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Small Perturbation Solutions for Elliptic Equations
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We consider viscosity solutions of fully nonlinear elliptic equations

F�D2u�Du� u� x� = 0 (1)

for which u ≡ 0 is a solution. We assume F is smooth and uniformly elliptic only in
a neighborhood of the points �0� 0� 0� x�, and show that u is smooth in the interior
if �u�L� is sufficiently small.
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1. Introduction

In this work we present a general regularity result for small perturbation solutions
of elliptic equations. Our approach was motivated by the analysis of flat level sets in
Ginzburg-Landau phase transitions models, which were considered in Savin (2003).

When dealing with uniformly elliptic equations of the form (1), the classical
approach to regularity is to differentiate the equation with respect to a direction e.
Then, ue solves the linearized equation which is treated as a linear equation with
bounded measurable coefficients.

If F is not uniformly elliptic in the whole domain, then, in order to bound the
coefficients of the linearized equation, one needs a priori bounds on u, Du and D2u.
This is the case in several problems such as the minimal surface or the Monge-
Ampere equation.

In this paper we discuss the regularity of “flat” viscosity solutions of (1). We
prove interior C2�� estimates for such solutions provided that F is smooth and
uniformly elliptic in a neighborhood of the set

��0� 0� 0� x�� x ∈ B1��

In particular, the solutions are classical in the interior.
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Sometimes it is possible to prove interior estimates starting from the estimates
for flat solutions. This is done using methods developed by Caffarelli (1987) and by
Caffarelli and Wang (1993), in which local regularity results can be extended in the
whole domain.

First we assume F is measurable and prove Harnack inequality in the context
of flat solutions (Theorem 1.1). Using this result we prove higher regularity once we
know F is smooth.

Let � be the space of n× n symmetric matrices. Assume that

F � � ×�n ×�× B1 → �

is a function defined for pairs �M� p� z� x�, and satisfies the following hypothesis for
�p� ≤ 	, �z� ≤ 	

H1) F�·� p� z� x� is elliptic, i.e.,
F�M + N� p� z� x� ≥ F�M� p� z� x� if N ≥ 0�

H2) F�·� p� z� x� is uniformly elliptic in a 	 neighborhood of the origin with
ellipticity constants 
 ≥ � > 0, i.e.,


�N� ≥ F�M + N� p� z� x�− F�M� p� z� x� ≥ ��N� if N ≥ 0� �M�� �N� ≤ 	�

H3) constants are solutions of (1) i.e.,

F�0� 0� z� x� = 0�

and F is Lipschitz in p,

�F�M� p� z� x�− F�M� q� z� x�� ≤ ��p− q�� �M�� �p�� �q� ≤ 	�

or
H3′) planes are solutions of (1) i.e.,

F�0� p� z� x� = 0�

Notice that we do not require any regularity for F in the variables z and x.
Moreover, in hypothesis H3′ we do not assume any regularity in the p variable as
well. Also we have no information about F for �p�� �z� > 	.

From H2 and H3 (or H3′) we find that for �M�� �p�� �q� ≤ 	�


�M+� − ��M−� + ��p� ≥ F�M� p� z� x�

≥ ��M+� −
�M−� − ��p� if �M�� p� z ≤ 	� (2)

We recall the definition of viscosity solutions for second order elliptic equations.

Definition. The continuous function u is a viscosity subsolution of (1) in B1 if,
whenever we can touch u from above with a C2 function  at some point x ∈ B1,
we have

F�D2�x��D�x�� �x�� x� ≥ 0�
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Similarly one can define the notion of viscosity supersolution.
We say that u is a viscosity solution of (1) if it is both a viscosity subsolution

and supersolution.
From now on we refer to positive constants depending on n, 
, �, � as universal

constants.

Theorem 1.1 (Harnack Inequality). Suppose F satisfies H1, H2, H3 (or H3′). There
exist universal constants c0 small and C0 large such that, if

u � B1 → ��

0 ≤ u ≤ c0	 in B1 (3)

is a viscosity solution of (1), then

u ≤ C0u�0� in B1/2

The proof of Theorem 1.1 follows the lines of the proof of Harnack inequality
for linear equations. The fact that F is nonlinear is compensated by the smallness
condition (3) which heuristically linearizes F near points �0� 0� 0� x�.

The classical Harnack inequality for linear equations follows from our theorem
since in that case 	 = �.

As a consequence of Theorem 1.1 we obtain that the oscillation of a flat solution
u, decreases in the interior.

