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Cl reqularity for infinity harmonic
functions in two dimensions

OVIDIU SAVIN

Abstract

A continuous function v : 2 — R, {2 C R" is said to be “infinity
harmonic” if satisfies the PDE

n
— Aot := — Z uuu;; =0 in 2 (1)
i,=1
in the viscosity sense. In this paper we prove that infinity harmonic functions
are continuously differentiable when n = 2.

1. Introduction

The equation (1) arises when considering optimal Lipschitz extensions
from 02 to 2. That is, we want to extend a given Lipschitz function g :
082 — R to a function u : 2 — R, u = g on 042, that satisfies the following
“absolute minimizing Lipschitz” (AML) property:

for any open set U C 2 and v: U — R with v = u on OU, we have
[Vull Loy < IVl ().

Jensen [6] proved the equivalence between the (AML) property and so-
lutions of (1). He also proved that the Dirichlet equation for (1) is uniquely
solvable.

Crandall, Evans and Gariepy [3] showed that w is infinity harmonic if
and only if u satisfies comparison with cones from above and below. To be
more precise, we say that u satisfies comparison with cones from above in
{2 if given any open set U CC 2, and a,b € R such that

u(z) < a-+blx —xo| on U \ o)
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then
u(z) <a+blx —xo| inU.

Similarly one can define comparison with cones from below.

An interesting question is to determine whether or not infinity har-
monic functions are continuously differentiable. A result in this direction
was obtained by Crandall and Evans [4] (see also Crandall-Evans-Gariepy
[3]) which showed that at small scales u is close to a plane.

Theorem 1. [Crandall-Evans-Gariepy]

Letw: 2 — R, {2 C R" be infinity harmonic. Then for each x € {2 there
exist vectors ey, € R™ with |ey | = S(x) (see section 2 for the definition of
S) such that

max [u(y) — ul(@) — ear - (y — )] —0 asr—0.
B, (x) r

In this paper we prove that in 2 dimensions the vectors e, , converge as
r — 0, and obtain

Theorem 2. Let u : 2 — R, 2 C R? be infinity harmonic. Then u €
Cl(0).

The idea of the proof is the following. Suppose that
uw(0) =0, |lu—e1-x|re) e

From the theory of elliptic equations in two dimensions (see [5] chapter 12),
heuristically we can find a plane e - x (the tangent plane at 0) such that
{u = e-x} divides R? into four connected regions. If ¢ and e; are not close
to each other then, one connected component of {u > e -z} is included in a
narrow strip and we are able to derive a contradiction.

Using a compactness argument we prove

Theorem 3. (Modulus of continuity for the gradient)
There exists a function

p:[0,1] = R*, lir% p(r) =0
such that for any infinity harmonic function
u:By CR* =R, |[[Vul ) <1

we have

[Vu(z) = Vu(y)l <p(lz —yl),  ifz,y€ By .

As a consequence of Theorem 3 we obtain the following Liouville type
theorem.
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Theorem 4. Let u : R? — R be a global infinity harmonic function. If u
grows at most linearly at oo, i.e

lu(z)] < C(1 + |z]),
then u s linear.

Theorem 4 follows easily from Proposition 3.
Suppose u satisfies the hypothesis of Theorem 4. We use Proposition 3

for the rescaled function
1
w(z) = Eu(R:c), x € By

and obtain
|Vu(zo) — Vu(0)| = [Vw(zoR™) — Vw(0)| < Cp(|zo|R7Y).

The conclusion follows as we let R — oo.

2. The Proofs

Notation:

(2 is an open set in R?

B, () denotes the open ball of radius r and center xg
B, = B,(0)

x - y represents the Euclidean inner-product.

