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PHASE TRANSITIONS, MINIMAL SURFACES AND A

CONJECTURE OF DE GIORGI

O. SAVIN

1. Introduction

A central problem in the area of PDEs is the study of global solutions, that is
solutions defined in the whole space. This problem arises naturally for example
when one studies the possible types of behaviors a solution might have at a given
point. Focusing near such a point by dilating the picture more and more, we end up
with a PDE in the whole space. In other cases we might have a differential equation
with oscillating terms on a small scale depending on a parameter ε. In order to
understand the behavior at unit scale as the parameter ε → 0 we often need to
dilate the picture and solve some PDE in the whole space. As a consequence, the
study of global solutions is crucial when dealing with singularities, local behavior
and homogenization limits of PDEs.

In this paper we present symmetry results for global solutions to certain semi-
linear (or fully nonlinear) elliptic equations of the type

△u = f(u)

which arise in the theory of phase transitions.
Let us briefly introduce the typical physical model for a phase transition. Imagine

in a domain Ω we have a two-phase fluid whose density at a point x we denote by
ρ(x). Assume its energy density is given by a double-well potential W (ρ(x)) say
with minima at ρ1, ρ2 i.e

W (ρ1) = W (ρ2) = 0, W (s) > 0 if s 6= ρ1, ρ2.

The densities ρ1 and ρ2 correspond to the stable fluid phases. Then the energy of
the fluid is given by the integral

ˆ

Ω

W (ρ(x)) dx.

This is not a satisfactory physical model since any density function ρ(x) that takes
only the values ρ1 and ρ2 minimizes the density energy. In particular the stable
phases ρ1 and ρ2 could coexist along any complicated interface! The reason for this
is because we ignored the kinetic energy term that takes into consideration interac-
tions at small scales (such as friction) which penalizes the formation of unnecessary
interfaces. The energy associated with the fluid in this case would be of the form

Jε(ρ) =

ˆ

Ω

ε2

2
|∇ρ|2 + W (ρ) dx

with ε a small parameter. This is the typical energy modeling the phase separation
phenomena within the van der Walls-Cahn-Hilliard theory (see [12]).
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The presence of the gradient square term in the energy prevents instantaneous
jumps from a region of density ρ1 to a region of density ρ2, and in general this stable
states are only asymptotically attained by ρ. The transition region between the two
phases occurs in a thin region of width comparable to ε. If we try to understand
this transition at length-scale ε we need to dilate the picture by a factor of 1/ε.
Then the rescaled density u(x) := ρ(εx) minimizes the energy

ˆ

1

2
|∇u|2 + W (u) dx

and hence solves the Euler-Lagrange equation

△u = W ′(u),

in the large domain Ω/ε. On the other hand, we shall see in Section 2 that if we
let ε → 0 in the original domain Ω, the transition region converges to a minimal
surface inside Ω, i.e a surface of least area. This fact was already known to the
school of De Giorgi in Pisa in the late 1970’s, and De Giorgi conjectured that global
solutions to the Euler-Lagrange equation above should have similar properties to
something apparently unrelated, global minimal surfaces.

The goal of this paper is to present several results in both settings, phase transi-
tions and minimal surfaces, together with their common underlying ideas. Special
interest is given to flatness theorems and their application to 1D symmetry of global
phase transitions and in particular to De Giorgi’s conjecture. See Section 3 for the
precise formulation of this conjecture.

We conclude our introduction with a brief description of the theory of minimal
surfaces, with special emphasis on the ideas of De Giorgi.

Finding the surface of least area (minimal surface) among all surfaces bounded
by a given curve is known as the Plateau problem. It is one of the oldest problems
in mathematics and it has received a great deal of attention from the mathematical
community. Plateau problem was solved independently by Douglas [27] and Rado
[53, 54] in the 1930’s. Later, the theories of De Giorgi on perimeters [21, 22, 23, 24],
the one of Federer and Fleming [33, 35] on rectifiable currents and the one of
Almgreen [2, 3] on varifolds were developed to deal with the higher dimensional
case.

Let us explain the approach of De Giorgi. The key idea is to look at hypersurfaces
in R

n as boundaries of sets. Precisely, for any measurable set E, we can define the
perimeter of E in a domain Ω ⊂ R

n (or the area of ∂E in Ω) as the total variation
of the characteristic function of E, χE , in Ω

PΩ(E) =

ˆ

Ω

|∇χE | = sup
|g|≤1

∣

∣

∣

∣

ˆ

E

div g dx

∣

∣

∣

∣

,

where the supremum is taken over all vector fields g ∈ C1
0 (Ω) (with compact support

in Ω) with |g| ≤ 1. From Green’s theorem we see that this notion of area of ∂E
coincides with the usual one whenever ∂E is a C1 hypersurface. The advantage of
defining the perimeter for a larger class of sets is the compactness in L1 of sets with
finite perimeter. Then it is not difficult to show existence to the Plateau problem in
this context of minimal boundaries. It is much more difficult to prove that the sets
so obtained are actually smooth hypersurfaces except possibly for a closed singular
set of small Hausdorff dimension.
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One understands the behavior of such a minimal surface in a neighborhood of a
point x0 by using the blow-up technique explained at the beginning. Dilating the
picture more and more we end up with a limiting minimal surface defined in the
whole space. What can be said about global minimal surfaces? Simons [59] proved
that the only global minimal surfaces are the hyperplanes in dimension n ≤ 7.
Moreover, Bombieri, De Giorgi and Giusti [11] showed that the symmetric cone in
R

8

{x ∈ R
8 : x2

1 + x2
2 + x2

3 + x2
4 = x2

5 + x2
6 + x2

7 + x2
8}

known as Simons cone is minimal. This is the first example of a minimal surface
that has a singularity (at the origin). Going back to the original picture, Simons
result says that at least in low dimensions the minimal surface is approximated well
by a plane (it is flat) in a small neighborhood of x0. On the other hand, a theorem
of De Giorgi that holds in any dimension says that flat minimal surfaces in Br(x0)
are analytic in Br/2(x0). This “flatness theorem” gives smoothness near the points
that have a planar blow-up limit. Thus, minimal surfaces are always smooth in
dimension n ≤ 7. In higher dimensions, it was shown by Federer [34] that they are
smooth everywhere except on a small singular set of Hausdorff dimension n − 8.

Minimal surfaces that are graphs in some direction are called minimal graphs. It
turns out that minimal graphs are smooth in any dimension. The question wether
the only global minimal graphs are planar is known as the Bernstein problem, due to
Bernstein [10] (1915) which answered affirmatively the question in R

3. Bombieri, De
Giorgi and Giusti [11] showed that the graph assumption gains one extra dimension
with respect to the minimal surface results mentioned earlier: minimal graphs are
planar in dimension n ≤ 8, and there are non-planar minimal graphs in R

9.
The paper is organized as follows. In Section 2 we give the precise relation

between minimal surfaces and level sets of minimizers of Jε. In Section 3 we state
the conjecture of De Giorgi together with other related problems. In Section 4 we
prove density estimates in both settings. In Section 5 and 6 we give a new proof of
the flatness theorem of De Giorgi for minimal surfaces which is based on Harnack
inequality. In Sections 7 to 9 we extend these ideas to phase transitions and obtain
the corresponding flatness theorem. In Section 10 and 11 we discuss 1D symmetry
for global phase transitions. Finally in Section 12 we present similar results that
are available for fully nonlinear equations.

2. Phase transitions and minimal surfaces

We consider the Ginzburg-Landau energy functional

J(u,Ω) =

ˆ

Ω

1

2
|∇u|2 + W (u) dx, |u| ≤ 1

with W a double-well potential with minima at 1 and −1 satisfying

W ∈ C2([−1, 1]), W (−1) = W (1) = 0, W > 0 on (−1, 1),

W ′(−1) = W ′(1) = 0, W ′′(−1) > 0, W ′′(1) > 0.

The classical double-well potential W to have in mind is

W (s) =
1

4
(1 − s2)2.



4 O. SAVIN

We mention that all the results of this paper apply also to more general poten-
tials W that do not necessarily satisfy the conditions above. Such an example is
the discontinuous potential W (s) = χ(−1,1)(s), where χ(−1,1) represents the charac-
teristic function of the interval (−1, 1). In this case the physical motivation comes
from a problem associated with jet fluid flows (see [4]).

In this section we explain the close relation between minimal surfaces and level
sets of minimizers of J .

Consider a minimizer u of J which is bounded by −1 and 1. We say that u is
a minimizer in the (possible unbounded) set Ω if its energy increases locally under
any compact perturbation, i.e for any open set A relatively compact in Ω,

J(u,A) ≤ J(u + ϕ,A) ∀ϕ ∈ H1
0 (A).

A minimizer in whole R
n is called a global minimizer.

The behavior of u in large domains is given by the behavior of the rescaled
functions uε in B1,

uε(x) := u(
x

ε
).

If u minimizes J in the ball B 1
ε

then uε minimizes the rescaled energy Jε in B1

Jε(v,B1) :=

ˆ

B1

ε

2
|∇v|2 +

1

ε
W (v) dx.

We continue with a heuristic discussion about minimizers of Jε. For a given
function v, the main contribution in Jε(v) comes from the potential energy which
is minimized when v equals either 1 or −1. Instant jumps from a region where
v = 1 to a region where v = −1 are not allowed since the kinetic energy

´

ε
2 |∇v|2

would become infinite. However, it is useful to notice that if instead of the Dirichlet
integral we would have the BV norm

´

ε|∇v| then such jumps are allowed and in
this case the energy is minimized when the jumps occur along a minimal surface.

Clearly
ˆ

B1

ε

2
|∇v|2 +

1

ε
W (v) dx ≥

ˆ

B1

√

2W (v)|∇v| dx,

and using the co-area formula

|∇v| dx = dHn−1({v=s})ds

the inequality becomes

Jε(v) ≥
ˆ 1

−1

√

2W (s)Hn−1({v = s})ds.

The energy Jε is then minimized by the function v if every level set is a minimal
surface and we have equality in the inequality above i.e |∇v| = 1

ε

√

2W (v). This
last equality gives

v(x) = g0(
dΓ(x)

ε
),

where dΓ(x) represents the sign distance to the 0 level set Γ := {v = 0} and g0 is
the solution to the ODE

g′0 =
√

2W (g0), g0(0) = 0.

The function g0 is in fact the unique minimizer of J in 1D which is increasing.
In general the level sets of a function v as above cannot be all minimal sur-

faces. However, if for example the 0 level set Γ is minimal then the s-level sets
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Figure 1. One-dimensional solution.
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d   <0
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Γ

Γ

v(x)=g  (d   (x) /ε)

Figure 2. Approximate minimizer.

are essentially minimal as long as s is not too close to ±1 and ε is small. On the
other hand when s is close to ±1 the weight

√

2W (s)ds becomes negligible. Thus
such a function is “almost” a minimizer for Jε. This suggests that the level sets of
minimizers of Jε converge to a minimal surface as ε → 0.

The asymptotic behavior of uε was first studied by Modica and Mortola [51]
and by Modica [45] within the framework of Γ-convergence. Later Modica [47],
Sternberg [60] and many authors [6, 36, 43, 49, 52, 61] generalized these results for
minimizers with volume constraint.

Here we present the result of Modica in [45].

Theorem 2.1 (Modica). Let uε be minimizers for the energies Jε(·, B1). There
exists a sequence uεk

such that

uεk
→ χE − χEc in L1

loc(B1)

where E is a set with minimal perimeter in B1. Moreover, if A is an open set,
relatively compact in B1, such that

ˆ

∂A

|DχE | = 0,

then

(2.1) lim
m→∞

Jεk
(uεk

, A) = PA(E)

ˆ 1

−1

√

2W (s)ds.

