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Abstract. We prove that global Lipschitz solutions to the linearized Monge-

Ampere equation

Lφu :=
∑

φijuij = 0

must be linear in 2D. The function φ is assumed to have the Monge-Ampere
measure detD2φ bounded away from 0 and ∞.

1. Introduction. In this paper we consider global C2 solutions u : R2 → R that
satisfy certain types of degenerate elliptic equations∑

aij(x)uij = 0 in R2. (1)

We are interested in equations (1) that appear as the linearized operator for the
Monge-Ampere equation. We show that the only global Lipschitz solutions i.e

∥∇u(x)∥L∞(R2) ≤ C. (2)

must be linear.
For simplicity we assume throughout the paper that the coefficients aij are

smooth and satisfy the ellipticity condition:

A(x) := (aij(x))ij > 0.

We start by recalling two classical Liouville type theorems concerning global
solutions of (1). The first is due to Bernstein (see [6], [1]) and asserts:

A global C2 solution (in R2) which is bounded must be constant.
The result fails if one allows linear growth for u at ∞ as it can be seen from the

following simple example

u(x) =
√
1 + x2

1 −
√
1 + x2

2,

for appropriate A(x).
The second theorem states that global solutions satisfying (1), (2) must be linear

if the coefficients are uniformly elliptic i.e

λI ≤ A(x) ≤ ΛI, x ∈ R2.

This follows from the classical C1,α interior estimates in 2D due to Morrey [7] and
Nirenberg [8].
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In this short paper we prove a similar Liouville theorem for solutions to the
linearized operator of the Monge-Ampere equation

detD2φ = f, λ ≤ f ≤ Λ. (3)

Theorem 1.1. Assume φ is a smooth convex function in R2 satisfying

λ ≤ detD2φ ≤ Λ,

and denote by (φij) the inverse matrix of D2φ. If u ∈ C2 is globally Lipschitz (i.e
satisfies (2)) and solves

Lφu :=
∑

φij(x)uij = 0 in R2, (4)

then u is linear.

Equation (4) was studied by Caffarelli and Gutierrez in [3]. It appears for example
in fluid meachanics (see [2], [4]), or in the affine maximal graph equation (see [10])
etc. The main result in [3] states that solutions of (4) satisfy the Harnack inequality
in the sections of φ (see Section 2 for the precise statement). When dealing with the
degenerate equation Lφu = 0, the sections of φ play the same role as the euclidean
balls do in the theory of uniformly elliptic equations.

Theorem 1.1 suggests that in R2, solutions of (4) satisfy stronger estimates than
those obtained from Harnack inequality. In a forthcoming paper we intend to obtain
interior C1.α estimates for the equation Lφu = 0 in 2D.

Theorem 1.1 can be proved in fact in a more general form, where the coefficient
matrix A(x) is “uniformly elliptic” with respect to the inverse of D2φ i.e.

c(D2φ)−1 ≤ A(x) ≤ C(D2φ)−1, 0 < c < C,

and the Monge-Ampere measure

detD2φ = µ

satisfies a standard doubling condition (see conditions 0.3-0.4 of [3]). In this setting,
the Liouville theorem for uniformly elliptic equations mentioned above appears as
a consequence of Theorem 1.1 by taking φ(x) := |x|2.

The proof of Theorem 1.1 follows the same strategy as the proof of Bernstein
theorem for elliptic equations in 2D. If u is a solution to (1) and is not linear,
then any tangent plane splits the graph of u into at least 4 unbounded connected
components. Then we apply the Harnack inequality of Caffarelli and Gutierrez in
certain nondegenarate directions and obtain a contradiction. Similar ideas have
been used in [9], [5] for other degenerate equations.

2. Geometry of sections and Harnack inequality. Let Sh(x), the section of
φ at the point x and of height h > 0, be defined as

Sh(x) := {y ∈ R2| φ(y) < φ(x) +∇φ(x) · (y − x) + h}.

We list below the key properties (see for example [3]) for the sections of a convex
function φ that satisfies

detD2φ = f, λ ≤ f ≤ Λ.

a) Sh(x) is convex, and if h ≤ t then Sh(x) ⊂ St(x).
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b) To each section Sh(x) we can associate an ellipse

Eh(x) = Ah(x)B1, with Ah(x) a symmetric matrix

such that
Eh(x) ⊂ Sh(x)− x ⊂ C Eh(x),

with the constant C depending only on λ ,Λ. In what follows we denote by

|Eh(x)|– the ratio between the longest and the shortest axis of Eh(x) (5)

ξh(x)– the direction of the longest axis of Eh(x).

c) If x1 ∈ Sh(x0) then

Sh(x0) ⊂ SC1h(x1) ⊂ SC2h(x0),

with C1, C2 depending only on λ, Λ.

d) If M > 1 then

SMh(x)− x ⊂ M(Sh(x)− x) ⊂ SC(M)h − x,

for some constant C(M) depending on λ, Λ and M .