Corollary 1.2. Let u be a solution of (1) with

u�0� = 0� �u�L��B1�
≤ c0	�

Then

�u�L��B1/2�
≤ �1− ���u�L��B1�

�

where � is small, universal.

This corollary allows us to use compactness methods for proving higher
regularity of solutions.

Assume the function F is more regular, and instead of H3 we satisfy

H4) 0 is a solution of (1),

F�0� 0� 0� x� = 0�

and F ∈ C2, �D2F� ≤ K in a 	-neighborhood of the set

��0� 0� 0� x�� x ∈ B1��

We prove the following regularity theorem for small perturbation solutions
under very general assumptions.
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Theorem 1.3. Suppose F satisfies H1, H2 and H4.
There exist a constant c1 (depending on F) such that if u is a solution of (1) with

�u�L��B1�
≤ c1�

then u ∈ C2���B1/2�, and

�u�C2���B1/2�
≤ 	�

In Sec. 2 we prove Theorem 1.1. In Sec. 3 we give some generalizations of
Corollary 1.2 that we need later. In Sec. 4 we prove Theorem 1.3 and in Sec. 5 we
discuss some applications of our results.

2. Proof of Harnack Inequality

The strategy of the proof is the following. We slide paraboloids of constant opening
from below (above) till they touch for the first time the graph of u. These are the
only points where we use that u satisfies the equation.

We prove that at a contact point the values of �u�, ��u�, �D2u� are small, and
therefore F becomes uniformly elliptic. From this we can estimate the Lebesgue
measure of these touching points (see Lemma 2.1). Actually we show that, by
increasing the opening of the sliding paraboloids, the set of touching points almost
covers in measure B1/2. This implies that u ∼ u�0� in B1/2 except a set of very small
measure.

If u�x0� � u�0� at some point x0, we find by the same methods u � u�0� in a
set of positive measure, which contradicts the above estimate.

In Lemma 2.1 we obtain a measure estimate similar to the one obtained from
the Alexandrov Bakelman Puci estimate for linear equations (see Caffarelli and
Cabre, 1995).

Lemma 2.1. Let u be a viscosity supersolution of (1) in B1.
Let a > 0 be small, a ≤ 	/2. For each y ∈ B ⊂ B1, B a closed set, we slide the

paraboloid of opening a and vertex y

−a

2
�x − y�2 + cy

from below till we touch the graph of u for the first time. Suppose the set of all contact
points, denoted by A, is included in a compact set of B1 ∩ �u ≤ 	�. There exists a small
universal constant c, such that

�A� ≥ c�B��

By �A� we denote the Lebesgue measure of the set A. Remark that A is closed
and therefore measurable.

Proof. First we consider the case when u is uniformly semiconcave in B1, i.e., the
graph of u admits at all the points a touching paraboloid of opening b from above.
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For all x ∈ A we can touch the graph at �x� u�x�� by a paraboloid of vertex y
and opening a from below and a paraboloid of opening b from above, hence u is
differentiable at x. The vertex y is determined uniquely by

y = x + 1
a
Du�x�� (4)

Moreover, it is easy to show that �u is Lipschitz on A with

�Du�Lip�A� ≤ C�a� b�� (5)

Denote by Z the set of points z ∈ B1 for which u can be approximated by a
quadratic polynomial near z, i.e.,

u�x� = P�z� x�+ o��x − z�2�
= u�z�+ p�z� · �x − z�+ 1

2
�x − z�TM�z��x − z�+ o��x − z�2�� (6)

Since u is semiconcave, we know by Alexandrov’s theorem (see Evans and Gariepy,
1992)

�B1\Z� = 0�

Next we want to show for z ∈ A ∩ Z that

− aI ≤ M�z� ≤ CaI� C universal� (7)

The left inequality is obvious.
From (6) one can conclude that

P�z� x�− �

2
�x − z�2 + const�

touches u from below in a neighborhood of z at some point x̃. Since u is a viscosity
supersolution of (1) we find

F�M�z�− �I� p̃� u�x̃�� x̃� ≤ 0�

for some p̃, �p̃� < 2a. Assume by contradiction the right inequality in (7) doesn’t
hold. Then there exists a unit vector e such that

M�z� ≥ Cae⊗ e− aI�

From H1 and (2)

0 ≥ F�M�z�− �I� p̃� u�x̃�� x̃�

≥ F�Cae⊗ e− �a+ ��I� p̃� u�x̃�� x̃�

≥ ��Ca− a− ��−√
n− 1
�a+ ��− ��p̃� (8)

which is a contradiction if C is sufficiently large.
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Now we can prove the conclusion of the lemma from (4)–(7),

�B� =
∫
A

∣∣∣∣det
(
I + 1

a
D2u�x�

)∣∣∣∣dx
=

∫
A∩Z

det

(
I + 1

a
M�z�

)
dz ≤ C�A ∩ Z��

Now we treat the general case without assuming that u is semiconcave.
We regularize u by the standard method of inf-convolution, i.e.,

u��x� = inf
y∈B1

{
u�y�+ 1

�
�y − x�2

}
�

It is easy to check that u� is semiconcave and u� → u uniformly on compact sets
of B1. Moreover, u� is a viscosity supersolution for an appropriate elliptic equation.