Let us recall the notion of perimeter PΩ(E) and minimal perimeter that appear
in the theorem above. The perimeter of E in Ω ⊂ R

n is defined as

PΩ(E) = sup

∣

∣

∣

∣

ˆ

E

div g dx

∣

∣

∣

∣

,

where the supremum is taken over all vector fields g ∈ C1
0 (Ω) with ‖g‖ ≤ 1. When

Ω is the whole R
n we use the shorter notation

P (E) = PRn(E).
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We say that E is a set with minimal perimeter in Ω or shortly ∂E is a minimal
surface in Ω if, for every open set A ⊂ Ω, relatively compact in Ω

PA(E) ≤ PA(F ),

whenever E and F coincide outside a compact set included in A.
From the heuristic discussion before the theorem of Modica we see that the

converse is also true at least in the case when the minimal surface ∂E is unique i.e
given a minimal surface ∂E we can find a sequence of minimizers uε converging to
χE − χCE . Therefore minimal surfaces and minimizers of Jε should have similar
properties at least for small ε.

In Section 4 we obtain density estimates for level sets of minimizers. As a
consequence, the convergence of uεk

in Theorem 2.1 is in fact stronger than L1
loc

i.e. the level sets of uεk
converge uniformly on compact sets to ∂E.

If the functions uεk
are all rescalings of a global minimizer u of J , then the

blow-down sets

{uεk
= 0} = εk{u = 0}

converge uniformly to a minimal surface. It is a difficult problem to understand
how well the original level set {u = 0} can be approximated by a minimal surface.
For example in the case when ∂E = {xn = 0} it is not clear wether or not {u = 0}
stays at a bounded distance from ∂E. Conversely, given a nontrivial global minimal
surface ∂E it is not evident if there exists at least one minimizer for which {u = 0}
stays at a bounded distance from ∂E. Such an example was given by Del Pino,
Kowalczyk and Wei [26] in dimension 9 which is the first dimension for which a
nontrivial global minimal graph exists.

3. De Giorgi’s conjecture

In view of the connection between minimal surfaces and minimizers of J , De
Giorgi [20] made in 1978 the following conjecture about bounded solutions of a
global semilinear equation:

Conjecture (De Giorgi). Let u ∈ C2(Rn) be a solution of

△u = u3 − u,

such that

|u| < 1, uxn
> 0

in whole R
n. Is it true that all the level sets of u are hyperplanes, at least if n ≤ 8?

The conjecture is sometimes referred as “the ε version of the Bernstein problem
for minimal graphs”. This relation with the Bernstein problem is the reason why
n ≤ 8 appears in the conjecture.

De Giorgi’s conjecture is often considered with the additional natural hypothesis
which is coherent with the phase transition setting

(3.1) lim
xn→±∞

u(x′, xn) = ±1.

The monotonicity uxn
> 0 implies that the level sets of u are graphs in the en

direction whereas the condition (3.1) says that these graphs are defined over whole
R

n−1. Under the much stronger assumption that the limits in (3.1) are uniform in
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x′, the conjecture is known as the Gibbons conjecture. In this case the level sets of
u are bounded graphs in the xn direction.

Gibbons conjecture was first proved for n ≤ 3 by Ghoussoub and Gui in [37] and
then for all dimensions n independently by Barlow, Bass and Gui [7], Berestycki,
Hamel and Monneau [9] and Farina [29].

The first positive partial result on the De Giorgi conjecture was established in
1980 by Modica and Mortola [50]. They proved the conjecture in dimension n = 2
under the additional hypothesis that the level sets {u = s} are equi-Lipschitz in
the x2 direction. Their proof used a Liouville-type theorem for elliptic equations in
divergence form, due to Serrin, for the bounded ratio

σ :=
ux1

ux2

.

In 1997 Ghoussoub and Gui [37] proved De Giorgi conjecture for n = 2. They
used a different Liouville-type theorem for σ developed by Berestycki, Caffarelli
and Nirenberg [8] for the study of symmetry properties of positive solutions of
semilinear elliptic equations in half spaces. This theorem does not require for σ to
be bounded, but rather a compatibility condition between the growth of σ and the
degeneracy of the coefficients of the equation. Using similar techniques, Ambrosio
and Cabre [5] extended these results to dimension n = 3. Also, Ghoussoub and
Gui showed in [38] that the conjecture is true for n = 4 or n = 5 for a special class
of solutions that satisfy an anti-symmetry condition. We shall discuss the methods
described above in Section 11.

In 2003 the conjecture was proved by the author in [55] for n ≤ 8 under the
additional hypothesis (3.1). One of the goals of this expository paper is to explain
the main ideas of [55] (see Sections 7-10). The methods developed do not depend
so much on the particular dimension but rather they allow one to obtain rigidity
results for global phase transitions as a consequence of the results for minimal
surfaces.

Recently, Del Pino Kowalczyk and Wei [26] gave a counterexample to the De
Giorgi’s conjecture in dimension 9. This counterexample satisfies also the limiting
assumption (3.1). The construction is based on careful perturbations of the level
sets around the nonplanar minimal graph in R

9 constructed by De Giorgi, Bombieri
and Giusti.

De Giorgi’s conjecture refers to one analogy between phase transitions and min-
imal surfaces, i.e the Bernstein problem. There are many other similar questions
that can be posed. For example, is it true that minimizers of J are one-dimensional
at least for n ≤ 7? If the level sets are Lipschitz graphs, is it true that the solution
must be one-dimensional in any dimension? What if the level sets satisfy only a
one-sided bound? What happens if we consider a fully nonlinear equation instead
of the semilinear one? We answer these questions in Section 10-12.

Referring to the questions above, when the level sets are assumed to be Lipschitz
graphs, it was first shown by Barlow, Bass and Gui [7] that u is one-dimensional
with probabilistic methods. Different proofs were given by the author in [55] and by
Caffarelli and Cordoba in [18]. Also, we mention that Cabre and Terra in [13] are
investigating the existence of nontrivial symmetric global minimizers in dimension
8, which are analogous to Simons cone.

There are further similarities between the theory of phase transitions and the
theory of minimal surfaces besides the rigidity of global solutions. For example
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level sets of minimizers of J satisfy uniform density estimates (see next section).
Also, there is a monotonicity formula for minimizers which is due to Modica (see
[48]) and reads

Φ(r) =
JBr

(u)

rn−1

is increasing in r. However, this monotonicity formula is not as powerful as the one
in the minimal surface case since Φ is not scale invariant and it is not constant for
the one-dimensional solutions.

Caffarelli and Cordoba developed in [17] a theory for phase transitions similar to
the one of De Giorgi for Lipschitz minimal graphs. Also, as we will see in Section
7, phase transitions satisfy an improvement of flatness theorem which is key in our
analysis and corresponds to De Giorgi flatness theorem for minimal surfaces.

4. Density estimates

In this section we prove density estimates for minimal surfaces and phase transi-
tions. These are crucial in both theories since they allow us to pass from convergence
in measure (L1 convergence) to uniform convergence.

4.1. Minimal surfaces. Let E be a measurable set in R
n.

We say that 0 ∈ ∂E (in measure sense) if for any ε > 0 we have

|Bε ∩ E| > 0, |Bε ∩ CE| > 0,

where CE denotes the complement of E and |E| the Lebesgue measure of E. It is
not difficult to see that ∂E in measure sense is a closed set.

Theorem 4.1 (Density estimates). Assume that E has minimal perimeter in B1

and 0 ∈ ∂E. There exists a constant c > 0 depending only on the dimension n such
that for all r ∈ (0, 1)

|E ∩ Br| > crn, |CE ∩ Br| > crn.

Proof. Minimality implies

PB1
(E) ≤ PB1

(E \ Br)

or
PBr

(E) ≤ Hn−1(E ∩ ∂Br)

hence
P (E ∩ Br) ≤ 2Hn−1(E ∩ ∂Br).

We denote V (r) = |Br ∩ E| and we use the isoperimetric inequality

cV (r)
n−1

n ≤ P (E ∩ Br)

to obtain
cV (r)

n−1

n ≤ V ′(r)

or
c ≤ (V

1
n (r))′.

Here we used that V (r) > 0 for all r > 0 since 0 ∈ ∂E. We integrate the last
inequality and obtain the first density estimate. The second estimate follows by
considering CE. ¤

Next we recall the standard compactness theorem for sets with minimal perime-
ter. A proof can be found in the book of Giusti [40].
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Theorem 4.2 (Compactness). If En is a sequence of minimal sets in Ω then there
exists a subsequence Enk

that converges to a minimal set E i.e

χEnk
→ χE in L1

loc(Ω).

The density estimates imply that the minimal surfaces ∂Ek converge in Hausdorff
sense to ∂E on any compact set of Ω. Indeed, if for some large k there exists a
point x0 ∈ ∂Ek at distance δ from ∂E, then from the density estimates we find

ˆ

Bδ(x0)

|χEk
− χE | ≥ c|Bδ|,

and we contradict the convergence of Ek to E in L1
loc.

As we explained in the introduction, an important example occurs when Ω = R
n

and the limiting minimal surface ∂E is planar, say ∂E = {xn = 0}. Then, the
uniform convergence implies that for any ε > 0

∂Ek ∩ B1 ⊂ {|xn| < ε}
for all large enough k.

4.2. Phase transitions. Next we present density estimates for level sets of mini-
mizers

J(u,Ω) =

ˆ

Ω

1

2
|∇u|2 + W (u) dx, |u| ≤ 1.

which were obtained by Cordoba and Caffarelli [17]. In this setting the domain Ω
is large and the density estimates hold for large enough balls. Before we state the
precise statement we first give a bound for the growth of J(u,Br).

Proposition 4.3. Assume r ≥ 1 and Br+2 ⊂ Ω. Then

(4.1) J(u,Br) ≤ Crn−1,

where C depends on n and W .

Proof. We compare u with the compact perturbation

v = min{u, h} with h(x) := min{(|x| − r)+ − 1, 1},
and obtain

J(u,Br) ≤ J(u, {u < v}) ≤ J(h, {u < v}) ≤ J(h,Br+2) ≤ Crn−1.

¤



10 O. SAVIN

Theorem 4.4 (Caffarelli-Cordoba). Given α > −1, β < 1, if u is a minimizer of
J in BR and u(0) ≥ α, then

|{u > β} ∩ Br| ≥ crn

for r ≥ r0(α, β), where c is a constant depending on n and W .

Proof. The proof consists of two steps. In the first step we prove a weaker version
when α and β are close to −1 and in the second step we extend it to the general case.
The ideas are similar to the minimal surface case but the proof is more involved.
Let λ0 be close to −1 so that W is increasing in the interval [−1, λ0].

Step 1. Let −1 < λ ≤ λ0. We prove the theorem with α = 1 + 2λ, β = λ and
with the constant c depending also on λ.

For each r ≥ 1 denote by

V (r) := |{u > λ} ∩ Br|, a(r) :=

ˆ

Br

W (u) dx.

We want to deduce a discrete differential inequality involving V and a that resembles
the one for minimal surfaces. We use as comparison function in Br the radially
symmetric function

v := −1 + 2e|x|−r.

The test function v was chosen such that v = 1 on ∂Br and satisfies

|∇v|2 ≤ C(W (v) + χ{v>0}) ≤ C(W (v) + χ{v>λ}),

for some constant C depending on W .
Denote by K the closure of the open set {u > v}, and clearly

J(u,K) ≤ J(v,K).

As in section 2, the coarea formula gives
ˆ 1

−1

Hn−1({w = s} ∩ K)
√

2W (s)ds ≤ J(w,K),

for any function w with values in [−1, 1].
For each s ∈ (−1, 1) denote

Es := {v < s < u}.
We have

∂Es = ({u = s} ∪ {v = s}) ∩ K

and by the isoperimetric inequality

|Es|
n−1

n ≤ Hn−1({u = s} ∩ K) + Hn−1({v = s} ∩ K).

Multiplying with
√

2W (s) and integrating in s we obtain

ˆ 1

−1

|Es|
n−1

n

√

2W (s) ds ≤ J(u,K) + J(v,K) ≤ 2J(v,K).

When s < λ, we have the inclusion {u > λ} ∩ Br ⊂ Es thus

V (r) = |{u > λ} ∩ Br| ≤ |Es|.
The above integral inequality implies



PHASE TRANSITIONS, MINIMAL SURFACES AND A CONJECTURE OF DE GIORGI 11

E
u>s

u<s

v>s

v<s

s

Figure 4. The set Es

c(λ)V (r)
n−1

n ≤ J(v,K),

with c(λ) > 0 a small constant that depends also on λ.
Also J(u,K) ≤ J(v,K) gives

a(r) ≤ J(v,K),

hence

c(λ)(a(r) + V (r)
n−1

n ) ≤ J(v,K).

