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Abstract

In R
m

× R
n−m, endowed with coordinates x = (x′, x′′), we consider bounded solutions of the

PDE
∆u(x) = f(u(x))χ(x′).

We prove a geometric inequality, from which a symmetry result follows.

1 Introduction

In this paper we consider bounded weak solutions u of the equation

∆u(x) = f(u(x))χ(x′), (1)

where f ∈ C1(R), with f ′ ∈ L∞(R), χ ∈ L∞
loc(R

m) and x ∈ Ω, for some open set Ω ⊆ R
n.

In our notation, x = (x′, x′′) = (x1, . . . , xm, xm+1, . . . , xn) ∈ R
m × R

n−m.

We call the function f(u)χ(x′) a “fibered nonlinearity”. Its main feature is that when χ is constant,
the equation in (1) boils down to the usual semilinar equation, while for nonconstant χ the nonlinearity
changes only in dependence of a subset of variables.

In particular, χ is constant on the “vertical fibers” {x′ = c}, thence the name of fibered nonlinearity
for f(u)χ(x′).

The basic model to have in mind is the case in which χ is the characteristic function of a ball. In this
sense, (1) may be seen as an interpolation between standard semilinear PDEs and the ones driven by
fractional operators (which correspond to PDEs in the halfspace, see [CS07]).

In this paper, inspired by similar results in the semilinear case (see [Far02, FSV08]) and in the
fractional case (see [CSM05, SV08]), we prove a geometric inequality and a symmetry result.

We introduce some notation. Given a smooth function v, for any fixed x′ ∈ R
m and c ∈ R, we consider

the level set
Lc,x′(v) :=

{

x′′ ∈ R
n−m s.t. v(x′, x′′) = c

}

.

Fixed x′ ∈ R
m, we also define

Gx′(v) :=
{

x′′ ∈ R
n−m s.t. ∇x′′v(x′, x′′) 6= 0

}

. (2)

Notice that Lc,x′(v) is a smooth (n − m − 1)-dimensional manifolds in the vicinity of the points
of Gx′(v), so we can introduce the principal curvatures on it, denoted by

κ1(x
′, x′′), . . . , κn−m−1(x

′, x′′).

We then define the full curvature K as

K(x′, x′′) :=

√

√

√

√

n−m−1
∑

j=1

(

κj(x′, x′′)
)2
.
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At points x′′ ∈ Gx′(v), we also define ∇L to be the tangential gradient along Lc,x′ , with c = v(x′, x′′),
that is, for any G : R

n → R smooth in the vicinity of x′′, we set

∇LG(x′, x′′) := ∇x′′G(x′, x′′) −

(

∇x′′G(x′, x′′) ·
∇x′′v(x′, x′′)

|∇x′′v(x′, x′′)|

)

∇x′′v(x′, x′′)

|∇x′′v(x′, x′′)|
.

Then, the following result holds:

Theorem 1. Let u be a bounded weak solution of (1) in an open set Ω ⊆ R
n.

Suppose that
∫

Ω

|∇φ(x)|2 + f ′(u(x))χ(x′)φ2(x) dx > 0 (3)

for any φ ∈ C∞
0 (Ω).

Then,
∫

x′∈Rm

∫

x′′∈Gx′ (u)

φ2
(

|∇x′′u|2K2 +
∣

∣∇L|∇x′′u|
∣

∣

2
)

dx′′ dx′ 6

∫

Ω

|∇x′′u|2|∇φ|2 dx (4)

for any φ ∈ C∞
0 (Ω).

More precisely,
∫

x′∈Rm

∫

x′′∈Gx′ (u)

φ2
(

|∇x′′u|2K2 +
∣

∣∇L|∇x′′u|
∣

∣

2
)

dx′′ dx′ +

∫

Ω

φ2S dx 6

∫

Ω

|∇x′′u|2|∇φ|2 dx, (5)

for any φ ∈ C∞
0 (Ω), where

S :=
∑

16i6m
m+16j6n

u2
i,j −

∣

∣∇x′ |∇x′′u|
∣

∣

2
. (6)

We remark that (5) is indeed more precise (though more complicated) that (4), because S > 0 (see (25)
below for further details).