Indeed, suppose  ∈ C2 touches u� from below at x0. Let x̃0 ∈ B1 be such that

inf
y∈B1

{
u�y�+ 1

�
�y − x0�2

}
= u�x̃0�+

1
�
�x̃0 − x0�2�

Then

�x + x0 − x̃0�+ u�x̃0�− �x0�

touches u from below at x̃0, thus

F�D2�x0��D�x0�� u�x̃0�� x̃0� ≤ 0�

By the first part of the proof we find

�A�� ≥ c�B��
where A� is the corresponding touching set for u�. It is easy to check

lim supA1/k =
�⋂

m=1

�⋃
k=m

A1/k ⊂ A�

In conclusion

�A� ≥ c�B�
and the lemma is proved. �

We denote by Aa the set of points where we can touch u from below with
paraboloids of opening a and vertex in B1 i.e.,

Aa �=
{
x ∈ B1 � u�x� ≤ a and ∃y ∈ B1

such that inf
z∈B1

(
u�z�+ a

2
�z− y�2

)
= u�x�+ a

2
�x − y�2

}

Notice that the sets Aa are closed in B1.
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Lemma 2.2. Let Br�x0� be such that

Br�x0� ⊂ B1�

Br�x0� ∩ Aa �= ∅�

There exist positive universal constants C, c such that if a ≤ C−1	, then

�ACa ∩ Br/8�x0��
�Br�x0��

≥ c�

Proof. Without loss of generality assume

x1 ∈ Br�x0� ∩ Aa �= ∅�

Otherwise we replace r by r + � and the result follows by letting � → 0.
Denote by y1 ∈ B1 the vertex of the tangent paraboloid

P�x� y1� �= u�x1�+
a

2
�x1 − y1�2 −

a

2
�x − y1�2

that touches u from below at x1.
First we find a point z ∈ Br/16�x0� such that

u�z�− P�z� y1� ≤ Car2� C universal. (9)

Let  be the radially symmetric continuous function

 � B1 → �� �x� =



�−1��x�−� − 1��

1
16

≤ �x� ≤ 1

�−1�16� − 1�� �x� ≤ 1
16

where � is a large universal constant.
Construct a function � by adding a rescaling of the above function to the

tangent paraboloid P�x� y1�, i.e.,

� � Br�x0� → �� ��x� �= P�x� y1�+ ar2

(
x − x0

r

)
�

We claim that � is a subsolution of (1) in the region

r/16 < �x − x0� < r� (10)

Indeed, using (2) we find

F�D2��D���� x� = F�aD2− aI� a�y1 − x�+ arD��� x�

≥ �a���+ 1�t−�−2 − 1�−√
n− 1
a�1+ t−�−2�

− �a�2+ rt−�−1� > 0� (11)



564 Savin

where

t = �x − x0�
r

� 1/16 < t < 1�

Now we slide the graph of � from below till we touch the graph of u for the
first time. In other words we look for the point z where

min
x∈Br

�u− �� (12)

is realized.
If x ∈ �Br�x0� then

u�x� ≥ P�x� y1� = ��x��

Actually the value in (12) is negative since x1 ∈ Br�x0� and

u�x1�− ��x1� = P�x1� y1�− ��x1� = −ar2

(
x1 − x0

r

)
< 0�

Also, from the above considerations, we deduce that the minimum cannot be
realized in the region given by (10). In conclusion,

z ∈ Br/16�x0��

u�z� < ��z� ≤ P�z� y1�+ Car2

which proves (9).
Now we slide from below the family of paraboloids

P�x� y1�− C ′ a
2
�x − y�2 + cy� �y − z� ≤ r/64 (13)

till they become tangent to the graph of u. The opening of the above paraboloid is
�C ′ + 1�a and the vertex

C ′

C ′ + 1
y + 1

C ′ + 1
y0� (14)