Next we estimate the right hand side J(v,K) by splitting K into two domains

K1 := Br−T ∩ K, K2 := K ∩ (Br \ Br−T ),

where T is a large constant to be made precise later. Clearly,

J(v,K1) ≤ J(v,Br−T ) ≤ Ce−T rn−1.

For the second integral we use the inequality on |∇v|2 together with v ≤ u on
K and W increasing on [0, λ]:

J(v,K2) ≤ C

ˆ

K2

W (v) + χ{v>λ} dx

≤ C

ˆ

K2

W (u) + χ{u>λ} dx

≤ C(V (r) − V (r − T ) + a(r) − a(r − T )).

In conclusion

c(λ)(a(r) + V (r)
n−1

n ) ≤ V (r) + a(r) − (V (r − T ) + a(r − T )) + e−T rn−1.

From the Euler-Lagrange equation for the minimizer we find that u is Lipschitz
in B1 with the Lipschitz norm depending only on W . Since

u(0) ≥ α = 1 + 2λ

we find that V (1) ≥ µ0(λ). This and the inequality above easily implies that the
sequence

dk := a(kT ) + V (kT )

satisfies a discrete differential inequality
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c(λ)d
n−1

n

k ≤ dk+1 − dk + e−T Tn−1kn−1, d1 ≥ µ0(λ).

The coefficient of kn−1 tends to 0 as T → ∞. It is straightforward to check that

dk ≥ µ1k
n

for some small µ1(λ) provided that T is chosen large depending on λ. This gives

V (r) + a(r) ≥ c(λ)rn.

The energy bound (4.1) implies a(r) ≤ Crn−1, thus

V (r) ≥ c(λ)rn if r ≥ 1,

and Step 1 is proved.

Step 2. We remove the assumptions on α, β and c by increasing the initial radius
r ≥ r1(α, β).

Since u(0) ≥ α we can find a small λ depending on α with −1 < λ ≤ λ0, and
λ ≤ (α − 1)/2. By Step 1 there exists c(α) > 0 such that for all r ≥ 1

|{u > λ} ∩ Br| ≥ c(α)rn.

On the other hand, the energy bound (4.1) gives,

|{β ≥ u > λ} ∩ Br| ≤ C(λ, β)J(u,Br) ≤ C(λ, β)rn−1,

hence

(4.2) |{u > β} ∩ Br| ≥ c(α)rn

for all r > r0(α, β).
Finally we remark that in (4.2) we can take the constant to be independent of

α by possibly increasing r0(α, β).
Indeed, by (4.2) we know that there exists a constant C(α) > 0 and a point

x0 ∈ BC(α) such that u(x0) ≥ 0. Now we can apply (4.2) with α = 0 by taking x0

to be the origin, and obtain

|{u > β} ∩ Br(x0)| ≥ crn

for all r ≥ r0(β), where c depends only on W . In conclusion

|{u > β} ∩ Br| ≥ crn

for all r > r1(α, β) and the theorem is proved.
¤
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4.3. Asymptotic behavior. As a consequence of the density estimates we obtain
that the level sets of u are asymptotically flat at ∞ at least in low dimensions. If
u : R

n → [−1, 1] is a global minimizer then, by Modica’s theorem, the rescalings

uεk
(x) = u(x/εk)

satisfy

uεk
→ χE − χCE in L1

loc(R
n),

with ∂E a global minimal surface. Then the density estimates imply, as in the
minimal surface case, that the level sets

{uεk
= 0} = εk{u = 0}

converge uniformly on compact sets to ∂E. Since ∂E is a global minimal surface,
then ∂E is a hyperplane if n ≤ 7, say

∂E = {xn = 0}.
Then {u = 0} is asymptotically flat at ∞, i.e. there exist sequences θk, lk with
lk → ∞, θk/lk → 0 such that

{u = 0} ∩ Blk ⊂ {|xn| ≤ θk}.

5. Flatness theorem of De Giorgi

In next two sections we give a new proof of the flatness theorem of De Giorgi
that we mentioned in the introduction. The methods seem to be quite general and
they can be applied to other equations or variational problems. Later we will use
the same ideas to prove the corresponding flatness theorem for phase transitions.

The precise statement of the flatness theorem is the following.

Theorem 5.1 (De Giorgi). Assume E is minimal in B1, 0 ∈ ∂E and

∂E ∩ B1 ⊂ {|xn| ≤ ε0}
with ε0(n) small depending only on n. Then ∂E is an analytic surface in B1/2.

The difficulty of this theorem lies in the fact that ∂E cannot be written as a
graph. De Giorgi’s proof relies on the monotonicity formula for minimal surfaces
and the approximation of ∂E by harmonic functions (see [40]). We will give a
proof based on Harnack inequality and viscosity solutions methods. First we give
a different version of the theorem above known as improvement of flatness.

Theorem 5.2 (Improvement of flatness). Assume E is minimal in B1, 0 ∈ ∂E
and

∂E ∩ B1 ⊂ {|xn| ≤ ε}
with ε ≤ ε0(n). Then there exists a unit vector ν1 such that

∂E ∩ Br0
⊂

{

|x · ν1| ≤
ε

2
r0

}

,

where r0 is a small universal constant.

This theorem implies that ∂E is a C1,α graph in B3/4. To see this we apply the
theorem inductively and we obtain unit vectors νk such that

∂E ∩ Brk
0
⊂

{

|x · νk| ≤
ε

2k
rk
0

}

.
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B1

Br0

ε

Ec

E

Figure 5. Improvement of flatness

This gives

|νk+1 − νk| ≤ C(r0)
ε

2k

hence νk → ν(0) and moreover

|νk − ν(0)| ≤ C
ε

2k
.

We obtain

∂E ∩ Brk
0
⊂

{

x · ν(0) ≤ C
ε

2k
rk
0 = Cεr

k(1+α)
0

}

,

which implies that ∂E is a differentiable surface at 0 with normal ν(0). Applying
this argument at all points in ∂E ∩ B3/4 we see that ∂E is in fact a C1,α surface.

Once the surface is a C1,α graph, we apply Schauder’s estimates (see [39]) for
the minimal surface equation satisfied by the graph and obtain that in B1/2, ∂E is
smooth and in fact analytic.

We will derive the improvement of flatness theorem from the following weaker
result.

Theorem 5.3 (Harnack inequality). Assume E is minimal in B1 and

∂E ∩ B1 ⊂ {|xn| ≤ ε}
with ε ≤ ε1(n). Then

∂E ∩ B1/2 ⊂ {|xn| ≤ ε(1 − η)},
where η > 0 is a small universal constant.

Before we proceed we need to introduce the notion of viscosity solutions for
boundaries of sets.

Definition: We say that the boundary of a set ∂F satisfies the mean curvature
equation

M(D2v,∇v) := (1 + |∇v|2)△v − (∇v)T D2v∇v = 0

in the viscosity sense if for any smooth function ϕ which has the subgraph

S := {xn < ϕ(x′)}
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included in F or CF in a small ball Bρ(Y ) around some point

Y = (y′, yn) ∈ ∂F ∩ ∂S

we have

M(D2ϕ,∇ϕ) ≤ 0.

If we consider the supergraph of ϕ then the opposite inequality holds.

Lemma 5.4. If ∂E is a minimal surface then ∂E satisfies the mean curvature
equation in the viscosity sense.

A proof of this lemma can be found in [16]. The idea is that if E contains the
subgraph of ϕ and M(D2ϕ,∇ϕ) > 0, then we can decrease the perimeter by adding
to E the small domain

{ϕ(x′) < xn < ϕ(x′) + ε2 − ε|x′|2}.

Next we explain why Harnack inequality gives the improvement of flatness the-
orem. The main reason is that Harnack inequality allows us to approximate a flat
minimal surface by a harmonic function.

Theorem 5.3 implies Theorem 5.2
The proof is by compactness. Assume by contradiction the statement of Theorem

5.2 is not true. Then we can find a sequence of minimal surfaces ∂Ek which satisfy
the hypothesis

0 ∈ ∂Ek ∩ B1 ⊂ {|xn| < εk}
with εk → 0 for which the conclusion does not hold.

At each point x0 ∈ ∂Ek ∩ B1/2 we apply Harnack inequality in B1/2(x0) and
obtain that

∂Ek ∩ B1/4(x0) ⊂ {|(x − x0) · en| ≤ 2εk(1 − η)}.
We apply Harnack inequality repeatedly as long as the hypothesis is satisfied. We
obtain that for all m ≥ 2 such that

εk2m(1 − η)m−2 < ε1(n)

we have the inclusion

∂Ek ∩ B2−m(x0) ⊂ {|(x − x0) · en| ≤ 2εk(1 − η)m−1}.
Clearly we can take m → ∞ as εk → 0.

We strech this picture by a factor ε−1
k in the xn direction. The sets

Ak :=

{

(x′,
xn

εk
)| (x′, xn) ∈ ∂Ek ∩ B1

}

are included in {|xn| ≤ 1}. Moreover, for each m as above

Ak ∩
{

|x′ − x′
0| ≤ 21−m

}

⊂
{

|(x − x0) · en| ≤ 2(1 − η)m−1
}

.

This gives a Hölder modulus of continuity of Ak outside a Cε−1
k neighborhood of 0.

By Arzela-Ascoli theorem we can assume that as εk → 0, by passing if necessary
to a subsequence, Ak converges in Hausdorff distance to the graph of a Hölder
continuous function (x′, w(x′)) in {|x′| ≤ 1/2}.
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Next we show that w is harmonic in the viscosity sense, that is w cannot be
touched by below (above) at an interior point by a strict subharmonic (superhar-
monic) quadratic polynomial.

Assume P (x′) is a quadratic polynomial whose graph touches by below the graph
of w at some point. Then Ak touches a translation of P which implies that ∂Ek

touches the graph of εkP (x′) + c at some interior point. Clearly ∂Ek satisfies the
minimal surface equation in the viscosity sense hence

M(εkD2P, εk∇P ) = εk△P + ε3
k(|∇P |2∆P − (∇P )T D2P ∇P ) ≤ 0

at the contact point. We let εk → 0 and obtain

△P ≤ 0.

Since w is harmonic, w(0) = 0 (since 0 ∈ Ak) and |w| ≤ 1, we find that

|w(x′) − x′ · ∇w(0)| ≤ r0

4
if |x′| ≤ 2r0,

provided that r0 is chosen small, universal. This easily implies

Ak ∩
{

|x′| ≤ 3

2
r0

}

⊂
{

|xn − x′ · ∇w(0)| ≤ r0

3

}

for large k hence,

∂Ek ∩ Br0
⊂

{

|x · νk| ≤
εk

2
r0

}

for some |νk| = 1.

Thus ∂Ek satisfies the conclusion of the Theorem and we reach a contradiction.
¤

6. Harnack inequality

In this section we will give a proof of Harnack inequality, Theorem 5.3. The
ideas come from the proof of the classical Harnack inequality for uniformly elliptic
second order linear equations due to Krylov and Safonov [44]. Let us briefly explain
the key steps in their proof. First, they obtain an estimate in L∞ from one point
to a set of points of fixed positive measure. Then, they iterate this step using
Calderon-Zygmund decomposition and obtain L∞ estimates on a set of almost full
measure, from which Harnack inequality can be deduced.

Of course these results do not apply directly in our case. The mean curvature
equation M(D2v,∇v) = 0 is not uniformly elliptic since the ellipticity constants
depend on |∇v|. Moreover, the set ∂E cannot be written as a graph of a function
v. However, the measure estimates still hold. This is because the set on which
L∞ estimates hold is obtained as a contact set with a family of paraboloids that
lie below the graph of v. Due to the flatness assumption, at the contact points
the gradient of v is small, and the equation becomes uniformly elliptic. Also, the
minimality and flatness of ∂E imply that from the measure point of view, ∂E is
almost a graph. Below we give the details. A systematic treatment of estimates for
flat solutions to general elliptic equations can be found in [57].

First we prove a measure estimates for a general elliptic equation in R
n.