The result contained in Theorem 1 may be seen as an extension of similar results presented in [SZ98a,
SZ98b] in the classical semilinear framework. We observe that (4) controls the tangential gradients
and curvatures of level sets of stable solutions in terms of the gradient of the solution itself, at any
slice of R

n = R
m × R

n−m. This means that some geometric quantities of interest are bounded by an
appropriate energy term.

Another way of looking at (4) is to consider it as a bound of the weighted L2-norm of any test function
by a weighted L2-norm of its gradient, at any slice. In this sense, (4) is a kind of weighted Poincaré
inequality.

Moreover, one can consider (4) an extension of the stability condition for minimal surfaces, in which
the L2-norm of any test function, weighted by the curvature, is controlled by the L2-norm of the
gradient (see, for instance, formula (10.20) in [Giu84]).

Using Theorem 1, we obtain the following symmetry result for entire solutions (i.e., solutions in the
whole space) which have suitably low energy:

Theorem 2. Let u be a bounded weak solution of (1) in the whole R
n and suppose that

∂nu(x) > 0 for any x ∈ R
n. (7)

Assume also that there exists C > 0 such that
∫

BR

|∇x′′u|2 dx 6 CR2, (8)

for any R > C.
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Then, there exist ω ∈ Sn−m−1 and u? : R
m × R → R such that

u(x′, x′′) = u?(x′, ω · x′′), (9)

for any (x′, x′′) ∈ R
m × R

n−m.

The idea of making use of Poincaré type inequalities on level sets to deduce suitable symmetries for the
solutions has been also used in [Far02, CC06, FSV08]. The motivation for Theorem 2 comes from the
many works recently appeared in connection with a conjecture of De Giorgi (see, for instance, [DG79,
Mod85, BCN97, GG98, AC00, AAC01, Sav08, FV08]). In particular, Theorem 2 may be thought as an
interpolation result between the classical symmetry for semilinear equation and the one for fractional
operators (see [CSM05, SV08]), where, after a suitable extension (see [CS07]), the nonlinearity sits as
a trace datum for the halfspace.

In fact, some involved technical arguments of [SV08] will become here more transparent. In Section
2, we recall some basic regularity theory for solutions of (1). Further motivation on assumptions (3)
and (8) will be also given in Section 3. In Sections 4 and 5 we prove Theorem 1 and Theorem 2,
respectively.

2 Regularity theory synopsis

We observe that if u is a bounded solution of (1) in a domain Ω, then, by Calderón-Zygmund theory,

u ∈W 2,p
loc (Rn), for any p ∈ (1,+∞). (10)

Consequently,
ui ∈ L∞

loc(Ω), for any 1 6 i 6 n. (11)

For any fixed ε ∈ (0, 1) and j, m+ 1 6 j 6 n, we define

vε(x) :=
u(x+ εej) − u(x)

ε
.

We point out that vε is an incremental quotient in the x′′-variables. Therefore,

∆vε(x) =
χ(x′)

ε

(

f(u(x+ εej)) − f(u(x))
)

. (12)

Notice that, given any R > 0, if x ∈ BR, then

∣

∣

∣

∣

χ(x′)

ε

(

f(u(x+ εej)) − f(u(x))
)

∣

∣

∣

∣

6 ‖χ‖L∞(BR)‖f
′‖L∞(R)‖uj‖L∞(BR+1),

so the right hand side of (12) is in L∞
loc(Ω), with norm independent of ε, thanks to (11).

Consequently, Calderón-Zygmund theory gives that, for any R > 0 and p ∈ (1,+∞),

‖vε‖W 2,p(BR) 6 C(R, p),

for some C(R, p) > 0, not depending on ε.

Therefore (see, for instance, Theorem 3 on page 277 of [Eva98]),

uj ∈W 2,p
loc (Ω), for any p ∈ (1,+∞) and any j = m+ 1, . . . , n. (13)
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3 Motivating assumptions (3) and (8)

The goal of this section is to give some geometric condition which is sufficient for (3) and (8) to hold.