{f < g} denotes {z € R?| f(z) < g(z)}
Suppose that u : £2 — R is infinity harmonic. If B,(z) C {2 we define

ST (x,7) = max 7u(y) —ulz)
’ y€dB, () |y — x|

and
ST (x,r)= min uly) = ulw)
yedB,(x) |y — x|
We recall the following result from [3].
Proposition 1. The function ST (x,r) is increasing in v and S~ (x,7) is
decreasing in r. Moreover,

S(x) = 1in(1) St(z,r) = —1lim S~ (x,7)

r—0

Our main goal is to prove

Proposition 2. Suppose u is infinity harmonic in By C R?. Given ¢ > 0,
there exists 6(e) such that if

[u—er-zlrem) <6, lea| =1, (2)
then u is differentiable at 0 and
[Vu(0) —e1| <e.
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Theorem 2 clearly follows from Theorem 1 and Proposition 2.
We start with a lemma.

Lemma 1. Let u : 2 — R, 2 C R?, be infinity harmonic. Assume that 2
is convex, u(0,0) =0 and for some ty small and ¢ € R we have

u(t, 0) > ct, th S [—to, to]

’U,(to, 0) > Cto, ’U,(—to, 0) > —Cto.

Then there exists a plane P := e -z, le] = S(0), such that (to,0) and
(—t0,0) belong to distinct connected components of the set {u > P}.

Proof: From Theorem 1 we can find r; — 0 and e = (a1, a2) € R?,
le] = S(0) such that

lu(z) —e-zl[L=(s,,)

T

—0 asi— o0 (3)

Notice that a; = c.

Assume that (—tg,0) and (to,0) can be connected by a polygonal line
included in {u > P} N 2. Close the polygonal line by connecting (—tg,0)
and (to,0) by a line segment. Denote this polygonal path by I'. Without
loss of generality we assume that there exists an open set U CC {2 such
that

I'cou, Bsn{xza>0}CcU

for some ¢ > 0 small.
If x € OU we can find € > 0 such that

u(z) >e-xz+(0,¢) - x;

hence the inequality is also true for € U. This contradicts (3) and the
lemma is proved. O
Next we prove

Proposition 3. Suppose that v is infinity harmonic in Bgr C R? and sat-
isfies
Hi)

lu—e1-zlpe(Ber) <1, lea| =1

H2) There exists a plane P := e - x such that the set {u > P} has at
least two distinct connected components that intersect Bg.
Given € > 0, there exists C(g) > 0 large such that if R > C(e) then

le —e1| <e.



C* regularity for infinity harmonic functions in two dimensions 5

Proof: Denote
fi=e—e

and assume that |f| > . We have

{f-x<-1}NBgg C {u< P}

{f-z>1}NBsr C {u> P}.

Thus, from H2, we can find a connected component U of {u > P} that
intersects Br and is included in the strip S := {|f - 2| < 1} of width
21f7t < 2e7 L

Notice that we cannot have U CC Bgpr since otherwise we contradict
the comparison principle. Consider a polygonal line inside U that starts in
Bpr and exits Bgr. By shifting the origin a distance 3R in the direction
perpendicular to f, one can assume

H1’)

lu—e1-zlpeo(Brr) <1, lea| =1

H2’) The set {u > P} N Bag has a connected component U C S that
contains a polygonal line connecting the two arcs of SN OBR.

Proposition 3 will follow from the next two lemmas.
Let a € [0, 7] denote the angle between the directions of e and f.

Lemma 2. Fiz §; > 0 small. If |e] > §; and R > C(e, 1), then

s
> 6.
a_2 1

Proof: Assume that o < 3 — d;. Denote by zo the intersection of the

half line {—te, ¢ > 0} with 0S. Clearly,

u—e-z|<|u—e;-z|+|lex—e€) -z <2 inUnN Bgr(xo),

u=-e-xz ondU N Br(xo). (4)
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On the set U N dBgr(xo), we have

uz)<e-x+2< sup e-z+2 (5)
SN&BR(w0)

<e-xg+ |e|Rsin(a+ B) + 2

. 2
=e-x9+ |e|R (sm(a—!—ﬁ) + m) ,

where
. 2
sinff = —

RIfI
If R > C(e, d1) is large, then since sina < 1, we deduce from (4), (5)
that
u(z) < e-xg+|eljx — xo] on (U N Br(xop)).

Hence comparison with cones implies
u(z) <e-xzo+lellr —xo| onUnN Br(zo).
We obtain
ulz)<e-x=P on{xg+te, t>0}NU

or
{zo+te, t>0}NU=0.