(6.1) F (D2v,Dv) = 0, v : B1 → R,

with
F : S × R

n → R
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where S denotes the space of n × n symmetric matrices. We assume that F is
uniformly elliptic only in a neighborhood of (0, 0) ∈ S × R

n. Precisely, assume
there exist δ > 0 small and λ, Λ such that if |p| ≤ δ and N ≥ 0 is positive
symmetric then

F (0, p) = 0,

λ|N | ≤ F (M + N, p) − F (M,p) ≤ Λ|N | if |M |, |N | ≤ δ,

0 ≤ F (M + N, p) − F (M,p) if |M | < δ.

Clearly, these hypotheses are satisfied by the mean curvature equation.
We prove our estimates for supersolutions v of the equation above. That is we

assume v is continuous, and any quadratic polynomial P that touches v by below
at an interior point x0 satisfies

F (D2P,DP (x0)) ≤ 0.

Proposition 6.1 (Estimate in measure). Let v : B1 → R, v ≥ 0 be a viscosity
supersolution to equation (6.1). Given µ > 0 small, there exist ε small and M large
depending on µ and n,δ, λ, Λ such that if

v(0) ≤ ε,

then

|{v > Mv(0)} ∩ B1/3| < µ.

In this section positive constants depending on n, λ, Λ and δ are called universal
constants.

For a small number a > 0, we consider the paraboloids with center at y ∈ B̄1

and opening −a, i.e

−a

2
|x − y|2 + const.

We slide them vertically from −∞ till they touch the graph of v. We denote the
set of interior contact points with Da. Precisely,

Da :=
{

z ∈ B1 | ∃ y ∈ B̄1 such that v(z) +
a

2
|z − y|2 ≤ v(x) +

a

2
|x − y|2 ∀x ∈ B1

}

.

We prove Proposition 6.1 by estimating the size of Da. Notice that

v(z) ≤ v(0) + 2a, ∀z ∈ Da.

First we obtain an estimate of the contact set of z’s in terms of the set of centers
y that we start. This is a variant of Alexandrov-Bakelman-Pucci estimate for
uniformly elliptic equations.

Lemma 6.2 (ABP estimate). Let a > 0 be small, a ≤ δ/2, and let F ⊂ B̄1 be a
closed set. For each y ∈ F , we slide the paraboloid of opening −a and center y by
below till we touch the graph of v for the first time. Suppose the set of all contact
points, denoted by E, is included in a compact set of B1. Then

|E| ≥ c|F |,
with c > 0 a small universal constant.
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Figure 6. Sliding paraboloids

Proof. Let us assume for simplicity that v is smooth. Otherwise one needs to
regularize v using a standard inf -convolution.

At a contact point z, the corresponding center y(z) is given by

y(z) = z +
1

a
Dv(z).

Since y, z ∈ B̄1 we see that |Dv(z)| ≤ 2a ≤ δ. The differential map is

Dzy = I +
1

a
D2v(z)

and moreover, since v has at z a tangent paraboloid of opening −a by below,

D2v(z) ≥ −aI.

Now we claim that the equation implies

D2v(z) ≤ CaI,

with C a large constant depending on n, δ, λ ,Λ. Indeed, otherwise

D2v(z) ≥ Cae ⊗ e − aI,

for some unit vector e hence

F (D2v(z),Dv(z)) ≥ F (Cae ⊗ e − aI, p) ≥ λ(C − 1)a − (n − 1)Λa > 0,

and we contradict that v is a supersolution.
In conclusion

0 ≤ Dzy ≤ CI,

which gives

|F | =

ˆ

E

|det Dzy| dz ≤ C|E|.

¤

Lemma 6.3. There exist positive universal constants C, c such that if a ≤ C−1δ
and

Da ∩ Br(x0) 6= ∅
for some ball B̄r(x0) ⊂ B1, then

|DCa ∩ Br/8(x0)| ≥ crn.
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Proof. Let

z1 ∈ Br(x0) ∩ Da,

be a contact point and denote by y1 ∈ B̄1 the center of the tangent paraboloid

P (x, y1) = −a

2
|x − y1|2 + v(z1) +

a

2
|z1 − y1|2,

that touches v by below at z1. First we find a point x1 ∈ B̄r/16(x0) such that

(6.2) v(x1) − P (x1, y1) ≤ Car2, C universal.

Let φ : B̄1 → R
+ be the radially symmetric continuous function

φ(x) =

{

α−1(|x|−α − 1), 1/16 ≤ |x| ≤ 1
α−1(16α − 1), |x| < 1/16.

where α is a large universal constant. Construct a function ψ by adding a rescaling
of the above function to the tangent paraboloid P (x, y1) i.e.,

ψ(x) := P (x, y1) + ar2φ

(

x − x0

r

)

.

We claim that ψ is a strict subsolution of our equation in the annular region

r

16
< |x − x0| < r.

Indeed,

|Dψ| ≤ |DP | + |Dφ| ≤ Ca ≤ δ,

and, by choosing α sufficiently large,

F (D2ψ,Dψ) = F (−aI + aD2φ, p)

≥ λ((α + 1)t−α−2 − 1) − Λ(n − 1)(1 + t−α−2) > 0

where

t =:
|x − x0|

r
,

1

16
≤ t ≤ 1.

Now we slide the graph of ψ from below till we touch the graph of v for the first
time. In other words we look for the point x1 where the minimum

min
B̄r(x0)

(v − ψ),

is realized. Notice that the minimum value is negative since

v(z1) − ψ(z1) = P (z1, y1) − ψ(z1) = −ar2φ

(

z1 − x0

r

)

< 0.

This implies that x1 does not belong to ∂Br(x0) because

v(x) − ψ(x) ≥ P (x, y1) − P (x, y1) = 0 if x ∈ ∂Br(x0).

Since φ is a strict subsolution in the annular region above we conclude that x1 ∈
Br/16(x0) and

v(x1) < ψ(x1) ≤ P (x1, y1) + Car2

which proves (6.2).
Now we slide from below the family of paraboloids

P (x, y1) − C ′ a

2
|x − y|2 + cy, with |y − x1| ≤ r/64,
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Figure 7. The function ψ

till they become tangent to the graph of v. The opening of the above paraboloid is
−(C ′ + 1)a and the center

C ′

C ′ + 1
y +

1

C ′ + 1
y1.

The centers range over a ball of radius cr as y ∈ Br/64(x1). From (6.2) we find

cy ≤ Car2 + C ′ a

2
(r/64)2.

If |x − x1| ≥ r/16 and C ′ is sufficiently large,

P (x, y1) − C ′ a

2
|x − y|2 + cy

≤ P (x, y1) − C ′ a

2
(r/32)2 + Car2 + C ′ a

2
(r/64)2.

< P (x, y1) ≤ v(x).

Thus, the contact points are inside Br/16(x1) ⊂ Br/8(x0). From the previous lemma
we obtain

|D(C′+1)a ∩ Br/8(x0)| ≥ crn,

with c small universal, and the lemma is proved.
¤

Next we prove a simple measure covering lemma.

Lemma 6.4 (Covering lemma). Assume the closed sets Fk satisfy

F0 ⊂ F1 ⊂ F2 · · · ⊂ B̄1/3, F0 6= ∅
and for any x, r such that

Br/8(x) ⊂ B1/3, B̄r(x) ⊂ B1,

Fk ∩ Br(x) 6= ∅,
then

|Fk+1 ∩ Br/8(x)| ≥ crn.

Then

|B1/3 \ Fk| ≤ (1 − c1)
k|B1/3|

for some small constant c1 depending on c.
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Proof. Let x0 ∈ B1/3 \ Fk and let

r := dist(x0, Fk).

We first prove that

(6.3) |Fk+1 ∩ Br/3(x0)| ≥ c1|Br(x0) ∩ B1/3|.
Let

x1 := x0 −
r

6

x0

|x0|
,

and it is easy to check that

Br/6(x1) ⊂ Br/3(x0) ∩ B1/3, B̄7r/6(x1) ⊂ B1.

Since
dist(x1, Fk) ≤ r +

r

6
,

we apply the hypothesis and conclude

|Fk+1 ∩ Br/6(x1)| ≥ crn ≥ c1|Br(x0) ∩ B1/3|,
which proves (6.3).

For each x ∈ B1/3 \ Fk we let r = dist(x, Fk). From the family Br(x) we choose
a Vitali subcover, i.e balls Bri

(xi) that cover B1/3 \ Dk for which Bri/3(xi) are
disjoint.

We have
|B1/3 \ Fk| ≤

∑

|Bri
(xi) ∩ B1/3|

≤
∑

c−1
1 |Bri/3(xi) ∩ Fk+1| ≤ c−1

1 |Fk+1 \ Fk|,
which implies

|B1/3 \ Fk+1| ≤ |B1/3 \ Fk| − |Fk+1 \ Fk| ≤ (1 − c1)|B1/3 \ Fk|.
¤

Proof of Proposition 6.1. Let

a = 20v(0),

and define
Fk := DCka ∩ B̄1/3,
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where C is the constant from Lemma 6.3. Since v ≥ 0 in B1, the paraboloid of
opening −a and center 0 touches the graph of v for the first time in B̄1/3, hence
F0 6= ∅. Moreover, by Lemma 6.3 the hypothesis of the Covering lemma are satisfied
as long as Cka ≤ δ. Thus

|B1/3 \ DCka| ≤ (1 − c1)
k|B1/3|, if Cka ≤ δ.

In the set DCka the function v is less than 3Cka, and we prove the proposition by
first choosing k large depending on µ and then v(0) ≤ ε small, so that 20Ckε ≤ δ.

¤

Finally we can give the proof of Theorem 5.3 by applying the results above to
the mean curvature equation in R

n−1.

Proof of Theorem 5.3
Let ∂E be a minimal surface in B1 with

0 ∈ ∂E ⊂ {|xn| ≤ ε}.
Assume without loss of generality that in B1 the set E contains {xn < −ε} and is
contained in {xn ≤ ε}. We view ∂E as a multivalued graph over the x′ ∈ R

n−1 that
satisfies the mean curvature equation in the viscosity sense. We denote by B′

r(x
′)

the n− 1 dimensional ball of center x′ and radius r and by πn the projection along
en in R

n−1.
It suffices to prove that

∂E ∩ B1/10 ⊂ {xn ≥ −ε(1 − η)}
for some small constant η > 0 depending on n. Assume by contradiction that there
exists

z ∈ ∂E ∩ B1/10, with zn ≤ −ε(1 − η).

Then we can use the argument in Proposition 6.1 to show the existence of a subset
D of contact points

D ⊂ ∂E ∩ {|x′ − z′| < 3/10, xn ≤ −ε + Mηε}
with

Hn−1(πn(D)) ≥ (1 − µ)Hn−1(B′
3/10(z

′)),

with µ a small universal constant to be made precise later. We choose η sufficiently
small depending on µ such that Mη < 1/2. Then D lies below the plane xn = −ε/2.

Next we use Lemma 6.2 to find another closed subset of contact points in ∂E,

A ⊂ ∂E ∩ B1/10 ∩ {xn ≥ −ε/2}
so that

Hn−1(πn(A)) > c0

with c0 > 0 a small constant depending only on n. For this we slide paraboloids

xn =
a

2
|x′ − y′|2 + const

of opening a = 103ε and centers |y′| ≤ 10−2 by above till they touch ∂E. Since
0 ∈ ∂E, it is easy to check that the contact set A is included in the set

{|x′| < 1/10, −ε/2 ≤ xn ≤ ε}.
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The bound on Hn−1(πn(A)) follows from the measure estimate of Lemma 6.2 be-
cause the family of centers y′ projects along en into a set of fixed positive measure.

The sets A and D are disjoint since they lie on different sides of the plane
xn = −ε/2. Moreover, they both project along en in B′

3/10(z
′). We choose µ small

universal such that

Hn−1(πn(A)) + Hn−1(πn(D)) ≥ Hn−1(B′
3/10(z

′)) + c0/2.

This implies that the projections πn(A) and πn(D) have an intersection of at least
c0/2 measure. This gives

PB1/2
(E) ≥ Hn−1(B′

1/2) + c0/3.