From (9) we find

cy ≤ Car2 + C ′ a
2

(
r

64

)2

�

If �x − z� ≥ r/16 and C ′ is large, universal,

P�x� y0�− C ′ a
2
�x − y�2 + cy

≤ P�x� y0�− C ′ a
2

(
r

32

)2

+ Car2 + C ′ a
2

(
r

64

)2

< P�x� y0� ≤ u�x��
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Thus, the contact points are inside Br/16�z� ⊂ Br/8�x0�. From Lemma 2.1, (14) and
(13) we obtain

∣∣A�C′+1�a ∩ Br/8�x1�
∣∣ ≥ c

(
C ′

C ′ + 1

)n∣∣Br/64�z�
∣∣

and the lemma is proved. �

Next we prove a simple measure covering lemma.

Lemma 2.3. Suppose the closed sets Dk have the following properties:

1) D0 ⊂ D1 ⊂ D2 ⊂ · · ·Dk ⊂ B1/3� D0 �= ∅

2) for any x, r such that

Br�x� ⊂ B1� Br/8�x� ⊂ B1/3�

Br�x� ∩ Dk �= ∅�

we have

�Br/8�x� ∩Dk+1� ≥ c�Br�x���

Then

�B1/3\Dk� ≤ �1− ��k�B1/3��

where � is a small positive constant depending on c.

Proof. Let x0 ∈ B1/3 and

r �= dist�x0� Dk��

We claim that

�Br/3�x0� ∩Dk+1� ≥ c1�B1/3 ∩ Br�x0��� (15)

We denote

x1 �= x0 −
r

6
x0
�x0�

�

It is easy to check

Br/6�x1� ⊂ Br/3�x0� ∩ B1/3�

From property 2) above and

dist�x1� Dk� ≤ r + r

6
= 7

6
r
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we conclude

�Br/6�x1� ∩Dk+1� ≥ crn ≥ c1�B1/3 ∩ Br�x0��

which proves (15).
For each x ∈ B1/3\Dk we consider the ball of center x and radiusv

r = dist�x�Dk��

From this family of balls we choose a Vitali cover i.e, balls Bri
�xi� that cover

B1/3\Dk for which Bri/3
�xi� are disjoint (see Evans and Gariepy, 1992).

We have

�B1/3\Dk� ≤
∑
i

�Bri
�xi� ∩ B1/3�

≤ c−1
1

∑ �Bri/3
�xi� ∩ �Dk+1\Dk�� ≤ c−1

1 �Dk+1\Dk��

In conclusion,

�B1/3\Dk+1� ≤ �B1/3\Dk� − �Dk+1\Dk� ≤ �1− c1��B1/3\Dk�

and the lemma is proved. �

Proof of Theorem 1.1. We assume

u�0� = a

20
> 0� a < C−1	�

and we want to prove that

u�x� ≤ C1a for x ∈ B1/6�

Slide the polynomial of opening a and vertex 0 from below till it touches the
graph of u. Since u ≥ 0, the contact points occur in B1/3, hence

Aa ∩ B1/3 �= ∅�

Denote by

Dk �= AaCk ∩ B1/3

where C is the constant from Lemma 2.2. Moreover, Lemma 2.2 implies that the
sets Dk satisfy the hypothesis of Lemma 2.3 as long as aCk+1 ≤ 	, thus

�B1/3\Dk� ≤ �1− ��k�B1/3� if aCk+1 ≤ 	� (16)

u�x� ≤ aCk for x ∈ Dk� (17)

Assume that there exists xk ∈ B1/6 such that

u�xk� ≥ aCk+1� k ≥ k0� (18)

where k0 is a large universal constant.
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We want to show that there exists a point xk+1 at distance

bk �= C0�1− ��
k
n � C0 universal

from xk such that

u�xk+1� ≥ aCk+2� (19)

provided that

4aCk+2b−2
k < C−1	� (20)

Assume by contradiction that u is below aCk+2 on �Bbk
�xk�. In the cylinder

�x − xk� ≤ bk we slide from above paraboloids

2aCk+2b−2
k �x − y�2 + cy�

�y − xk� ≤ C−1bk

till they touch the graph of u.
The tangent paraboloid with vertex at y is above

u�xk�+ 2aCk+2b−2
k ��x − y�2 − �xk − y�2� ≥ 2aCk + 2aCk+2b−2

k �x − y�2� (21)

hence, the contact points occur in the interior of Bbk
�xk� and are above 2aCk. As

long as (20) holds, we can apply Lemma 2.1 upside-down and obtain that the
measure of the contact points is greater than

cCn
0 �1− ��k�B1� > 2�1− ��k�B1/3�� (22)

If k0 is chosen large such that

�∑
k=k0

bk < 1/4− 1/6

then all the contact points lie inside B1/4. This contradicts (16), (17), (22) and proves
the existence of xk+1.

