards the positive phase. Then
the non-tangential limit

zGél,I?ﬂO ﬁ -
where C C R™\ P is a cone whose closure does not contain L = {z,, = 0,s = 0}.
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Indeed, by Lemma [75 and Remark [7.8] we have that w = oU + o(| X|'/?). Now
the limit above follows by applying boundary Harnack inequality for U and w in
the sets C1 N (B, \ B,/2) for all  small, where

Cr:={[] > pl(zn, 5)[}
is such that C C C; U {0}.

Remark 7.7. In the definition of viscosity solutions for our free boundary problem
(see Definition 2.3) we can restrict the test functions only to the class of subsolutions
and supersolutions of the form cVs 4 5.

Precisely we say that g is a solution to (2.I)) if

1) Ag=0in By (g);

2) for any point X € F(g) there exists no Vs 43 such that in a neighborhood of
Xo, Vs,a,b is a subsolution and

g>aVsgp, forsomea>1

with S touching strictly F'(g) at Xy from the positive side.
Analogously there is no supersolution Vs 45 such that

g<aVs.p, forsomea <1

and S touches strictly F(g) at Xy from the 0 side.

In order to prove this statement we need to show that if we can touch g by below
at a point Xy € F(g) with a comparison subsolution v as in Definition 2.2, then we
can touch also with a subsolution aVs 4, as above. A similar statement holds for
supersolutions.

Assume for simplicity that Xy = 0, e,, is normal to F(v) at 0 and g > v in Bj.
Let v be the harmonic replacement for v in B (v). In view of of Remark [7.0]

o=l +o(|X|'/?), for some o > 1.

We claim that o > 1. Indeed, ¥ — v > 0 is superharmonic in Bj"(v) and vanishes
continuously on {v = 0}NBy. If 5—v = 0, then our claim follows from the definition
of a comparison subsolution. Otherwise, by the boundary Harnack inequality

v—v > 00

in a neighborhood of the origin, for some o > 0. Thus ¥ > v/(1 — o) near the origin
and again the claim follows from the expansion of v at the origin.

The rescalings v, = rk_l/ 2v(rk:1:) converge uniformly on compact sets to U, with
a > 1. As in the proof of Lemma we obtain that there exists § small such that
for all large k,

vk 2V i=1+6)Vaos0
and F (V) touches strictly F(vx) at the origin from the positive side. Rescaling

back we obtain the desired conclusion.

Next we prove a compactness result for viscosity solutions to (ZI) whose free
boundaries converge in the Hausdorff distance.

Proposition 7.8 (Compactness). Assume gi solve 21) and converge uniformly
to g« in By, and {gr = 0} converges in the Hausdorff distance to {g. = 0}. Then
g« solves (2] as well.
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Proof. Clearly g, is harmonic in By (g.). In view of Remark[T.7lwe need to check say
that if 0 € F'(g«) there exists no subsolution Vjs,0,4.5 such that in a neighborhood
of 0,
g« > Vs 0.4, forsomea >1

and F(V) touches strictly F(g.) at 0 from the positive side. A similar statement
can be checked also for supersolutions.

Assume by contradiction that such a V' = Vi 0.4, exists. Then after a dilation
we may assume that V' € Vs for some small § and V' is a subsolution in Bj.

For any € > 0 there exists o > 0 such that for all |¢| < o and all large k’s

Wiy(X) :=aV(X +te,) < gr —€ in By,
and
F(W_5) C Bif (), F(Wi)\ Bis C Bf (gr)-
By Lemma and Remark [7.3] we obtain that
g > (1=Ce)W_, in By,
and
gr > (1 =Ce)W; in Bsjy \ Byjy, forall [t] <o.

By choosing € small (depending on «) we see that the functions W; are strict
subsolutions to our free boundary problem, and hence the inequality above can be
extended in the interior (see Lemma [Z7) i.e.,

gk 2 (1 - CG)Wt in BI/Q'

Writing this for ¢ = o we see that {gi = 0} stays outside a neighborhood of the
origin and we contradict the convergence in the Hausdorff distance to {g. = 0}.
O

We conclude this section by showing that our flatness assumption on the free
boundary F'(g), implies closeness of g and U.

Lemma 7.9. Assume g solves (Z1)). Given any § > 0 there exist € >0 and p > 0
depending on § such that if

(7.4) {zeBy iz, <—-¢eCc{reB:g(x,00=0} C{xe€B:a, <&},

then
U(X — poeyn) < g(X) <U(X + pdey) in By.

Proof. The proof is by compactness. Assume by contradiction that a sequence of
functions gy, satisfies the hypotheses with €; — 0 but the conclusion does not hold.

Notice that by Harnack inequality g (en+1/2) is bounded be a multiple of gx (e, /2)
which in view of Lemma [7.4] is bounded by a universal constant. Hence by the sec-
ond claim in Lemma [74] the g;’s have uniformly bounded C''/? norms on compact
subsets of By. After passing to a subsequence we can assume that g, converges
uniformly on compact sets of B to a function g, with

(7.5) Ag. =0 in B;\ P, g« =0 on PN Bj.

By Remark [0 g, is C'/2. Moreover, the derivatives of g, in the &’ direction
satisfy again (TH]) and we obtain

IDL, gl crr2m, ) < C(B)-
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Now we can separate the variables and write
Az, sGx = =Dy g
and we can argue as in Theorem to obtain
19.(X) — aU(X)| < C|X /2

with C' universal.
We now want to apply Proposition[Z.8to conclude that g, solves (21 and hence
a = 1. To do so, we must guarantee that g, > 0 in By \ P. Otherwise g, = 0 and
hence ||gk| LB, ,,) — 0. Let By := Byg(wx) be a ball tangent to F(gx) from the
zero side at some point y, € Byss. Then, since ||gk|z>~(B,,,) — 0, we have by
Lemma [7]
gr < UkVBBk,O,O; with o — 0.

This contradicts the free boundary condition for gx at y.
In conclusion, g. solves (2]) and

l9-(X) = U(X)| < C|X|*?
with C' universal.
Rescaling we find

|9k,0(X) = U(X)| < Cp in By, with  giu(X) = p~ /2 gi(pX).
Thus
e u(X) > UX) - Cu>U(X —gp te,) — Cp.
Now we use that F(gx,,.) C {|zn| < €u~'} and obtain by Lemma [T.2] that in By
G > (L= CpU(X —&pte,) > UX — (p~ "t + Cpen)

where the last inequality follows once more from boundary Harnack inequality. A
similar inequality bounds g, by above. We choose p small depending on ¢ and
obtain that gy, satisfies the conclusion of the theorem

U(X —den) < p 1 2g,(uX) <U(X + dey),

and we reach a contradiction. O
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