On the other hand, by comparing E with {xn ≤ −ε} in B1/2, we find from the
minimality of E that

PB1/2
E ≤ Hn−1(B′

1/2) + Cε,

and we reach a contradiction if ε is small.
¤

7. The flatness theorem for minimizers

In the next three sections we prove the analogue of Theorem 5.2 for phase tran-
sitions, i.e minimizers of the energy

J(u,Ω) =

ˆ

Ω

1

2
|∇u|2 + W (u) dx.

The corresponding flatness theorem is the following.

Theorem 7.1 (Improvement of flatness). Let u be a minimizer of J in the cylinder

{|x′| < l} × {|xn| < l},
and assume that

0 ∈ {u = 0} ∩ {|x′| < l} ⊂ {|xn| < θ}.
Given θ0 > 0 there exists ε1(θ0) > 0 depending on n, W and θ0 such that if

θ

l
≤ ε1(θ0), θ0 ≤ θ

then

{u = 0} ∩ {|πξx| < η2l} ⊂ {|x · ξ| < η1θ},
for some unit vector ξ, where 0 < η1 < η2 < 1 are constants depending only on n.
(πξ denotes the projection along ξ)

The theorem is valid for any level set s with |s| < 1, but it was stated for s = 0
for simplicity. As a consequence of this flatness theorem we obtain the following
important corollary:

Corollary 7.2. Let u be a global minimizer of J in R
n. Suppose that the 0 level

set {u = 0} is asymptotically flat at ∞, i.e there exist sequences of positive numbers
θk, lk and unit vectors ξk with lk → ∞, θkl−1

k → 0 such that

{u = 0} ∩ Blk ⊂ {|x · ξk| < θk}.
Then the 0 level set is a hyperplane and u is one-dimensional.
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By saying that u is one-dimensional we understand that u depends only on one
direction ξ, i.e u = g(x · ξ) for some function g. In our case, g is a minimizer
in 1D and can be computed explicitly from W . The function g is unique up to
translations.

Proof. Without loss of generality assume u(0) = 0. Fix θ0 > 0, and choose k large
such that θkl−1

k ≤ ε ≤ ε1(θ0).
If θk ≥ θ0 then we apply Theorem 7.1 and obtain that {u = 0} is trapped in a

flatter cylinder. We apply Theorem 7.1 repeatedly till the height of the cylinder
becomes less than θ0.

In some system of coordinates we obtain

{u = 0} ∩ ({|y′| < l′k} × {|yn| < l′k}) ⊂ {|yn| ≤ θ′k},
with θ0 ≥ θ′k ≥ η1θ0 and θ′kl′−1

k ≤ θkl−1
k ≤ ε, hence

l′k ≥ η1

ε
θ0.

We let ε → 0 and obtain that {u = 0} is included in an infinite strip of width
θ0. We then let θ → 0 and obtain that {u = 0} is a hyperplane. Similarly, all the
level sets are hyperplanes which implies that u is one-dimensional.

¤

This corollary gives one of our main results: the uniqueness up to rotations of
global minimizers in low dimensions (see Section 10).

The proof of Theorem 7.1 is quite involved. The idea is to reproduce the argu-
ments from the minimal surface case given in the previous two sections. We present
the proof of Theorem 7.1, with the exception of a number of technical lemmas that
can be found in the original paper [55].

Again we will prove the improvement of flatness from a version of Harnack in-
equality.

Theorem 7.3 (Harnack inequality for minimizers). Let u be a minimizer of J in
the cylinder

{|x′| < l} × {|xn| < l}
and assume that

0 ∈ {u = 0} ⊂ {|xn| < θ}.
Given θ0 > 0 there exists ε0(θ0) > 0 depending on n, W and θ0, such that if

θl−1 ≤ ε0(θ0), θ0 ≤ θ,

then
{u = 0} ∩ {|x′| < η0l} ⊂ {|xn| < (1 − η0)θ},

where η0 > 0 is a small constant depending on n and W .

In the remaining part of this section we show that Theorem 7.3 implies Theorem
7.1. We start by introducing some notation.

Notation. We denote points as follows

X = (x, xn+1) = (x′, xn, xn+1) ∈ R
n+1

X ∈ R
n+1, x′ ∈ R

n−1, x ∈ R
n, |xn+1| < 1.

We use the following notation:
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• B(x, r) is the ball of center x and radius r in R
n;

• B(X, r) is the ball of center X and radius r in R
n+1;

• ∠(ν1, ν2) ∈ (0, π) is the angle between the vectors ν1 and ν2;

• πνX = X − (X · ν)ν is the projection along ν;

• Pν is the hyperplane perpendicular to ν going through the origin;

• πi := πei
, Pi := Pei

.

Constants depending on n, and W are called universal and we denote them by
C, c, C̄i, c̄i. We write C̄i, c̄i for constants that we use throughout the paper and
by C, c various constants used in proofs that may change from line to line.

In the proof we often construct radial barriers

xn+1 = g(|x| − r),

from an increasing real function g : I → [−1, 1] from some interval I containing 0.
In order to check wether or not such a barrier is a subsolution or supersolution we
have to check inequalities involving g, g′ and g′′. In this cases we consider s = g as
the new variable and we define a new function on I

h(s) :=
1

2
(
dg

dt
)2.

Straightforward computations give

g′ =
√

2h, g′′ = h′

and now the inequalities involve only h and h′ in I. We can reconstruct g from h
(up to a translation) since

H(s) :=

ˆ s

0

1
√

2h(ζ)
dζ = g−1(s) − g−1(0).

In particular, if we define

h0(s) := W (s),

H0(s) :=

ˆ s

0

1
√

2h0(ζ)
dζ,

and

g0(t) := H−1
0 (t)

then we find

g′′0 (t) = h′
0(g0(t)) = W ′(g0),

thus, g0 is the one dimensional solution of our semilinear equation.
First we show that the 0 level set of a minimizer satisfies in some sense an

equation in the viscosity sense.

Proposition 7.4. Let u be a minimizer of J in {|x′| < l}×{|xn| < l} and assume
that u(0) = 0 and u < 0 below the graph of the quadratic polynomial

Γ1 :=

{

xn = P1(x
′) =

θ

l2
1

2
x′T M1x

′ +
θ

l
ξ · x′

}

,

where M1 is a (n − 1) × (n − 1) symmetric matrix. Also assume

‖M1‖ < δ−1, |ξ| < δ−1
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for some small δ > 0. There exists σ(δ) > 0 small, such that if

θl−1 ≤ σ(δ), θ ≥ δ,

then
tr M1 ≤ δ.

As a consequence of this proposition we end up with a version of the Theorem
of Modica in the viscosity sense. This can be viewed as the analogue of Lemma 5.4
to the case of minimizers of J .

Proposition 7.5 (Modica theorem - viscosity sense). Let u be a minimizer of J
and assume that u(0) = 0. Consider the graph of a quadratic polynomial

Γ =

{

xn = P (x′) :=
1

2
x′T Mx′

}

,

that satisfies

(7.1) △P = tr M > δ0‖M‖, ‖M‖ ≤ δ−1
0 ,

for some δ0 > 0 small.
Then Γ cannot touch by below {uε = 0} at 0 in a δ0(△P )−

1
2 ε

1
2 neighborhood, if

ε ≤ σ0(δ0) where σ0(δ0) > 0 depends on δ0 and the universal constants.

By “Γ touches by below {uε = 0} at 0 in a δ0(△P )−
1
2 ε

1
2 neighborhood” we

understand

{uε = 0} ∩ {xn < P (x′)} ∩ {|x| < δ0(△P )−
1
2 ε

1
2 } = ∅.

Proposition 7.5 says that {uε = 0} satisfies the mean curvature equation in some
weak viscosity sense in which we have to specify the size of the neighborhood around
the touching point. The size of the neighborhood depends on both the polynomial
P and ε.

If P is fixed and ε → 0 then the radius of the neighborhood converges to 0. In
particular, if {uε = 0} converges uniformly to a surface, then this surface satisfies
in the viscosity sense the mean curvature equation.

One way to interpret the above proposition is the following:
Suppose that P has positive mean curvature and let δ0 be small such that (7.1)
holds. In order to obtain a contradiction that P touches {uε = 0} by below at
the origin we have to ensure that it stays below in a whole neighborhood. The
size of this neighborhood is given by the first radius for which P separates at just
one point at a distance δ0ε from xn = 0. Indeed, if r denotes the radius of this
neighborhood then,

‖M‖r2 ≥ 2δ0ε ⇒ r2 ≥ δ0‖M‖−1ε ≥ δ2
0(△P )−1ε.

Hence, if ε < σ0(δ0) then P cannot touch by below {uε = 0} at 0 in the r
neighborhood.

Next we show that Proposition 7.5 follows from Proposition 7.4.
Assume by contradiction that for some

ε ≤ σ0(δ0) := σ2(
δ2
0

4
)

Γ touches {uε = 0} by below at 0 in a δ0(△P )−
1
2 ε

1
2 neighborhood. By rescaling

we find that
{

xn =
ε

2
x′T Mx′

}
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touches by below {u = 0} at 0 in a δ0(△P )−
1
2 ε−

1
2 neighborhood.

We apply lemma 7.4 with

l =
δ0

2
(tr M)−

1
2 ε−

1
2 , θ =

δ2
0

4
, M1 = (tr M)−1M, ξ = 0,

and

δ :=
δ2
0

4
thus,

Γ1 =
{

xn =
ε

2
x′T Mx′

}

.

Since

‖M1‖ = (tr M)−1‖M‖ < δ−1
0 < δ−1,

θl−1 =
δ0

2
(tr M)

1
2 ε

1
2 < ε

1
2 ≤ σ(

δ2
0

4
) = σ(δ)

we conclude

δ ≥ tr M1 = 1

which is a contradiction.

Next we show that Theorem 7.3 implies Theorem 7.1. The proof is by compact-
ness and is similar to the one from minimal surfaces. Assume by contradiction that
there exist uk, θk, lk, ξk such that uk is a local minimizer of J , uk(0) = 0, the level
set {uk = 0} stays in the flat cylinder

{|x′| < lk} × {|xn| < θk}
θ ≥ θ0, θkl−1

k → 0 as k → ∞ for which the conclusion of Theorem 7.1 doesn’t hold.
Let Ak be the rescaling of the 0 level sets given by

(x′, xn) ∈ {uk = 0} 7→ (y′, yn) ∈ Ak

y′ = x′l−1
k , yn = xnθ−1

k .

Claim 1: Ak has a subsequence that converges uniformly on |y′| ≤ 1/2 to a set
A∞ = {(y′, w(y′)), |y′| ≤ 1/2} where w is a Holder continuous function. In other
words, given ε, all but a finite number of the Ak’s from the subsequence are in an
ε neighborhood of A∞.

Proof: Fix y′
0, |y′

0| ≤ 1/2 and suppose (y′
0, yk) ∈ Ak. We apply Theorem 7.3 for

the function uk in the cylinder

{|x′ − lky′
0| < lk/2} × {|xn − θkyk| < 2θk}

in which the set {uk = 0} is trapped. Thus, there exist a universal constant η0 > 0
and an increasing function ε0(θ) > 0, ε0(θ) → 0 as θ → 0, such that {uk = 0} is
trapped in the cylinder

{|x′ − lky0| < η0lk/2} × {|xn − θkyk| < 2(1 − η0)θk}
provided that 4θkl−1

k ≤ ε0(2θk). Rescaling back we find that

Ak ∩ {|y′ − y′
0| ≤ η0/2} ⊂ {|yn − yk| ≤ 2(1 − η0)}.

We apply the Harnack inequality repeatedly and we find that

(7.2) Ak ∩ {|y′ − y′
0| ≤ ηm

0 /2} ⊂ {|yn − yk| ≤ 2(1 − η0)
m}
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provided that

4θkl−1
k ≤ ηm−1

0 ε0(2(1 − η0)
mθk).

Since these inequalities are satisfied for all k large we conclude that (7.2) holds for
all but a finite number of k’s.