We begin with a classical observation. For to ∈ R fixed, we set

F (t) :=

∫ t

to

f(s) ds. (14)

Given an open set Ω ⊆ R
n, we also define

EΩ(v) :=

∫

Ω

|∇u(x)|2

2
+ F (v(x))χ(x′) dx.

It is customary to say that u is a local minimizer for EΩ if its energy increases under compact per-
turbations, that is, if for any bounded open set U ⊂ Ω we have that EU (u) is well-defined and finite,
and

EU (u+ φ) > EU (u)

for any φ ∈ C∞
0 (U).

Lemma 3. If u is a local minimizer in some domain Ω, it satisfies (1) and (3) in Ω.

The proof of Lemma 3 is standard and it follows simply by looking at the first and second variation
of ε 7→ EU (u+ εφ), which is minimal at ε = 0:

0 =
d

dε
EU (u+ εφ)

∣

∣

∣

∣

ε=0

6
d2

dε2
EU (u+ εφ)

∣

∣

∣

∣

ε=0

.

We now remark that monotonicity in one direction implies stability:

Lemma 4. Let u be a weak solution of (1) in Ω and suppose that ∂nu > 0 in Ω.

Then, (3) holds.

The method of the proof of Lemma 4 is also classical (see, for instance [AAC01]): we fix φ ∈ C∞
0 (Ω),

we define ψ := φ2/un, and we use (1), (10), (13) and Cauchy inequality to obtain

∫

Ω

|∇φ|2 + f ′(u)χ(x′)φ2

=

∫

Ω

|∇φ|2 +
φ2|∇un|

2

u2
n

−
φ2|∇un|

2

u2
n

+ f ′(u)χ(x′)unψ

>

∫

Ω

2
φ∇φ · ∇un

un

−
φ2|∇un|

2

u2
n

+
(

f(u)χ(x′)
)

n
ψ

=

∫

Ω

∇ψ · ∇un + ∆unψ

= 0.

This proves Lemma 4.

We now give a sufficient condition for (8) to hold:

Lemma 5. Let to := −1 in (14).

Assume that F (t) > 0 for any t ∈ R, and F (+1) = 0.

Suppose also that χ ∈ L∞(Rm) and χ(x′) > 0 for any x′ ∈ R
m.

Let u be a local minimum in the whole R
n, with |u(x)| 6 1 for any x ∈ R

n.
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Then, there exists C > 0 such that
∫

BR

|∇u|2 dx 6 CRn−1, (15)

for any R > 1.

In particular, if also n 6 3, then (8) holds.

The proof of Lemma 5 is also standard (see, for instance, [AAC01]): first of all, by (11),

‖∇u‖L∞(Rn) 6 C0, (16)

for a suitable universal constant C0 > 0.

We then take R > 1, h ∈ C∞(BR), with h = −1 in BR−1, h = 1 on ∂BR and |∇h| 6 10. We
set v(x) := min{u(x), v(x)} and we deduce from the minimality of u that

∫

BR

|∇u|2 dx 6 EBR(u) 6 EBR(v) =

∫

BR\BR−1

|∇u|2 + |∇h|2 + ‖χ‖L∞(Rn)‖F‖L∞([−1,1]) dx,

which implies (15) via (16), thus proving Lemma 5.

We would like to remark that the fibered Allen-Cahn nonlinearity χ(x′)f(u) = χ(x′)(u3 − u) may be
considered as the typical example satisfying the assumptions of Lemma 5.

Below is another criterion for obtaining (8):

Lemma 6. Let u be a bounded weak solution of (1) in the whole R
n and suppose that there exist

C0 > 0 and σ ∈ [1, 2] such that
∫

x′∈BR

|χ(x′)| dx′ 6 C0R
m−σ, (17)

for any R > C0.

Then, there exists C1 > 0 for which
∫

x∈BR

|∇u(x)|2 dx 6 C1R
n−σ , (18)

for any R > C1.

In particular, (8) holds

(P1) if n 6 3 and χ is bounded and supported in {|x′1| 6 C2},

(P2) or if m > 2, n 6 4 and χ is bounded and supported in {|x′1| + |x′2| 6 C2},

for some C2 > 0.