Assume by contradiction that there exists a point xk0 ∈ B1/4 that satisfies (18)
with k = k0. Let k∗ be the largest value of k for which (20) holds, hence

	C−3�1− ��
2
n ≤ 4aCk∗+2b−2

k∗ �

By above, we find the corresponding points xk ∈ B1/4 for k0 ≤ k ≤ k∗. Instead of
finding xk∗+1 ∈ Bbk∗

�xk∗� we try to find it in B1/3. As in (21) we have that on �B1/3

the tangent paraboloid is above

2aCk∗ + 2aCk∗+2b−2
k∗ �x − y�2 ≥ 2aCk∗+2�12bk∗�

−2 ≥ �12C�−3�1− ��
2
n 	 �= c0	�
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From (3) we deduce that all contact points occur in the interior of B1/3 which leads
us as before to a contradiction. In conclusion

u ≤ aCk0 in B1/6�

and the theorem is proved. �

3. Extensions of Corollary 1.2

Before we start the proof of the main Theorem we need to prove Corollary 1.2 under
slightly different assumptions on u and F .

We assume F ∈ C1, satisfies H1, H2 and
H3′′) 0 is a solution, i.e.,

F�0� 0� 0� x� = 0�

and

�Fp�M� p� z� x�� ≤ �� for �M�� �p�� �z� ≤ 	�

Proposition 3.1. Suppose

�u�L��B1�
≤ 	′ ≤ c0	� u�0� = 0�

There exists a small universal constant � such that if

− �	′ ≤ F�D2u�Du� u� x� ≤ �	′� (23)

and

�Fz�M� p� z� x�� ≤ �� for �M�� �p�� �z� ≤ 	� (24)

then

�u�L��B1/2�
≤ �1− ��	′�

Proof. The important observation is that Lemmas 2.1 and 2.2 are still valid under
the new hypothesis if a ≥ �	′. Indeed, the only things we have to check are (8) and
(11). Instead of (8) we write

a ≥ �	′ ≥ F�M�z�− �I� p̃� u�x̃�� x̃�

≥ F�M�z�− �I� p̃� 0� x̃�− �	′

≥ ��Ca− a− ��−√
n− 1
�a+ ��− 2�a− a�

and instead of (11)

F�D2�D�� x� ≥ F�D2�D� 0� x�− �	′

≥ �a���+ 1�t−�−2 − 1�−√
n− 1
a�1+ t−�−2�

− �a�2+ rt−�−1�− a > a ≥ �	′�
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Assume by contradiction that there exists a point x0 ∈ B1/2 such that

u�x0� ≥ −	′ + �	′�

Using the same arguments as in the beginning of the proof of Theorem 1.1 (now
the picture is translated 	′ down) we obtain

��u ≥ −	′ + Ck�	′� ∩ B1/2� ≤ �1− ��k�B1/2�� (25)

Now we slide from above the paraboloids

16	′�x − y�2 + cy� �y� ≤ 1/8�

Since u�0� = 0, u ≤ 	′, we find that the contact points belong to the set

E �= �u ≥ −	′/4� ∩ B1/2� (26)

From Lemma 2.1 we have

�E� ≥ c1� c1 universal� (27)

We first choose k such that

�1− ��k�B1/2� ≤ c1/2�

and then � such that

Ck� ≤ 1/2�

Then (25), (26), and (27) contradict the fact that �x� u�x�� is a graph on B1/2. �

Corollary 3.2. [Rescaled version]
Suppose that in Br� r < 1,

�u�L��Br �
≤ 	′ ≤ c0r

2	� u�0� = 0�

If

�F�D2u�Du� u� x�� ≤ �	′r−2

and

�Fz�M� p� z� x�� ≤ �r−2� for �M�� �p�� �z� ≤ 	�

then

�u�L��Br/2�
≤ �1− ��	′�
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Proof. The function

w�x� �= r−2u�rx�� x ∈ B1�

satisfies

�w�L��B1�
≤ 	′r−2 ≤ c0	�

�F̃ �D2w�Dw�w� x�� ≤ �	′r−2

where

F̃ �D2w�Dw�w� x� �= F�D2w� rDw� r2w� rx��

Since F̃ satisfies H1, H2, H3" and

�F̃z�M� p� z� x�� = r2�Fz�M� rp� r2z� rx�� ≤ ��

we can apply the above Proposition to F̃ � w� 	′r−2 and obtain

�w�L��B1/2�
≤ �1− ��	′r−2�

�

We iterate this result and obtain:

Corollary 3.3. Suppose F satisfies H3′′, (23), (24). If for some k

�u�L��B1�
≤ 	′ ≤ c02

−2k	� u�0� = 0�

then

�u�L��B��
≤ 2��	′� � ≥ 2−k−1�

where � is small, universal.