There exist positive constants α, β depending only on η0, such that if (7.2) holds
for all m ≤ m0 then Ak is above the graph

yn = yk − 2(1 − η0)
m0−1 − α|y′ − y′

0|β

in the cylinder |y′| ≤ 1/2.
Taking the supremum over these functions as y′

0 varies we obtain that Ak is
above the graph of a Hölder function yn = ak(y′). Similarly we obtain that Ak is
below the graph of a Hölder function yn = bk(y′). Notice that

(7.3) bk − ak ≤ 4(1 − η0)
m0−1

and that ak, bk have a modulus of continuity bounded by the Hölder function αtβ .
From Arzela-Ascoli Theorem we find that there exists a subsequence akp

which
converges uniformly to a function w. Using (7.3) we obtain that bkp

, and therefore
Akp

, converge uniformly to w.

Claim 2: The function w is harmonic (in the viscosity sense).

Proof: The proof is by contradiction. Fix a quadratic polynomial

yn = P (y′) =
1

2
y′T My′ + ξ · y′, ‖M‖ < δ−1, |ξ| < δ−1

such that △P > δ, P (y′) + δ|y′|2 touches the graph of w, say, at 0 for simplicity,
and stays below w in |y′| < 2δ. Thus, for all k large we find points (yk

′, ykn) close
to 0 such that P (y′) + const touches Ak by below at (yk

′, ykn) and stays below it
in |y′ − yk

′| < δ.
This implies that, after eventually a translation, there exists a surface

{

xn =
θk

l2k

1

2
x′T Mx′ +

θk

lk
ξk · x′

}

, |ξk| < 2δ−1

that touches {uk = 0} at the origin and stays below it in the cylinder |x′| < δlk.
We write the above surface in the form

{

xn =
δ2θk

2(δlk)2
x′T Mx′ +

δ2θk

δlk
δ−1ξk · x′

}

,

and we contradict Proposition 7.4 since θk ≥ θ0, θkl−1
k → 0 and △P > δ.

Since w is harmonic, there exist 0 < η1 < η2 small (depending only on n) such
that

|w − ξ · y′| < η1/2 for |y′| < 2η2 .

Rescaling back and using the fact that Ak converge uniformly to the graph of w we
conclude that for k large enough

{uk = 0} ∩ {|x′| < 3lkη2/2} ⊂ {|xn − θkl−1
k ξ · x′| < 3θkη1/4}.

This is a contradiction with the fact that uk doesn’t satisfy the conclusion of the
Theorem 7.1.
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8. A family of sliding surfaces

We prove Theorem 7.3 following the strategy of Section 5. The key step is to
obtain estimates in measure. Since the level sets do not satisfy any equation on
their own, one needs to look at their full collection.

In this section we introduce a family of sliding surfaces. These are rotation
surfaces in R

n+1 which we denote by S(Y,R). We say that the point Y is the center
of S and R the radius. These surfaces are perturbations of the one dimensional
solution. Roughly speaking they are obtained by first rotating g0(t) around the
axis t = −R, and then modifying it outside the s level sets with |s| < 1/2, so that
the resulting surface is a supersolution in the set {|xn+1| ≥ 1/2}.

The surfaces S in our setting play the same role as the paraboloids in Section
5. The key property that S satisfies is the following: Suppose that for fixed R,
some surfaces S(Y,R) are tangent by above to the graph of u. Then the contact
points project along en into a set with measure comparable with the measure of
the projections of the centers Y along en (see Proposition 8.1).

We proceed with the explicit construction of S.
For |yn+1| ≤ 1/4, we define S(Y,R) as

(8.1) S(Y,R) := {xn+1 = gyn+1,R(H0(yn+1) + |x − y| − R)},
where the function gs0,R, respectively hs0,R, Hs0,R associated with it, are con-
structed below for |s0| ≤ 1/4 and large R. For simplicity of notation we denote
them by g, h, H.

Denote
C̄ = 1 + 8(n − 1)max

√
W,

and let ϕ be such that

1
√

2ϕ(s)
=

1
√

2h0(s)
− C̄0

R
(s − s0),

where C̄0 is large enough so that the following holds

ϕ(s) < h0(s) − 2C̄R−1, if s ∈ [−3/4,−1/2]

ϕ(s) > h0(s) + 2C̄R−1, if s ∈ [1/2, 3/4].

Let sR near −1 be such that h0(sR) = R−1, hence 1 + sR ∼ R− 1
2 . We define

hs0,R : [sR, 1] → R as

h(s) =































h0(s) − h0(sR) − C̄R−1(s − sR) if s ∈ [sR,− 1
2 ]

ϕ(s) if s ∈ (−1/2, 1/2)

h0(s) + R−1 + C̄R−1(1 − s) if s ∈ [12 , 1].

For R large, h(s) ≥ c(1 + s)(s− sR) on [sR, 0], thus h is positive on (sR, 1]. Define

Hs0,R(s) = H0(s0) +

ˆ s

s0

1
√

2h(ζ)
dζ
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and for R large enough

H(sR) ≥ H0(s0) −
ˆ s0

sR

1
√

c(1 + ζ)(ζ − sR)
dζ ≥ −C log R

H(1) ≤ H0(s0) +

ˆ 1

s0

1
√

c(1 − ζ)2 + R−1
dζ ≤ C log R.

Finally we define gs0,R as

gs0,R(t) =











sR if t < H(sR)

H−1(t) if H(sR) ≤ t ≤ H(1).

Now we list some properties of the surfaces S(Y,R).
1) We have

h(s) > h0(s) − 2C̄R−1 > ϕ(s), if s ∈ [−3/4,−1/2],

h(s) < h0(s) + 2C̄R−1 < ϕ(s), if s ∈ [1/2, 3/4],

and

H(s) = H0(s) −
C̄0

2R
(s − s0)

2, if |s| ≤ 1/2,

H(s) > H0(s) −
C̄0

2R
(s − s0)

2 if 1/2 < |s| < 3/4.

Let ρs0,R be the function whose graph is obtained from the graph of g0 by the
transformation

(t, s) 7→
(

t − C̄0

2R
(s − s0)

2, s

)

for |s| < 3/4.

From the formulas above we obtain that g = ρ for |s| ≤ 1/2, and g < ρ at all other
points where ρ is defined. In other words, if S(Y,R) is the rotation surface

S(Y,R) := {xn+1 = ρyn+1,R(H0(yn+1) + |x − y| − R)},
then, S(Y,R) coincides with S(Y,R) in the set |xn+1| ≤ 1/2 and stays below it at
all the other points where S is defined.
Notice that

S(Y,R) ⊂ {|xn+1| ≤ 3/4}
and it is defined only in a neighborhood of the sphere |x−y| = R which is the yn+1

level set of S(Y,R).

2) We remark that S(Y,R) is constant sR when

|x − y| ≤ R − C log R,

and grows from sR to 1 when
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R − C log R ≤ |x − y| ≤ R + C log R.

3) If s ∈ (sR,−1/2) ∪ (1/2, 1), then on the s level set of S

△S ≤h′(s) + 2(n − 1)R−1
√

2h(s)

≤h′
0(s) − C̄R−1 + 4(n − 1)R−1

√

h(s) < h′
0(s),

hence, S is a supersolution on its s level set. Moreover,

lim
s→±1/2−

H ′(s) < lim
s→±1/2+

H ′(s), lim
s→1−

H ′(s) < ∞,

thus S(Y,R) is a strict supersolution for |xn+1| ≥ 1/2, that is S(Y,R) cannot touch
by above the graph of a C2 subsolution at a point X with |xn+1| ≥ 1/2.

4) If |s| < 3/4, then

|ϕ′(s) − h′
0(s)| ≤ CR−1.

If vS denotes the function with graph S(Y,R) defined above, one has

|△vS − h′
0(vS)| ≤ C|ϕ′ − h′

0| + CR−1 ≤ CR−1,

hence vS is an approximate solution of the equation with a R−1 error.

Next proposition is quite surprising and is the key tool in proving Theorem 7.3.
It is the analogue of the ABP estimate (Lemma 6.3) of Section 5.

Recall the notation Pn := {xn = 0}.
Proposition 8.1 (Measure estimate for contact points). Let u be a C2 subsolution
i.e

△u ≥ h′
0(u), |u| < 1.

Let A be a closed set in
Pn ∩ {|xn+1| ≤ 1/4}.

Assume that for each Y ∈ A the surface S(Y + tξ, R) , R large, stays above the
graph of u when t → −∞ and, as t increases, it touches the graph by above for
the first time at a point (contact point). If B denotes the projection of the contact
points along en in Pn, then,

µ̄0|A| ≤ |B|
where µ̄0 > 0 universal, small and |A| represents the n-dimensional Lebesgue mea-
sure.

Proof. Assume that S(Y,R) touches u by above at the point X = (x, u(x)). From
the discussion above we find |u(x)| < 1/2.

Denote by ν the normal to the surface at X, i.e.

ν = (ν′, νn+1) =
1

√

1 + |∇u|2
(−∇u, 1).

For any contact point X the corresponding center Y is given by
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Y (X) = (x +
ν′

|ν′|σ, xn+1 + ω) = F (X, ν),

where

ω = RC̄−1
0 (νn+1|ν′|−1 − H ′

0(xn+1))

σ = − C̄0

2R
ω2 + H0(xn+1) − H0(xn+1 + ω) + R.

The function F is smooth defined on

{X ∈ R
n+1 : |xn+1| < 1/2} × {ν ∈ R

n+1 : |ν| = 1, c1 < νn+1 < 1 − c1}.
The differential DXY is a linear map defined on TX , the tangent plane at X, and

DXY = FX(X, ν) + Fν(X, ν)DXν = FX(X, ν) − Fν(X, ν)IIu

where IIu represents the second fundamental form of u at X. Writing the formula
above for the surface S(Y,R) at X, we find

0 = FX(X, ν) − Fν(X, ν)IIS

thus,

DXY = Fν(X, ν)(IIS − IIu).

From (8.2) and (8.2), it is easy to check that

‖Fν(X, ν)‖ ≤ CR.

Since S touches u by above at X, we find that

D2vS(x) − D2u(x) ≥ 0,

where vS is the function whose graph is S. On the other hand, from (8.2),

△vS ≤ h′
0(xn+1) + CR−1 = △u + CR−1

which implies

‖D2S(x) − D2u(x)‖ ≤ CR−1

or

‖IIS − IIu‖ ≤ CR−1.

This gives

‖DXY ‖ ≤ C.

The centers Z for which X ∈ S(Z,R) describe a rotation surface, around X. Note
if S(·, R) is above u, then its center is above this surface. The normal to the surface
at Y (X), which we denote by τ , belongs to the plane spanned by ν and en+1, and
c2 < τn+1 < 1 − c2. Thus, if ξ is perpendicular to en+1, we have

|τ · ξ| ≤ C|ν · ξ|
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(notice that the tangent plane to the surface at Y (X) is the range of Fν(X, ν).)

Let B̃ be the set of contact points, Ã the set of the corresponding centers,
B = πξB̃ and A = πξÃ. Remark that πξ is injective on Ã and B̃ by construction.

From above, we know that Ã belongs to a Lipschitz surface. One has

|A| =

ˆ

Ã

|τ(Y ) · ξ|dY ≤
ˆ

B̃

|τ(Y ) · ξ||DXY |dX ≤

≤ C

ˆ

B̃

|ν(X) · ξ|dX = C|B|,

which is the desired claim.
¤

9. Proof of Theorem 7.3

In this section we prove Harnack inequality for minimizers of J . The main step
is to show that if the 0 level set is close to the bottom {xn = −θ} at one point, then
the minimizer u is close to the one-dimensional solution g0(xn + θ) in a set of large
measure. This set is obtained as the contact set between surfaces S(Y,R) and the
graph of u. The measure estimate for the contact set comes from Proposition 8.1.

We estimate the size of the contact set by the Lebesgue measure of its projection
along en. It is often convenient to think of the graph of u as a possibly multivalued
graph over the set Pn = {xn = 0}. Since the contact points occur only in the strip
{|xn+1| < 1/2}, we introduce the sets L and Ql ⊂ L

L = Pn ∩ {|xn+1| ≤ 1/2},
Ql = L ∩ {|x′| ≤ l}.

Let us suppose we have a minimizer of J defined in a cylinder of size 2l,

{|x′| < 2l} × {|xn| < 2l}
such that the 0 level set stays above {xn = 0} but close to it at one point above
the origin

{u = 0} ∩ {|x′| < 2l} ⊂ {xn > 0},

(0, θ) ∈ {u = 0}, θ ≥ θ0,

for some fixed θ0. We denote

ε :=
θ

l
.