Caffarelli and Gutierrez proved in [3] the Harnack inequality for solutions of the
linearized operator

Lφu =
∑

φijuij .

Precisely, if u ≥ 0 in Sh(x0) then

inf
Sh/2(x0)

u ≥ c sup
Sh/2(x0)

u,

with c > 0 a small constant depending only on λ, Λ. We need the following weak
Harnack inequality for supersolutions which was proved also in [3] (Theorem 2).

Theorem. If Lφ(u) ≤ 0 and u ≥ 0 in Sh(x0) then,

inf
Sh/2(x0)

u ≥ c inf
Sh/4(x0)

u

with c > 0 a small constant depending on λ, Λ.

Applying the theorem repeatedly we see that for any τ ≤ 1/4,

inf
Sh/2(x0)

u ≥ c(τ) inf
Shτ (x0)

u (6)

with c(τ) > 0 depending also on τ .

Before we state the next lemmas we introduce the following notation. We define
Aδ as the set

Aδ := {(x, t)| diamSt(x) ≥ δ, St(x) ⊂ B1/δ}. (7)

Lemma 2.1. Let Sh(0) be the maximal section at 0 which is included in B1. Assume
that (see (5))

|Eh(0)| ≤ M,

for some constant M . Then

|Et(x)| ≤ C(M, δ) ∀(x, t) ∈ Aδ,
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with C(M, δ) a large constant depending on M , δ, λ, Λ.

Proof. Since Sh(0) is the maximal section included in B1 and satisfies |Eh(0)| ≤ M
we see from property b) that for a small constant c(M) depending on M (and on
λ, Λ)

Bc ⊂ Sh(0) ⊂ B1.

Then by property d) we can find a large constants C1(M, δ) such that

B2/δ ⊂ SC1h(0) ⊂ BC1 .

Now by c), there exist C2(M, δ), C3(M, δ) such that for any x ∈ B1/δ,

B1 ⊂ SC2h(x)− x ⊂ BC3 .

Now, we use d) and find c1(M, δ), c2(M, δ) small such that

Bc1 ⊂ Sc2h(x)− x ⊂ Bδ/2.

This shows, by property a), that any section St(x) with x ∈ B1/δ and diamSt(x) ≤ δ
contains a ball of radius c1 in the interior, and the conclusion of the lemma follows
easily.

Lemma 2.2. Let Sh(0) be the maximal section at 0 included in B1, and assume
|Eh(0)| ≤ M . Let u be defined on Br(x) for some x ∈ B1 and δ ≤ r ≤ 1.

If u ≥ 0 in Br(x) and
Lφu ≤ 0,

then
inf

Br/2(x)
u ≥ c(M, δ) inf

Br/4(x)
u (8)

with c(M, δ) a small positive constant depending on M , δ, λ, Λ.

Proof. It suffices to show that if u ≥ 0 in Bδ(x) then

inf
Bη(x)

u ≥ c(M, δ) inf
Bη/2(x)

u,

for some η(M, δ) small.
By Lemma 2.1 there exists η(M, δ) small and a section St(x) with (x, t) ∈ Aδ

such that
Bη ⊂ St/2(x)− x ⊂ St(x)− x ⊂ Bδ.

By property d), we can find τ(M, δ) > 0 such that

Sτt(x)− x ⊂ Bη/2.

Now the weak Harnack inequality (6) applied to u in St gives

inf
Bη(x)

u ≥ inf
St/2(x)

u ≥ c(τ) inf
Sτt(x)

u ≥ c(τ) inf
Bη/2(x)

u.

Lemma 2.3. Let Sh(0) be the maximal section included in B1 and assume

|Eh(0)| ≥ M.

There exists σ(M, δ) such that for all (x, t) ∈ Aδ (see (5), (7))

|Et(x)| ≥ σ−1, ∠(ξt(x), ξh(0)) ≤ σ

and σ(M, δ) → 0 as M → ∞.

Here ∠(ξ1, ξ2) denotes the angle (∈ [0, π/2]) between the lines of directions ξ1
and ξ2.
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Proof. We need to show that, for δ fixed,

inf
(x,t)∈Aδ

|Et(x)| → ∞, sup
(x,t)∈Aδ

∠(ξt(x), ξh(0)) → 0 as M → ∞.