The last claim in Lemma 6 plainly follows from (18) (taking σ := 1 in case (P1) holds and σ := 2 in
case (P2) holds), so we focus on the proof of (18).

For this, we take R > max{C0, 1} and we define

M := 1 + ‖u‖L∞(Rn) + sup
|r|6‖u‖L∞(Rn)

|f(r)|.

We choose τ ∈ C∞
0 (B2R, [0, 1]), with τ = 1 in BR and |∇τ | 6 10/R.

Then, using (1) and Cauchy inequality,
∫

B2R

τ2|∇u|2 =

∫

B2R

∇u · ∇(τ2u) − 2τu∇u · ∇τ

6

∫

B2R

∣

∣f(u)χ(x′)τ2u
∣

∣+ 2Mτ |∇u| |∇τ |

6

∫

B2R

M2|χ(x′)| +
1

2
τ2|∇u|2 + 2M2|∇τ |2.
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Therefore,

1

2

∫

BR

τ2|∇u|2 6
1

2

∫

B2R

τ2|∇u|2

6 2M2

∫

x∈B2R

|χ(x′)| + |∇τ(x)|2 dx

6 C̄M2
(

Rn−m

∫

x′∈B2R

|χ(x′)| dx′ +

∫

x∈B2R

1

R2
dx
)

6 C̃M2
(

Rn−σ +Rn−2
)

,

for suitable C̃, C̄ > 0, where (17) has been taken into account.

This proves (18) and Lemma 6.

4 Proof of Theorem 1

Given a matrix M = {Mi,j}16i,j6N ∈ Mat(N ×N), we now set

|M | :=

√

∑

16i,j6N

M2
i,j . (19)

Fixed x′ ∈ R
m, we also define

Ωx′ :=
{

x′′ s.t. (x′, x′′) ∈ Ω
}

and
Hx′(u) :=

{

x′′ ∈ Ωx′ s.t. ∇x′′u(x′, x′′) = 0
}

. (20)

Observe, from (2), that

Ωx′ = Gx′(u) ∪ Hx′(u) , and the union is disjoint. (21)

Now, let φ ∈ C∞
0 (Ω).

From (1), (10), (13) and (19),

∫

Ω

f ′(u)χ(x′)|∇x′′u|2φ2 =

∫

Ω

∇x′′

(

f(u)χ(x′)
)

· ∇x′′uφ2

=

∫

Ω

∇x′′(∆u) · ∇x′′uφ2 =

n
∑

j=m+1

∫

Ω

∆ujujφ
2

= −

n
∑

j=m+1

∫

Ω

∇uj · ∇(ujφ
2) = −

n
∑

j=m+1

∫

Ω

(

|∇uj |
2φ2 + uj∇uj · ∇φ

2
)

= −

∫

Ω

|D2
x′′u|2φ2 −

∑

16i6m
m+16j6n

∫

Ω

u2
i,jφ

2 −
1

2

∫

Ω

∇|∇x′′u|2 · ∇φ2.

(22)

We now test (3) against the function |∇x′′u|φ: this function is Lipschitz continuous, due to (13), so
we can plug it inside (3), via an easy density argument.

We obtain

0 6

∫

Ω

∣

∣

∣
∇
(

|∇x′′u|φ
)

∣

∣

∣

2

+ f ′(u)χ(x′)|∇x′′u|2φ2

=

∫

Ω

|∇x′′u|2|∇φ|2 +
∣

∣∇|∇x′′u|
∣

∣

2
φ2 +

1

2
∇|∇x′′u|2 · ∇φ2 + f ′(u)χ(x′)|∇x′′u|2φ2.

(23)
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By comparing (22) and (23), and recalling (6), we see that
∫

Ω

φ2
(

|D2
x′′u|2 −

∣

∣∇x′′ |∇x′′u|
∣

∣

2
+ S

)

6

∫

Ω

|∇x′′u|2|∇φ|2. (24)

Fixed x′ ∈ R
m, let now W (x′′) := |∇x′′u(x′, x′′)|. Since W ∈W 1,p

loc (Ωx′) for a.e. x′, because of (13), we
deduce from Stampacchia’s Theorem (see, for instance, Theorem 6.19 of [LL97]) that ∇x′′W (x′′) = 0
for a.e. x′′ ∈ {W = 0}.