Then the following result holds.

Proposition 9.1. There exist universal constants C̄∗, µ̄, c̄1 such that if

C̄k
∗ ε ≤ c̄1, l ≥ C(θ0)

then the set of points

(x, u(x)) ∈ {|x′| ≤ l} × {|xn+1| ≤ 1/2}
that satisfy
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xn ≤ C̄k
∗ θ + H0(u(x))

projects along en into a set of measure greater than (1 − (1 − µ̄)k)|Ql|.
The inequality above says that the point (x, u(x)) stays at distance less than

C̄k
∗ θ in the en direction from graph of the one dimensional solution g0(xn).
This proposition is the analogue of Proposition 6.1 for minimal surfaces. The

proof involves a number of technical lemmas that we describe below. We refer the
reader to the original paper [55] for their proofs.

Since (0, θ) is close enough to the plane {xn = 0} we expect to find interior
contact points with the sliding surfaces S(Y,R) for appropriate centers Y and radius
R. This is explained in the next lemma. We remark that this step is straightforward
in the case of minimal surfaces. The case of minimizers is more delicate since the
bound on the 0 level does not guarantee that the contact points cannot occur on
the boundary of the cylinder.

Lemma 9.2 (Initial contact set). If ε ≤ c̄2, then the points (x, u(x)) with the
following properties
1) |x′| < l, |u(x)| < 1/2
2) there is a surface S(Y,R0) that stays above u in the cylinder |x′| < l and touches
its graph at (x, u(x)), where

R0 =
l2

θ
, l > C̄1 log R0

3)

∠ (ν(x), ξ0) ≤ lR−1
0

4)

xn ≤ (1 + b)θ + H0(u(x)), b < 1 is a positive fixed number

project along en into a set of measure greater than c̄2(l
√

b)n−1 provided that l ≥
C(b, θ0).

Let D̃k represent the set of points on the graph of u that have by above a
tangent surface S(Y,RC−k), where C is a large universal constant. Suppose that

we have control on the en coordinate of these sets and denote by Dk = πn(D̃k)
their projections along en into L.

Recall that S(Y,RC−k) is an approximate solution of our equation with a CkR−1

error. If S(Y,RC−k) touches u by above at X0 then, from the classical Harnack
inequality for uniformly elliptic equations, the two surfaces stay CkR−1 close to
each other in a neighborhood of X0 (see Lemma 9.3). Thus, if we denote

Ek = {Z ∈ L/ dist(Z,Dk) ≤ C1},
then we control the en coordinate of a set on the graph of u that projects along en

into Ek. Proposition 9.1 states that, in measure, Ek almost covers Ql as k becomes
larger and larger.

Looking at the graph of a solution between −1/2 and 1/2 we see two different
behaviors depending on the size of the neighborhood on which we focus our atten-
tion. Up to unit scale we see a Laplace equation and this is the reason why near a
contact point the solution and the sliding surface stay very close to each other (see
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Lemma 9.3). At larger scales, the graph looks more like a minimal surface and the
contact set behaves as in the minimal surface case. Lemma 9.4 below says that near
(large scale) a point Z ∈ Dk we can find a set of positive measure in Dk+1. Using
a covering argument we show that the sets Ek “almost” cover Ql as k increases.

Next we state the two lemmas that describe the different behaviors. We use the
following notation:

ν(x) :=
∇u

|∇u| (x) ∈ R
n.

We assume that there exists a surface S(Y0, R) that touches the graph of a solution
u by above at a point X0 = (x0, u(x0)) with

∠(ν(x0), en) ≤ π/4.

Lemma 9.3 (Small scale measure estimate). Given a constant a > 1 large, there
exists C(a) > 0 depending also on a such that for each point Z ∈ L ∩ B(πnX0, a)
there exists x with
1)

πn(x, u(x)) = Z, |x − x0| ≤ 2a,

2)

(x − x0) · ν(x0) ≤ H0(u(x)) − H0(u(x0)) + C(a)R−1.

Next lemma corresponds to Lemma 6.3 in the minimal surface case.

Lemma 9.4 (Large scale measure estimate). Suppose that u is defined in the cylin-
der {|x′| < l} × {|xn| < l} and satisfies the hypothesis above with

|x0n| < l/4, |x′
0| = q, q < l/4.

There exist constants C̄1, C̄2, such that if

q ≥ C̄1, R ≥ lC̄1, l ≥ C̄1 log R

then the set of points (x, u(x)) with the following four properties
1) |x′| < q/15, |x − x0| < 2q, |u(x)| < 1/2,
2) there is a surface S(Y,R/C̄2) that stays above u and touches its graph at (x, u(x)),
3)

∠(ν(x), ν(x0)) ≤ C̄1qR
−1,

4)

(x − x0) · ν(x0) ≤ C̄1q
2R−1 + H0(u(x)) − H0(u(x0)),

projects along en into a set of measure greater than qn−1/C̄1.

Remark. The term H0(u(x))−H0(u(x0)) that appears in property 2 of Lemma 9.3
and property 4 of Lemma 9.4 represents the distance between the u(x) level surface
and the u(x0) level surface of a one dimensional solution.

Now we state the covering lemma that links the two scales.

Lemma 9.5 (Covering lemma). Let Dk be closed sets, Dk ⊂ L, with the following
properties:
1)

D0 ∩ Ql 6= ∅, D0 ⊂ D1 ⊂ D2...
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2) if Z0 ∈ Dk ∩ Q2l, Z1 ∈ L, |Z1 − Z0| = q and 2l ≥ q ≥ a then,

|Dk+1 ∩ B(Z1, q/10)| ≥ µ1|B(Z1, q) ∩ L|
where a > 1 (large), µ1 (small) are given positive constants and l > 2a.
Denote by Ek the set

Ek := {Z ∈ L/ dist(Z,Dk) ≤ a}.
Then there exists µ > 0 depending on n, µ1 such that

|Ql \ Ek| ≤ (1 − µ)k|Ql|.

The proof of Proposition 9.1 follows from the lemmas above by showing that the
sets Dk and Ek satisfy the hypotheses of the covering lemma above. The initial set
D0 is given by Lemma 9.2.

Proof of Theorem 7.3.
We assume that u is a local minimizer of J in the cylinder

{|x′| < 2l} × {|xn| < 2l},
and

u > 0 if xn > θ, u < 0 if xn < −θ, u(0) = 0.

We show that if the 0 level set is close to xn = −θ at a point in |x′| < l/4 then the
energy of u is large and obtain a contradiction.

First we apply Lemma 9.2 upside-down and obtain that there exists a small
universal constant c1 such that the points (x, u(x)) with

xn ≥ −θ

4
+ H0(u(x)), |x′| ≤ l

2
, |u(x)| ≤ 1

2

project along en in a set of measure greater than c1l
n−1, provided that θl−1 ≤ ε2(θ0)

is small.
On the other hand, from Proposition 9.1 we find universal constants C̄∗, µ̄ such

that if

{u = 0} ∩ {|x′| < l/4} ∩ {xn < (−1 + C̄−k0

∗ /4)θ} 6= ∅,
θl−1 ≤ ε3(θ0, k0)

then the set of points (x, u(x)) with

xn ≤ −θ

2
+ H0(u(x)), |x′| ≤ l

2
, |u(x)| ≤ 1

2

project along en in a set of measure greater than (1 − (1 − µ̄)k0)|Ql/2|. We show
that if we choose k0 large, universal such that

c1l
n−1 > 2(1 − µ̄)k0 |Ql/2|

and ε small enough, then we obtain a contradiction.
As in Section 2 we use

(

1

2
|∇u|2 + h0(u)

)

dx′dxn ≥
√

2h0(u)|un|dx′dxn =

=
√

2h0(xn+1)dx′dxn+1.
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Denote by

Al := {|x′| < l} × {|xn| < l}.
Project along en the points (x, u(x)), with |xn| ≤ l. From above we find that

there exists a set of measure c1l
n−1/2 included in Ql/2 in which these points project

twice. Using barrier functions it is not difficult to show that the projection covers
the band

{|xn+1| < 1 − c(l), |x′| < l}, and c(l) → 0 as l → ∞.

Hence we can find two small universal constants c2, c3 > 0 such that

(9.1) J(u,Al) =

ˆ

Al

1

2
|∇u|2 + h0(u)dx ≥

≥ ωn−1l
n−1

ˆ 1−c2

c2−1

√

2h0(xn+1)dxn+1 +
c1

2
( min
|s|≤1/2

√

2h0(s))l
n−1 ≥

≥ ωn−1l
n−1

ˆ 1

−1

√

2h0(s)ds + c3l
n−1,

where ωn−1 represents the volume of the n − 1 dimensional unit sphere.
Assume by contradiction that there exist numbers lk, θk with

θkl−1
k → 0, θk ≥ θ0,

and local minimizers uk in A2lk satisfying the hypothesis of Theorem 7.3, and
therefore also inequality (9.1).

Denote by εk := l−1
k and vk(x) := uk(ε−1

k x). From (9.1) we obtain

Jεk
(vk, A1) = εn−1

k J(uk, Alk) ≥

≥ ωn−1

ˆ 1

−1

√

2h0(s)ds + c3.

On the other hand, as k → ∞ we have

vk → χE − χEc in L1
loc(A1),

where E = A1 ∩ {xn > 0}. By Theorem 2.1 one has

lim
k→∞

Jεk
(vk, A1) = PA1

E

ˆ 1

−1

√

2h0(s)ds = ωn−1

ˆ 1

−1

√

2h0(s)ds

which contradicts (9.2).
With this Theorem 7.3 is proved.

10. One-dimensional symmetry of global solutions

In this section we use the results of Section 7 and obtain 1D symmetry for phase
transitions from the 1D symmetry of global minimal surfaces. Recall Corollary 7.2.

Corollary. Let u be a global minimizer of J in R
n. If the 0 level set {u = 0} is

asymptotically flat at ∞, then u is one-dimensional.

At the end of Section 4 we used the minimal surface theory to show that the
level sets of minimizers of J are asymptotically flat at ∞ in dimension n ≤ 7. Using
the corollary above we obtain
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Theorem 10.1. A global minimizer of

J(u) =

ˆ

1

2
|∇u|2 + W (u) dx

is one-dimensional if n ≤ 7.

Next we prove the following version of De Giorgi’s conjecture.

Theorem 10.2. Let u ∈ C2(Rn) be a solution of

(10.1) △u = W ′(u),

such that

(10.2) |u| ≤ 1, ∂nu > 0, lim
xn→±∞

u(x′, xn) = ±1.

Then u is one-dimensional if n ≤ 8.

Before we prove this Theorem we show that the ±1 limit assumption implies
that u is a global minimizer in R

n.

Lemma 10.3. If u satisfies (10.1), (10.2) then u is a global minimizer for J .

Proof. It suffices to show that in BR, u is the unique solution of

△v = W ′(v), |v| < 1, v = u on ∂BR.

Since
lim

xn→∞
u(x′, xn) = 1,

we conclude that the graph of u(x′, xn + t) is above the graph of v for large t. We
slide this graph in the en direction till we touch v for the first time. From the Strong
Maximum Principle we find that the first touching point occurs on ∂BR. Since u
is strictly increasing in the en direction, we can slide the graph of u(x′, xn + t) till
it coincides with the graph of u, hence u ≥ v. Similarly we obtain u ≤ v which
proves that u is a global minimizer in R

n.
¤

Proof of Theorem 10.2.
Assume u(0) = 0 and define uε(x) = u(ε−1x). Modica’s theorem says that

uεk
→ χE − χCE

holds for some sequence εk → 0. Moreover, un > 0 implies Ec is a subgraph, hence
∂E is a so-called quasi-solution in the en direction (see chapters 16, 17 in the book
of Giusti [40]). Then ∂E is a hyperplane if n ≤ 8 and the theorem follows from the
corollary above.

¤

If we assume that the 0 level set is a graph in the xn direction which has a one
sided linear bound at ∞ then the conjecture is true in any dimension.