Proof. It suffices to prove by induction over s that

�u�L��B2−s � ≤ �1− ��s	′� s ≤ k+ 1�

Assume the result is true for s. Then we can apply Corollary 3.2 with r = 2−s.
Indeed,

�u�L��B2−s � ≤ �1− ��s	′ ≤ c02
−2s	�

�F�D2u�Du� u� x�� ≤ �	′ ≤ ��1− ��s	′22s�

�Fz�M� p� z� x�� ≤ � ≤ �22s�

hence

�u�L��B2−s−1 �
≤ �1− ��s+1	′�

�
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4. Proof of Theorem 1.3

Assume F satisfies hypothesis H1, H2 and H4.

Definition. We denote by P�N� q� t� x� the quadratic polynomial

P�N� q� t� x� �= 1
2
xTNx + q · x + t�

Theorem 1.3 follows easily from the following proposition.

Proposition 4.1 (Quadratic Approximations). There exist small constants �, uni-
versal, and r0 depending on 	, K and the universal constants such that, if

�u− P�N� q� t� x��L��Br �
≤ r2+�� r ≤ r0�

with

F�N� q� t� 0� = 0� �N�� �q�� �t� ≤ 	/2�

then,

�u− P�N ′� q′� t′� x��L��B�r �
≤ ��r�2+��

F�N ′� q′� t′� 0� = 0�

Proof. Define

w � B1 → �−1� 1��

such that

u�x� = P�N� q� t� x�+ r2+�w�x/r��

We want to show that

�w − P�Ñ � q̃� t̃� x��L��B��
≤ �2+��

and

F�N + r�Ñ � q + r1+�q̃� t + r2+�t̃� 0� = 0�

The function w satisfies the following equation in the viscosity sense:

F�N + r�D2w� q + rNx + r1+�Dw� P�N� q� t� rx�+ r2+�w� rx� = 0�

Define

F̃ �M� p� z� x� �= r−�
[
F�N + r�M� q + rNx + r1+�p� P + r2+��z+ w�0��� rx�

−F�N� q + rNx� P + r2+�w�0�� rx�
]
�
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The function F̃ satisfies H1, H2, H3′′ with

	̃ = r−�	�

Moreover, the function

v �= w − w�0�

satisfies

�F̃ �D2v�Dv� v� x�� ≤ C�K� 	�r1−��

�F̃z�M� p� z� x�� ≤ C�K� 	�r2� �M�� �p�� �z� ≤ 	̃�

Now we apply Corollary 3.3 to F̃ , v with 	′ = 2. If

2 ≤ c02
−2k	̃ = c02

−2kr−�	�

C�K� 	�r1−� ≤ 2��

then

�v�L��B��
≤ 4�� for � ≥ 2−k−1�

We obtain similar inequalities if we consider functions

w − w�x0�� x0 ∈ B1/2�

In conclusion, if x1� x2 ∈ B1/2 we have

�w�x1�− w�x2�� ≤ 4�x1 − x2��� for �x1 − x2� ≥ C0	
−1/2r�/2 (28)

hence, w has a Holder modulus of continuity outside a C0	
−1/2r�/2 neighborhood of

the origin.
Now we can use the compactness argument.
Assume by contradiction the Proposition is false. Then, there exists a sequence

of rk → 0 and corresponding Fk� wk� Nk� qk� tk for which the conclusion doesn’t hold.
From (28) we can extract a convergent subsequence that converges to a Holder
continuous function in B1/2. Without loss of generality we assume �D2Fk� ≤ K,

Fk → F∗� DFk → DF∗ uniformly�

wk → w∗ uniformly in B1/2�

Nk → N∗� qk → q∗� tk → t∗�

We claim that w∗ is in B1/2 a viscosity solution of the constant coefficients linear
equation

DMF∗�N∗� q∗� t∗� 0� � D
2w∗ = 0� (29)
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Assume by contradiction that we can touch w∗ from below at x∗ by a smooth
function + ��x − x∗�2 and