Analogously, if W (j)(x′′) := uj(x
′, x′′), with m+1 6 j 6 n, one obtains from Stampacchia’s Theorem

that W
(j)
i (x′′) = 0 for a.e. x′′ ∈ {W (j) = 0}.

Therefore, recalling (20), for a.e. x′ ∈ R
m and a.e. x′′ ∈ Hx′(u), we have that

0 = |∇x′′W (x′′)| = W
(j)
i (x′′) for any m+ 1 6 i, j 6 n,

or, simply,
0 =

∣

∣∇x′′ |∇x′′u(x′, x′′)|
∣

∣ = |D2
x′′u|.

Hence, recalling formula (21) here and formula (2.1) of [SZ98a],
∫

Ω

φ2
(

|D2
x′′u|2 −

∣

∣∇x′′ |∇x′′u|
∣

∣

2
)

=

∫

x′∈Rm

∫

x′′∈Ωx′

φ2
(

|D2
x′′u|2 −

∣

∣∇x′′ |∇x′′u|
∣

∣

2
)

=

∫

x′∈Rm

∫

x′′∈Gx′ (u)

φ2
(

|D2
x′′u|2 −

∣

∣∇x′′ |∇x′′u|
∣

∣

2
)

=

∫

x′∈Rm

∫

x′′∈Gx′ (u)

φ2
(

|∇x′′u|2K2 +
∣

∣∇L|∇x′′u|
∣

∣

2
)

.

From this and (24), we conclude that (5) holds true.

Now we claim that

S > 0 a.e.,

and if equality holds at points of {∇x′′u 6= 0},

then ∇x′′ui is either 0

or parallel to ∇x′′u, for any 1 6 i 6 m.

(25)

Notice that (5) and (25) imply (4), thus the proof of (25) would end the proof of Theorem 1.

In order to prove (25), we focus on points (x′x′′) ∈ {|∇x′′u| 6= 0}, since for almost any other point
Stampacchia’s Theorem gives that S > 0.

Then, if |∇x′′u| 6= 0,

∣

∣∇x′ |∇x′′u|
∣

∣

2
=

1

|∇x′′u|2

m
∑

i=1

(

n
∑

j=m+1

ujui,j

)2

=
1

|∇x′′u|2

m
∑

i=1

∣

∣

∣
∇x′′u · ∇x′′ui

∣

∣

∣

2

6

m
∑

i=1

∣

∣

∣
∇x′′ui

∣

∣

∣

2

=
∑

16i6m
m+16j6n

u2
i,j ,

where Cauchy inequality was used.

This proves (25) and concludes the proof of Theorem 1.
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5 Proof of Theorem 2

As usual, we denote by χA the characteristic function of a set A.

By Lemma 4, we have that (3) is implied by (7). In particular, in the assumptions of Theorem 2, we
have that Gx′(u) = R

n−m.

Following [Far02, FSV08], now we perform the choice of an appropriate test function in Theorem 1.

For this, given R > 1, we define

φ(x) := χB√
R
(x) +

2 log(R/|x|)

logR
χBR\B√

R
(x).

We observe that

|∇φ(x)| =
2χBR\B√

R
(x)

|x| logR
. (26)

Since φ is Lipschitz continuous, we can use it as a test function in (5), up to a density argument.
Therefore, we obtain from (5), (25) and (26) that

∫

x′∈Rm∩B√
R/2

∫

x′′∈B√
R/2

(

|∇x′′u|2K2 +
∣

∣∇L|∇x′′u|
∣

∣

2
)

+

∫

BR

S

6
4

(logR)2

∫

BR\B√
R

|∇x′′u|2

|x|2
dx.

(27)

We define

E(R) :=

∫

BR

|∇x′′u|2 dx.