Theorem 10.4. If u satisfies (10.1), (10.2) and

{u = 0} ⊂ {xn < C(1 + |x′|)}
then u is one-dimensional.

Proof. As above, u is a global minimizer. Then the limiting minimal surface has a
linear bound by above and again we can conclude (see Giusti []) that that ∂E is a
hyperplane in any dimension. ¤
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11. De Giorgi’s conjecture in 2D and 3D

In this section we present proofs to De Giorgi’s conjecture in 2D and 3D which
were first obtained by Ghoussoub and Gui [37] and Ambrosio and Cabre [5] respec-
tively.

Our approach is due to Farina [30, 31] and it is based on a calculation of Sternberg
and Zumbrun [62, 63]. We follow it here since it closely resembles the one for
minimal surfaces.

11.1. Minimal surfaces in 3D. Assume for simplicity that ∂E is a smooth min-
imal surface in R

n. Denote by νx the normal to the surface at x and let φ be a
function on ∂E with compact support. If we perturb ∂E by a map

x 7→ x + εφ(x)νx

then the area increases. By letting ε → 0 we obtain (see Giusti [] for example) that
the mean curvature is 0 at any point in ∂E and moreover

ˆ

∂E

(

|∇φ|2 − φ2κ2
)

dHn−1 ≥ 0,

where κ2 represents the sum of the squares of the principal curvatures at x ∈ ∂E.
A smooth surface whose area increases under small local perturbations, i.e has 0

mean curvature and satisfies the inequality above, is called a stable minimal surface.
One can obtain that a global minimal surface is a plane in R

3 by choosing
appropriate test functions φ. Indeed, if we choose φR with compact support in B̄R

as

φR(x) :=

{

1, |x| ≤ 1
1

log R log R
|x| , 1 < |x| ≤ R

then
ˆ

∂E

|∇φR|2 dH2 ≤ (log R)−2

ˆ

∂E∩BR

|x|−2 dH2.

From the minimality of ∂E we find that

H2(∂E ∩ Br) ≤ Cr2

hence
ˆ

∂E∩BR

|x|−2 dH2 ≤ C log R.

In conclusion
ˆ

∂E

|∇φR|2 dH2 → 0 R → ∞

which gives κ = 0 in ∂E ∩ B1. This implies κ ≡ 0, i.e ∂E is a plane.
We remark that Simons’ proof that global minimal cones are planar up to di-

mension 7, uses the stability condition by taking a test function φ(x) of the form
κ2ψ(x).
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11.2. Monotone solutions. First we check that monotone solutions of

△u = W ′(u),

are stable, i.e the energy increases under small compact perturbations. Precisely,
we show that

ˆ

|∇ψ|2 + W ′′(u)ψ2 dx ≥ 0, ∀ψ ∈ C1
0 (Rn).

Indeed, assume u is increasing in the en direction, i.e un > 0. Differentiating the
equation we find

△un = W ′′(u)un.

We multiply by ψ2/un and integrate:

ˆ

∇ψ2

un
∇un + W ′′(u)ψ2 dx = 0,

or
ˆ

|∇ψ|2 + W ′′(u)ψ2 dx =

ˆ

∣

∣

∣

∣

∇ψ − ψ

un
∇un

∣

∣

∣

∣

2

dx ≥ 0.

As in the minimal surface case, we would like to perturb the level sets in the
normal direction infinitesimally by a function φ(x). This corresponds to taking
ψ := φ|∇u| in the stability condition, i.e

ˆ

|∇(φ|∇u|)|2 + W ′′(u)φ2|∇u|2 dx ≥ 0.

We obtain
ˆ

|∇φ|2|∇u|2 +
1

2
∇φ2∇(|∇u|2) + φ2|∇(|∇u|)|2 + φ2W ′′(u)|∇u|2 dx ≥ 0.

We integrate the second term by parts and use the equations for uk,
ˆ

1

2
∇φ2∇(|∇u|2) dx = −

ˆ

φ2△(
1

2
|∇u|2) dx

= −
ˆ

φ2
(

‖D2u‖2 + W ′′(u)|∇u|2
)

dx.

By choosing a convenient system of coordinates it is not difficult to check that

‖D2u‖2 − |∇|∇u||2 = κ2|∇u|2 + |∇T |∇u||2

where ∇T represents the tangential gradient along the level sets of u and κ2(x)
represents the sum of the squares of the principal curvatures on the level set of u
at x. In conclusion the stability inequality above simplifies as

ˆ

(

|∇φ|2 − φ2κ2
)

|∇u|2 dx ≥ 0.

This is precisely the stability condition for the minimal surface in which the
dHn−1 measure on ∂E is replaced by the weight |∇u|2dx.

If the weight grows quadratically with the radius R in BR i.e
ˆ

BR

|∇u|2dx ≤ CR2,

then the same function φR gives as in the minimal surface case κ ≡ 0, that is u is
one-dimensional.
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This inequality is always true in R
2 since L∞ bounds for ∇u hold for bounded

solutions under quite general assumptions on W , say for example W is Lipschitz.
Therefore in R

2 we obtain one-dimensionality from stability which, as we saw above,
is a weaker condition than monotonicity.

Theorem 11.1 (Ghoussoub-Gui). Bounded stable global solution of

△u = W ′(u), in R
2

are one-dimensional.

Ambrosio and Cabre proved that the quadratic bound holds also for monotone
solutions in R

3. As a consequence they obtain De Giorgi’s conjecture in R
3:

Theorem 11.2 (Ambrosio-Cabre). Bounded monotone global solution of

△u = W ′(u), in R
3

are one-dimensional.

We sketch the proof. From (4.1) we see that the quadratic bound for the energy
holds for minimizers in R

3. Hence, if the limits are ±1 as x3 → ±∞ then we are
done by Lemma 10.3. Otherwise, denote by u(x′), ū(x′) the limits of u(x′, x3) as
x3 → ±∞. It turns out that u and ū are stable solutions of the same equation in
R

2, and by the theorem above they are one-dimensional. From this the bound for
the energy follows.

We finally mention that the quadratic growth cannot hold in dimension n > 3
since it fails for the one-dimensional solution.

12. Fully nonlinear equations

The methods developed in Sections 7-10 are quite general and can be applied
for other types of nonlinear, possibly degenerate elliptic equations. With Valdinoci
and Sciunzi we proved in [66] the same theorems for the energy

Jp(u,Ω) :=

ˆ

Ω

1

p
|∇u|p + W (u) dx

and the corresponding p-Laplace equation

△pu = W ′(u), △pu := div(|∇u|p−2|∇u|).
In this section we present 1D symmetry results for global solutions to fully

nonlinear reaction-diffusion equations. We consider the equation R
n

(12.1) F (D2u) = f(u),

where F is uniformly elliptic with ellipticity constants λ, Λ, F (0) = 0, and

f ∈ C1([−1, 1]), f(±1) = 0, f ′(−1) > 0, f ′(1) > 0.

The main assumption on F and f is that there exists a smooth increasing function
g0 : R → [−1, 1] (one dimensional solution) such that

lim
t→±∞

g0(t) = ±1,

and g0 solves the equation in all directions ξ, that is

F
(

D2(g0(x · ξ))
)

= f (g0(x · ξ))
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for every unit vector ξ ∈ R
n. In other words, the compatibility condition says that

the values of F on the subset of rank one matrices g′′0 (t)ξ ⊗ ξ equals g(g0(t)).
For example if F is the maximal Pucci operator

F (M) = Mλ,Λ(M) := max
λI≤A≤Λ

tr(A · M),

and f(s) = max{Λ(s3 − s), λ(s3 − s)} with

g0(t) = tanh
t√
2
.

One difficulty of the problem is that, unlike the semilinear case, there is no
variational formulation of the problem. Another difficulty consists in the fact that
it is not clear whether the blow-downs of {u = s} satisfy any equation. We will see
that in general the level sets satisfy at large scales a curvature equation depending
on F , f .

Together with De Silva we proved in [25] that De Giorgi’s conjecture holds in
two dimensions for these nonlinear equations.

Theorem 12.1 (De Silva-Savin). Let u ∈ C(R2) be a viscosity solution to (12.1)
such that |u| ≤ 1 and ux2

> 0. Then u is one-dimensional.

The condition ux2
> 0 can be relaxed to m monotonicity in the x2 direction i.e

u(x) < u(x + me2), for some m > 0.

The main step consists in proving that the sets {u < 0} and {u > 0} are convex.
This is achieved by comparing u with appropriate explicit barriers. Then one can
deduce that the 0 level set is included in a strip of arbitrarily small width.

The higher dimensional problem was analyzed in [58]. As in the semilinear case,
we considered monotone viscosity solutions of (12.1) which “connect” the constant
solutions −1 and 1 at ±∞,

(12.2) uxn
> 0, lim

xn→±∞
u(x′, xn) = ±1,

Next result is a nonlinear version of the theorem of Modica. It says that if the
blow-downs of the level sets converge to a limiting surface then this surface satisfies
a curvature equation. This possible nonlinear curvature equation can be computed
explicitly from F and f .

Theorem 12.2 (Limiting equation). Let u be a solution of (12.1), (12.2) and sup-
pose that for a sequence εk → 0, εk{u = 0} converges uniformly on compact sets to

a surface Σ. Then, there exists a function G̃ depending on F and g0 such that

G̃(νΣ, IIΣ) = 0

in the viscosity sense where νΣ(x), IIΣ(x) represent the upward normal and the

second fundamental form of Σ at a point x ∈ Σ. The function G̃(ξ, ·) is defined on
the space of n × n symmetric matrices M with Mξ = 0, is homogenous of degree
one, and uniformly elliptic.

The function G̃ is linear in the second argument and it depends on the derivatives
of F on the n dimensional cone ξ ⊗ ξ, ξ ∈ R

n.
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If F is invariant under rotations and F ∈ C1 then G̃(ξ,M) = trM , i.e Σ is

a minimal graph as in the semilinear case. If for example F = M+
λ,Λ then G̃ is

nonlinear, G̃(ξ, ·) = M−
λ,Λ.

The methods developed in Sections 7-9 generalize to this setting. Due to the
monotonicity assumption, the Harnack inequality requires only a one-sided bound.

Theorem 12.3 (Harnack inequality). Let u be a solution of (12.1), (12.2) with

{u = 0} ∩ {|x′| < l} ⊂ {x · ξ0 > 0},
for some unit vector

|ξ0| = 1, ∠(ξ0, en) ≤ β < π/2.

Assume

(0, θ) ∈ {u = 0}, θ ≥ θ0

for some fixed θ0. If θ/l ≤ ε(θ0) then

{u = 0} ∩ {|x′| < l/2} ⊂ {x · ξ0 < Kθ},
where the constant K depends only on λ, Λ, n, f , g0, β and the constant ε(θ0) > 0
depends on the previous constants and θ0.

As a consequence of Harnack inequality we obtain a Liouville theorem for the
level sets.

Theorem 12.4. If {u = 0} is above (in the en direction) a plane {x · ξ = 0}, then
u is one-dimensional.

A consequence of Theorem 12.4 is a proof of the Gibbons conjecture for equa-
tion (12.1). We recall that the conjecture states that global solutions are one-
dimensional if the limits in (12.2) are uniform in x′.

If we assume more regularity on the operator F then we can use Theorem 12.3
and show the improvement of flatness for the level sets.

Theorem 12.5 (Improvement of flatness). Let u be a solution of (12.1), (12.2).
Assume that F ∈ C1 and

0 ∈ {u = 0} ∩ {|x′| < l} ⊂ {|x · ξ0| < θ},

|ξ0| = 1, ∠(ξ0, en) ≤ β < π/2, θ ≥ θ0.

If θ/l ≤ ε(θ0) then, for some unit vector ξ1

{u = 0} ∩ {|x′| < η2l} ⊂ {|x · ξ1| < η1θ},
where the constants 0 < η1 < η2 < 1 depend only on λ, Λ, n and the constant ε(θ0)
depends on F , f , β and θ0.

As a consequence of the theorem above we obtain 1D symmetry of global solu-
tions which have one Lipschitz level set.

Theorem 12.6. Assume that F ∈ C2, u solves (12.1), (12.2) and {u = 0} is a
Lipschitz graph in the en direction. Then u is one dimensional.
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