This contradicts H2’. With this Lemma 2 is proved. O
Lemma 3. Fiz §3 > 0 small. If R > C(d2), then

|€| 21—52
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Proof: Assume that |e] < 1 — d2 and notice that f-e; > da.

Denote by yo := —4d5 e1, and let y; be the intersection of the half line
{te1, ¢ >0} with the line {f -z =1}.

Consider the family of cones with vertex at (yo,e1 - yo + 1) and slope ¢;
that is,

Vio,c() :=e1-yo + 1+ c|lz — yol.

Notice that the vertex of V. is above the graph of u and below the
graph of P.

For ¢ > |e| we denote by E. the ellipse which is the intersection of V,, .
with P, i.c

Ee:={z] Vyolz)=e-z}.

One has
co:zl—LZI—é—Q>|e|,
ly1 — Yol 2
and
Vio,eo (Y1) =€1-yo + 1+ [y1 —yo| — 2
=errypp—l=er-pn—f-y1=e-y.
Hence

Y1 € ECO' (6)

Take c large and decrease ¢ continuously until E. touches for the first
time d({u < P} N Bag). Let the first value be ¢, and let

2y € E., NO({u < P} N Bag).
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From (6) one can conclude that ¢, > ¢q. If R is large, then z, € Br and
(see Proposition 1)

S(zs) > e >co>1——. (7)
On the other hand we claim that S(z.) < |e| + 2R~
To see this, choose a small r > 0 and let U’ be the open set defined as
the union of all connected components of {u > P} N Br(z.) that intersect
B (x).
If U’ = (0 then the claim is obvious. So assume U’ # () and from H2’ we
find U’ C S provided that r is chosen small enough.
One has
u=-e-x ondU N Bgr(x.);

and for x € U' N IBRr(x.),
ulz)<e-z+2<e-x.+|e|]R+2.

This implies

u(z) <e-xy+ <|e| + %) |z — 2] on (U N Br(xy)).

Hence the inequality is valid also in U’ N Br(z.). Now it is clear that
S(x.) <le|+2R7' <1 -6, + 2R

This contradicts (7) if R > C(d2) is large. With this Lemma 3 is proved.
O

Proposition 3 now follows from Lemma 2 and Lemma 3 by choosing
01(g), d2(e) small and R > C(e) large enough. O
By rescaling Proposition 3 we obtain

Corollary 1. Suppose u : B, — R, B, C R? is infinity harmonic and
lu—e1-x||Le(p,) < 0rlen].

Suppose also that there exists a plane P := e - x such that {u > P} has at
least two distinct connected components that intersect B,js. Then, given e,
there exits 6(¢) such that if § < 0(g) we have

le —e1] < eleq].

Corollary 1 follows by noticing that the rescaled function

wiz) = 2"y, R=6C(e)

_T|€1|u R

satisfies the hypothesis of Proposition 3if (R <1. O
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Proof of Proposition 2: First we show

limsupleg, —e1] <e if 6 <d(eg) (8)
r—0

Case 1: Suppose that u is not identical to a plane in a neighborhood of
0.

Then there exists a line segment [z1, 2] in B, /s where u is not linear
when restricted to it. On this segment we can find a linear function ! of
slope

u(z2) —u(z1)
|22 — 21

and an interior point y € (21, 22) such that either
u>1 on [z, 2]
u(y) =1y), ulz) >1(z1), ul(z2)>1(2)

or
u <l on [z, 2]

u(y) =Uy), ulz) <llz1), ulz) <U(z)

Without loss of generality assume the first situation holds. Then, by
Lemma 1, there exists e, such that the set

{u>u(y) +ey-(z-y)}

has two distinct connected components in Bj.
By Corollary 1 we have

ley —e1] <

P
~~
Nej
N—

if § is small. From Theorem 1

lu —u(0) = eo, - x||Loe(B,) < ro(r) (10)
o(r) =0 asr—0,

and we find

ley| = S(y) < max M

< <leg.r| +4o(r).
e PSS < Jeo, |+ 40(r)

Similarly one obtains
leo.r| = S(0) <1+ 26.