DMF∗�N∗� q∗� t∗� 0� � D
2�x∗� > � > 0�

Then

+ const�

touches wk from below at xk, xk → x∗. We have

0 ≥ [
Fk�Nk + r�kD

2� qk + rkNkxk + r1+�
k D� Pk + r2+�

k �+ c�� rkxk�

− Fk�Nk� qk� tk� 0�
]
r−�
k

≥ DMFk�Nk� qk� tk� 0� � D
2�xk�

− C��K�max�r1−�
k � r�k � > �/2 as k → ��

contradiction, and the claim is proved.
From (29) we conclude the existence of N ′� q′� t′ such that

DMF∗�N∗� q∗� t∗� 0� � N ′ = 0�

�w∗ − P�N ′� q′� t′� x��L��B��
≤ �2+�/3�

for some � depending on n� ��
.
Now we solve for Ñk,

Ñk = N ′ + skI�

the equation

Fk�Nk + r�k Ñk� qk + r1+�
k q′� tk + r2+�

k t′� 0� = 0�

It suffices to show that for large k

sk ≤ ��/3�

since then, wk satisfies the conclusion

�wk − P�Ñk� q
′� t′� x��L��B��

≤ �2+��

We have

r−�
k Fk�Nk + r�kN

′� qk + r1+�
k q′� tk + r2+�

k t′� 0�

= DMFk�Nk� qk� tk� 0� � N
′ + O�r�k � → 0 as k → ��

This implies sk → 0 and the proposition is proved. �
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5. Further Remarks

5.1. Curvature Equations

The methods used to prove Theorem 1.1 can be modified appropriately for certain
type of equations. We illustrate this by considering geometric equations depending
on the curvatures of the graph of u instead of D2u.

Denote by IIu�x� the second fundamental form of the graph of u at x. In order
to represent IIu�x�, we choose an orthonormal basis e1, e2� � � � � en at x such that
�u�x� points in the en direction. The normal to the graph is

� = en+1√
1+ �Du�2 − �Du�en√

1+ �Du�2 �= �en+1 − �en�

On the tangent plane generated by e1� e2� � � � � en−1� fn where

fn �= �en+1 + �en�

the symmetric matrix IIu�x� is given by

�IIu�x��ij =



�uij�x�� 1 ≤ i� j ≤ n− 1

�2uin�x�� 1 ≤ i ≤ n− 1� j = n

�3unn�x�� i = j = n

As in the case of the Hessian, we consider the class of continuous functions
S���
� for which the positive curvatures and the negative curvatures are balanced,
i.e

�



�IIu−� ≤ �IIu+� ≤ 


�
�IIu−� (30)

in the viscosity sense. More precisely, if we touch u from below at x by a smooth
function , then

�II�x�+� ≤ 


�
�II�x�−��

and if we touch from above we satisfy the left inequality in (30).
Obviously, Theorem 1.1 is valid for functions u ∈ S���
� for some 	0 small,

universal.
Actually, in this case it is more natural to slide balls in the en+1 direction instead

of paraboloids.

Lemma 5.1. Suppose u ∈ S���
�, and let a > 0 be arbitrary. For each y ∈ B�B a
closed set, we slide the ball of opening 1/a and vertex y + ten+1 from below till we touch
the graph of u for the first time. Suppose the set of all contact points, denoted by A, is
included in a compact set of B1. Then,

�A� ≥ c�B�� c universal�
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The proof is similar to the proof of Lemma 2.1 and we omit the details. Instead
of (4) we write

y = x + 1
a

Du�x�√
1+ �Du�2

and then we replace D2u (and M�z�) by IIu.
One advantage of sliding balls is that for small radius the contact points occur

in the interior of B1. Using this observation, we can replace the assumption that u
is bounded above in Theorem 1.1 by the assumption that u�0� is small.

Theorem 5.2. Let u ∈ S���
�. If u ≥ 0 in B1, and

u�0� ≤ 	 	 universal,

then

u ≤ C0u�0� in B1/2�

We give the idea of the proof.
It suffices to show that u is bounded by a small constant 	0 in the interior, since

then we can apply Theorem 1.1. If for some x0 ∈ B1/4� u�x0� > 	0, then, by sliding
balls of radius 1/4 and centers that project near x0, we obtain

��u > 	0/2� ∩ B1/2� ≥ c0�	0�� (31)

Since u ≥ 0 in B1 and u�0� ≤ 	, we have from the proof of Theorem 1.1

��u > Ck	� ∩ B1/2� ≤ �1− ��k�B1/2��

This contradicts (31) if we first choose k large, and then 	 small enough.