From Lemma 2.1 it follows that if |Et(x)| ≤ N for some (x, t) ∈ Aδ, then

|Eh(0)| ≤ C(δ,N).

This shows that

inf
(x,t)∈Aδ

|Et(x)| → ∞ as M → ∞.

Now assume that for some (x, t) ∈ Aδ

∠(ξt(x), ξh(0)) ≥ σ0 > 0.

Let x∗ be the point of intersection of the line passing through x and of direction
ξt(x) with the line passing through 0 and direction ξh(0). Clearly |x∗| ≤ C(δ, σ0).
Moreover by the properties c) and d), there exists a section St∗(x

∗) with

Sh(0) ⊂ St∗(x
∗), St(x) ⊂ St∗(x

∗), diamSt∗(x
∗) ≤ C(δ, σ0).

Since St∗(x
∗) contains 2 segments of length δ at an angle σ0, it contains also a small

ball of radius c(δ, σ0), hence

|Et∗(x
∗)| ≤ C(σ0, δ).

By Lemma 2.1, this implies that |E(0, h)| ≤ C(σ0, δ). In conclusion

∠(ξt(x), ξh(0)) → 0 as M → ∞.

3. Proof of Theorem 1.1. Without loss of generality assume u(0) = 0 and
∥∇u∥L∞(R2) ≤ 1. Let

K := ∇u(R2).

We need to show that K consists of a single point. As in the proof of the theorem
of Bernstein, the key will be to use the following 2D theorem.

Theorem. Assume u ∈ C2(R2) satisfies Lφu = 0. If x is a nondegenerate point
i.e D2u(x) ̸= 0, then the set

{y ∈ R2| u(y) > u(x) +∇u(x) · (y − x)}

contains at least two disconnected unbounded components that have x as a boundary
point.

From now on we assume by contradiction that u is not linear.
First we remark that the set of nondegenerate points is dense in R2. Indeed,

otherwise D2u = 0 in a neighborhood, and by unique continuation (since φ ∈ C∞)
D2u = 0 in whole R2 and we reach a contradiction.

Clearly, the images of the gradients of these nondegenerate points form a dense
open subset of K.

Let Rn be a sequence converging to ∞ and let

un(x) :=
u(Rnx)

Rn
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represent the corresponding rescalings of u. The functions un satisfy

Lφnun = 0, φn(x) :=
φ(Rnx)

R2
n

.

The function φn also satisfies (3), and its sections are obtained by 1/Rn-dilations
of the original sections of u. Denote

en := |Ehn(0)|

where Shn
(0) is the maximal section of u included in BRn

. We distinguish 2 cases:

1) There exists a sequence of Rn → ∞ such that en remains bounded;

2) en → ∞ as Rn → ∞.

We show that we reach a contradiction in both cases.

Case 1. By assumption, there exists M such that |en| ≤ M for all n. Without
loss of generality we can assume that

un → u∗ uniformly on compact sets.

From Lemma 2.2, each un satisfies the weak Harnack inequality (8), thus the same
inequality holds for u∗ if u∗ ≥ 0 in Br(x).

Lemma 3.1. Let ν ∈ R2, |ν| = 1 be a unit direction, and assume

min
p∈K̄

ν · p

is achieved for p = pν ∈ K̄. Then

u∗(tν) = tν · pν
either for all t ≥ 0 or for all t ≤ 0.

Proof. The equation is invariant under addition with linear functionals, thus we
may assume for simplicity that ν = e2 and pν = 0, that is

K ⊂ {x · e2 ≥ 0}, 0 ∈ K̄.

This implies that the functions u, un, and u∗ are all increasing in the e2 direction
and that there exists a sequence of nondegenerate points for u whose gradients
approach 0. By passing if necessary to a subsequence we may assume that there
exists xn → 0 with ∇un(xn) = ∇u(Rnxn) → 0 and xn is a nondegenerate point for
un. Define

ln(x) := un(xn) +∇un(xn) · (x− xn),

then clearly ln → 0 uniformly on compact sets. By the theorem above, the set
{un > ln} contains at least 2 unbounded connected components that have xn as a
boundary point.

Since u∗ is increasing in the e2 direction, it suffices to show that either u∗(e2) = 0
or u∗(−e2) = 0. Assume by contradiction that

u∗(−e2) < 0, u∗(e2) > 0.