We now employ Fubini’s Theorem to observe that

∫

BR\B√
R

|∇x′′u|2

2|x|2
dx−

1

2R2
E(R)

6

∫

BR\B√
R

|∇x′′u|2

2|x|2
dx−

1

2R2

∫

BR\B√
R

|∇x′′u|2 dx

=

∫

BR\B√
R

|∇x′′u|2
(

∫ R

|x|
s−3 ds

)

dx

6

∫ R

√
R

(

∫

Bs\B√
R

|∇x′′u|2s−3 dx

)

ds

6

∫ R

√
R

s−3E(s) ds.

(28)

From (8), (27) and (28),

∫

x′∈Rm∩B√
R/2

∫

x′′∈B√
R/2

(

|∇x′′u|2K2 +
∣

∣∇L|∇x′′u|
∣

∣

2
)

+

∫

BR

S

6
8

(logR)2

(

R−2E(R) +

∫ R

√
R

s−3E(s) ds
)

6
C̄

logR
,

as long as R > C, for suitable C, C̄ > 0.

By taking R arbitrarily large, we thus deduce that

K = 0 =
∣

∣∇L|∇x′′u|
∣

∣ for any x′ ∈ R
m and x′′ ∈ R

n−m, (29)
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and that
S = 0. (30)

From (29) and Lemma 2.11 of [FSV08] (applied here at any fixed x′), we infer that, for any fixed
x′ ∈ R

m, the function x′′ 7→ u(x′, x′′) is a function of one variable, up to rotation.

That is, for any fixed x′ ∈ R
m, there exists ω(x′) ∈ Sn−m−1 and u? : R

m × R → R such that

u(x′, x′′) = u?(x′, ω(x′) · x′′), (31)

for any (x′, x′′) ∈ R
n.

We now claim that
∇x′′u(x′, x′′) is parallel to ω(x′). (32)

To check this, we let η(x′) ∈ Sn−m−1 be orthogonal to ω(x′) and we exploit (31) to get that

u(x′, x′′ + tη(x′)) = u?(x′, ω(x′) · x′′),

and so, by differentiating with respect to t, we see that

∇x′′u(x′, x′′) · η(x′) = 0.

This proves (32).

In the light of (32), we now write

∇x′′u(x′, x′′) = c(x′, x′′)ω(x′), (33)

for some c(x′, x′′) ∈ R.

In fact, (7) and (33) imply that

c(x′, x′′) 6= 0 for all (x′, x′′) ∈ R
n. (34)

Moreover, (13) and (33) give that

the map (x′, x′′) 7→ c(x′, x′′)ω(x′) belongs to W 2,n+1
loc (Rn) ⊂ C1(Rn). (35)

Hence,
(

c(x′, x′′)ω(x′)
)

i
= ∇x′ui(x

′, x′′), (36)

for any 1 6 i 6 n.

Since
c2(x′, x′′) =

(

c(x′x′′)ω(x′)
)

·
(

c(x′x′′)ω(x′)
)

,

we deduce from (33) and (35) that c2 ∈ C1(Rn).

As a consequence of this and of (34), we have that

c ∈ C1(Rn). (37)

This, (33) and (34) thus imply that
ω ∈ C1(Rm). (38)

In particular,

0 =

(

1

2

)

i

=

(

ω(x′) · ω(x′)

2

)

i

= ωi(x
′) · ω(x′), (39)

for any 1 6 i 6 m.

From (25), (30), (32) and (36), we have that ∇x′′ui(x
′, x′′) is parallel to ∇x′′u(x′, x′′), that is

(

c(x′, x′′)ω(x′)
)

i
= k(i)(x′, x′′)ω(x′),

9



for some k(i)(x′, x′′) ∈ R.

Then, making use of (39) twice, the latter equation gives that

0 = k(i)(x′, x′′)ω(x′) · ωi(x
′)

=
(

c(x′, x′′)ω(x′)
)

i
· ωi(x

′)

= c(x′, x′′)ωi(x
′) · ωi(x

′),

for any 1 6 i 6 m.

Consequently, from (34), we conclude that ωi(x
′) = 0 for any 1 6 i 6 m, and so ω(x′) is constant, say

ω(x′) = ω.

This and (31) give (9), thus ending the proof of Theorem 2.
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