5.2. Minimal Boundaries

Let � ⊂ �n+1 be an open set and E be a measurable set. The perimeter of E in �
is defined as

P�E��� = sup

∣∣∣∣ ∫
E
div g dx

∣∣∣∣�
where the supremum is taken over all vector fields g ∈ C1

0��� with �g� ≤ 1.
We say that E is a set with minimal perimeter in � if

P�E��� ≤ P�F����

whenever E and F coincide outside a compact set included in �.
If E has C1 boundary, then the perimeter is the n dimensional Hausdorff

measure of �E,

P�E��� = �n��E ∩���
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An important result in the regularity theory for sets with minimal perimeter is the
Flatness Theorem of De Giorgi (see Giusti, 1984):

Theorem (De Giorgi). Suppose the open set E with

�xn+1 ≤ −	� ∩� ⊂ E ∩� ⊂ �xn+1 ≤ 	�

has minimal perimeter in the cylinder

� �= ��x� < 1�× ��xn+1� < 1��

Then �E ∩ ��x� ≤ 1/2� is a C� surface, if 	 is small, universal.

Even though �E is not a graph in the en+1 direction, it satisfies the mean
curvature equation

div
Du√

1+ �Du�2 = tr�IIu� = 0

in the viscosity sense (see Caffarelli and Cordoba, 1993). That is, if we touch �E
with the graph of a smooth function from the interior (exterior) of E, then we have
the corresponding inequality.

With the methods developed, we give a different proof of De Giorgi’s theorem.
The main step is the following version of Harnack inequality for �E.

Lemma 5.3. Suppose E satisfies the above hypothesis and 0 ∈ �E. Then

�E ∩ ��x� ≤ 1/2� ⊂ ��xn+1� ≤ �1− ��	��

We give an outline of the proof.
Let

F �= ��x� ≤ 1/2� xn+1 ≥ −	��

From the minimality of P�E��� we have

P�E��� ≤ P�E\F���

hence,

P�E� ��x� < 1/2�� ≤ �n�Ē ∩ �F� ≤ C�n�	+ �B1/2�� (32)

Assume by contradiction that

�E ∩ ��x� ≤ 1/2� ∩ �xn+1 ≤ −�1− ��	� �= ∅�

As in the proof of Theorem 1.1 we obtain

�Dk ∩ B1/2� ≥ �1− �1− ��k��B1/2��
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where Dk is the projection along en+1 of the contact set of �E with paraboloids of
opening Ck�	 that stay below

xn+1 ≤ −	+ Ck�	�

Then, we conclude that

P�E� ��x� < 1/2� ∩ �xn+1 < −	+ 2Ck�	�� ≥ �1− �1− ��k��B1/2��

Since 0 ∈ �E, we obtain by sliding parabolids from above that

P�E� ��x� < 1/2� ∩ �xn+1 > −	/2�� ≥ c0� c0 universal�

If Ck� < 1/4, the last two inequalities imply that

P�E� ��x� < 1/2�� ≥ c0 + �1− �1− ��k��B1/2��

which contradicts (32) for small 	 and large k.
Now we can use compactness arguments and prove an “improvement of

flatness” lemma for �E.

Lemma 5.4. Assume E satisfies the above hypothesis, 0 ∈ �E. There exists � universal,
such that in some new system of coordinates �x̃� x̃n+1� we have

�E ∩ ��x̃� ≤ �� ⊂ ��x̃n+1� ≤ �	/2��

This lemma implies �E is C1�� in the interior, and therefore analytic by the
classical regularity theory for elliptic equations.

5.3. Neumann Boundary Conditions

We mention that our methods can also be applied for Neumann boundary
conditions. Let � ⊂ B1 be a Lipschitz domain with �� given by a Lipschitz graph
in the en direction, i.e there exists b > 0 such that for all y ∈ �� ∩ B1,

�x� �x − y� · en ≥ b�x − y�� ∩ B1 ⊂ ��

Assume the continuous function u,

u � �̄ ∩ B1 → ��

is a viscosity solution of

F�D2u�Du� u� x� = 0 in ��

u��x��x� = 0 on ���

where ��x� is a unit vector satisfying

en · ��x� ≥ � > b�
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That is, if  is smooth and touches u from above at x ∈ � then

F�D2u�D� � x� ≥ 0 if x ∈ ��

��x��x� ≥ 0 if x ∈ ���

Similarly, if  touches u from below then it satisfies the reversed inequalities.
If 0 ∈ �, then one can prove that Theorem 1.1 is still valid with c0 depending

also on b and �. Moreover, if �� ∈ C2�� and � ∈ C1��, then Theorem 1.3 is also
satisfied.
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