The above inequalities and (9) imply
1—¢/4—4do(r) <leg,r| <1+ 26
Now we apply Corollary 1 in B, and obtain

<

=] M
| ™
—~
—
—_
~—

ey = eor| < leo,s|
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provided that r is small enough. Now (8) follows from (9), (11).

Case 2: Suppose that u is identical to a plane P = e-x in a neighborhood
of 0. Denote by U the interior of the set {u = P}. If dist(0,0U) > 1/2, then
(8) is obvious. If not, let 2o € AU be a point where the distance from 0 to
OU is realized. From case 1 applied to By /2(xo) we find

lim sup |exo,r - €1| <e
hence
le —e1| <e.

In conclusion (8) is proved.
It remains to prove that eg , converges as r — 0.

Let r; — 0 be an arbitrary sequence. By rescaling (8) to the balls B,
we find that for each ¢ there exists j large such that

lim sup |€0,ri - eO,rj| <e

1—00
Thus e, is a Cauchy sequence and Proposition 2 is proved. 0O
Proof of Theorem 3:
The proof is by compactness. Assume by contradiction the statement is

false. Then we can find ¢y > 0, functions uj satisfying the hypothesis of
Proposition 3 and points z; — 0 such that

|[Vug(zg) — Vug(0)| > 9 as k — oo.
We consider the rescaled functions

vg(x) :=

ug(|zx|7) — ug(0)
|| '

The functions v, are infinity harmonic, defined on B, -1, [|[Vug|r= < 1
and
|Vog(zk|zk| ™" — Vor(0)] > eo. (12)

By the Arzela Ascoli Theorem there exists a subsequence (we still de-
note it by vy) that converges uniformly on compact sets to a function ve.
Obviously v is infinity harmonic, defined on R? with

HV’UOOHLDO S 1.

As a consequence of Theorem 1 one can find e € R? and R; — oo such
that
[voo — € Z||Loe(Br,) < Rio(R;)

o(R;)) =0 asi— oo.

Thus, for every fixed ball Br, we have

limsup [[vg — e 2| Lo(Bg,) < Rio(R:). (13)

k— o0
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If e = 0, then for large k and = € By we have (see Proposition 1 and(13))
Vop(2)] < §*(op, ) < 20(R)

which contradicts (12) if R; is chosen large enough.
If e # 0, then there exists R; large such that

2le|to(R;) < 8(g0/4).
From (13) and Proposition 2 (rescaled to Bg, /2(x)) we find
Vok(z) — el < [elzo/4

for all z € By and k large. This contradicts (12) and the theorem is proved.
O

Acknowledgements. 1 would like to thank L. C. Evans for many helpful comments
and valuable discussions related to the subject. Also I thank the referee for point-
ing out a mistake in the proof of Lemma 2.6.

References

1. Aronsson, G. Extension of functions satisfying Lipschitz conditions. Ark. Mat.
6 (1967) 551-561.

2. Aronsson, G. On the partial differential equation uzzuzz+2uzuyuzy+uy2uyy =
0. Ark. Mat. 7 (1968) 395-425.

3. Crandall, M. G.; Evans, L. C.; Gariepy, R. F. Optimal Lipschitz exten-
sions and the infinity Laplacian. Calc. Var. Partial Differential Equations
13 (2001), no. 2, 123-139.

4. Crandall, Michael G.; Evans, L. C. A remark on infinity harmonic functions.
Proceedings of the USA-Chile Workshop on Nonlinear Analysis (Via del Mar-
Valparaiso, 2000), 123-129 (electronic), Electron. J. Differ. Equ. Conf., 6,
Southwest Texas State Univ., San Marcos, TX, 2001.

5. Gilbarg D., Trudinger N., Elliptic Partial Differential Equations of second
order, Springer-Verlag, New York, 1983.

6. Jensen, R. Uniqueness of Lipschitz extensions: minimizing the sup norm of
the gradient. Arch. Rational Mech. Anal. 123 (1993), no. 1, 51-74.

Dept. of Mathematics
UC Berkeley
Berkeley, CA 94720
e-mail: osavin@math.berkeley.edu