Then we can find δ (depending on u∗) and a rectangle

R := [−2δ, 2δ]× [−1, 1]
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such that u∗ is positive on the top of R and negative on the bottom. This implies
that for all n large, un is positive on the top of R and negative on the bottom. We
conclude that the set {un > ln} has an unbounded connected component U that
does not intersect the top or the bottom of, say the rectangle

R1 := [δ, 2δ]× [−1, 1],

but intersects both lateral sides of R1. Let P be a nonintersecting polygonal line
included in U which connects the lateral sides. This polygonal line splits R1 into
two disjoint domains R+

1 (containing the top) and R−
1 .

From each un we create a supersolution ũn : R1 → R to Lφn ũn ≤ 0 as follows.
First we replace un by ln in the set U . Clearly the new function is a supersolution.

Then we modify this function to be equal to ln in R−
1 .

Notice that ũn converges uniformly in R1 to

(u∗)+ := max{u∗, 0}.
Since ũn satisfies the weak Harnack inequality of Lemma 2.2, we see that the same
conclusion holds for (u∗)+ as well. This implies that (u∗)+ > 0 in the interior of
R1. On the other hand (u∗)+ = 0 in a neighborhood of the bottom of R1 since u∗

is negative there. We reached a contradiction and the lemma is proved.

By the lemma above, u∗(x) = pν · x (and u(x) = p−ν · x) on at least half of the
line tν. Since the set K has nonempty interior, by the definition of pν we have

ν · (pν − p−ν) < 0,

which implies that u∗(tν) is linear both for t ≥ 0 and t ≤ 0 but with different slopes.
We conclude that u∗ is homogenous of degree one.

Since u∗ is continuous, homogenous of degree 1 but not linear, we can easily find
a ball Br(x) and a linear function l such that u∗ − l ≥ 0 in Br(x), (u

∗ − l)(x) = 0
but u∗ − l is not identically 0 in Br(x). This contradicts weak Harnack inequality
for u∗ − l, and concludes Case 1.

Case 2. By passing to a subsequence, we can assume that the directions

ξn := ξhn(0) → e2 as n → ∞,

and as before un → u∗ uniformly on compact sets. First we show that u∗ satisfies
weak Harnack inequality in the e2 direction.

Lemma 3.2. Assume

u∗(x+ te2) ≥ 0, for all |t| ≤ r,

for some x ∈ B1 and 0 < r ≤ 1. Then

inf
|t|≤ r

2

u∗(x+ te2) ≥ c inf
|t|≤ r

4

u(x+ te2), (9)

where c > 0 depends only on λ, Λ.

Proof. It suffices to prove (9) with r/2 replaced by ηr and r/4 by ηr/2 with η a
small constant depending on λ, Λ.

Since |∇u| ≤ 1, un and u∗ are Lipschitz functions with Lipschitz constant 1. By
hypothesis, u∗ ≥ 0 on the segment [x− re2, x+ re2], hence

u∗ + 2ε > 0 on R = [−ε, ε]× [x− re2, x+ re2],
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and the same inequality holds for un for all n large.
Let Stn(x) be the maximal section of un at x which is included in R. ¿From the

hypotheses en → ∞, ξn → e2 and Lemma 2.3 we see that

2r + 2ε ≥ diamStn(x) ≥ 2r

for all large n. From the properties of sections we see that there exist constants η,
τ small such that Stn/2(x) contains a segment of length 2η centered at x and

Sτtn(x) ⊂ [−ε, ε]× [x− η

2
e2, x+

η

2
e2].

We apply weak Harnack inequality (6) for un + 2ε in Stn(x) and use that un is
Lipschitz to obtain

inf
|t|≤ηr

un(x+ te2) ≥ c inf
|t|≤ η

2 r
un(x+ te2)− Cε.

The lemma is proved by letting n → ∞ and then ε → 0.

Lemma 3.3. If ν = ±e2 we have

u∗(tν) = tν · pν
either for all t ≥ 0 or t ≤ 0.

Proof. The proof is essentially identical to the proof of Lemma 3.1. We need to
remark that the supersolutions ũn obtained from un are uniformly Lipschitz. Hence,
as in the proof of Lemma 3.3 above, the weak Harnack inequality for ũn implies the
weak Harnack inequality for their limit (u∗)+ in the e2 direction. This gives that
(u∗)+ > 0 in R1 and we reach a contradiction as before.

Now we are ready to reach a contradiction in Case 2.
The previous lemma implies (as in Case 1) that on the line te2 the function u∗ is

linear on both half lines t ≥ 0 and t ≤ 0, but with different slopes. This contradicts
that u∗ − l satisfies weak Harnack inequality in the e2 direction for an appropriate
linear function l.
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