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Abstract. We consider minimizers of linear functionals of the type

L(u) =

∫
∂Ω

u dσ −
∫

Ω

u dx

in the class of convex functions u with prescribed determinant detD2u = f .
We obtain compactness properties for such minimizers and discuss their regularity in

two dimensions.

1. Introduction

In this paper, we consider minimizers of certain linear functionals in the class of con-
vex functions with prescribed determinant. We are motivated by the study of convex
minimizers u for convex energies E of the type

E(u) =

∫
Ω

F (detD2u) dx+ L(u), with L a linear functional,

which appear in the work of Donaldson [D1]-[D4] in the context of existence of Kähler
metrics of constant scalar curvature for toric varieties. The minimizer u solves a fourth
order elliptic equation with two nonstandard boundary conditions involving the second
and third order derivatives of u (see (1.4) below). In this paper, we consider minimizers
of L (or E) in the case when the determinant detD2u is prescribed. This allows us to
understand better the type of boundary conditions that appear in such problems and to
obtain estimates also for unconstrained minimizers of E.

The simplest minimization problem with prescribed determinant which is interesting in
its own right is the following

minimize

∫
∂Ω

u dσ, with u ∈ A0,

where Ω is a bounded convex set, dσ is the surface measure of ∂Ω, and A0 is the class of
nonnegative solutions to the Monge-Ampère equation detD2u = 1:

A0 := {u : Ω̄→ [0,∞)|u convex, detD2u = 1}.

Question: Is the minimizer u smooth up to the boundary ∂Ω if Ω is a smooth, say uniformly
convex, domain?
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In the present paper, we answer this question affirmatively in dimensions n = 2. First,
we remark that the minimizer must vanish at x0, the center of mass of ∂Ω:

x0 =
∫
−
∂Ω
x dσ.

This follows easily since

u(x)− u(x0)−∇u(x0)(x− x0) ∈ A0

and ∫
∂Ω

[u(x)− u(x0)−∇u(x0)(x− x0)]dσ =

∫
∂Ω

[u− u(x0)] dσ ≤
∫
∂Ω

u dσ,

with strict inequality if u(x0) > 0. Thus we can reformulate the problem above as mini-
mizing ∫

∂Ω

u dσ −Hn−1(∂Ω) u(x0)

in the set of all solutions to the Monge-Ampère equation detD2u = 1 which are not
necessarily nonnegative. This formulation is more convenient since now we can perturb
functions in all directions.

More generally, we consider linear functionals of the type

L(u) =

∫
∂Ω

u dσ −
∫

Ω

u dA,

with dσ, dA nonnegative Radon measures supported on ∂Ω and Ω respectively. In this
paper, we study the existence, uniqueness and regularity properties for minimizers of L.
i.e.,

(P) minimize L(u) for all u ∈ A
in the class A of subsolutions (solutions) to a Monge-Ampère equation detD2u ≥ f :

A := {u : Ω→ R|u convex, detD2u ≥ f}.
Notice that we are minimizing a linear functional L over a convex set A in the cone of
convex functions.

Clearly, the minimizer of the problem (P) satisfies detD2u = f in Ω. Otherwise we can
find v ∈ A such that v = u in a neighborhood of ∂Ω, and v ≥ u in Ω with strict inequality
in some open subset, thus L(v) < L(u).

We assume throughout that the following 5 conditions are satisfied:
1) Ω is a bounded, uniformly convex, C1,1 domain.
2) f is bounded away from 0 and ∞.
3)

dσ = σ(x) dHn−1b∂Ω,

with the density σ(x) bounded away from 0 and ∞.
4)

dA = A(x) dx in a small neighborhhod of ∂Ω

with the density A(x) bounded from above.
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5)

L(u) > 0 for all u convex but not linear.

The last condition is known as the stability of L (see [D1]) and in 2D, is equivalent to
saying that, for all linear functions l, we have

L(l) = 0 and L(l+) > 0 if l+ 6≡ 0 in Ω,

where l+ = max(l, 0) (see Proposition 2.4).
Notice that the stability of L implies that L(l) = 0 for any linear function l, hence dσ

and dA must have the same mass and the same center of mass.
A minimizer u of the functional L is determined up to linear functions since both L and
A are invariant under addition with linear functions. We “normalize” u by subtracting
its the tangent plane at, say the center of mass of Ω. In Section 2, we shall prove in
Proposition 2.5 that there exists a unique normalized minimizer to the problem (P).

We also prove a compactness theorem for minimizers.

Theorem 1.1 (Compactness). Let uk be the normalized minimizers of the functionals Lk
with data (fk, dσk, dAk,Ω) that has uniform bounds in k. Precisely, the inequalities (2.1)
and (2.4) below are satisfied uniformly in k and ρ ≤ fk ≤ ρ−1. If

fk ⇀ f, dσk ⇀ dσ, dAk ⇀ dA,

then uk → u uniformly on compact sets of Ω where u is the normalized minimizer of the
functional L with data (f, dσ, dA,Ω).

If u is a minimizer, then the Euler-Lagrange equation reads (see Proposition 3.6)

if ϕ : Ω→ R solves U ijϕij = 0 then L(ϕ) = 0,

where U ij are the entries of the cofactor matrix U of the Hessian D2u. Since the linearized
Monge-Ampère equation is also an equation in divergence form, we can always express
the Ω-integral of a function ϕ in terms of a boundary integral. For this, we consider the
solution v to the Dirichlet problem

U ijvij = −dA in Ω, v = 0 on ∂Ω.

Integrating by parts twice and using ∂i(U
ij) = ∂j(U

ij) = 0, we can compute∫
Ω

ϕdA = −
∫

Ω

ϕU ijvij

=

∫
Ω

ϕi U
ijvj −

∫
∂Ω

ϕU ijvjνi

= −
∫

Ω

(U ijϕij)v +

∫
∂Ω

ϕiU
ijvνj −

∫
∂Ω

ϕU ijvjνi(1.1)

= −
∫
∂Ω

ϕ U ijviνj.
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From the Euler-Lagrange equation, we obtain

U ijviνj = −σ on ∂Ω.

Since v = 0 on ∂Ω, we have vi = vννi, and hence

U ijviνj = U ijνiνjvν = Uννvν =
(
detD2

x′u
)
vν

with x′ ⊥ ν denoting the tangential directions along ∂Ω. In conclusion, if u is a smooth
minimizer then there exists a function v such that (u, v) solves the system

(1.2)


detD2u = f in Ω,

U ijvij = −dA in Ω,

v = 0 on ∂Ω,

Uννvν = −σ on ∂Ω.

This system is interesting since the function v above satisfies two boundary conditions,
Dirichlet and Neumann, while u has no boundary conditions. Heuristically, the boundary
values for u can be recovered from the term Uνν = detD2

x′u which appears in the Neumann
boundary condition for v.

Our main regularity results for the minimizers u are in two dimensions.

Theorem 1.2. Assume that n = 2, and the conditions 1)-5) hold. If σ ∈ Cα(∂Ω), f ∈
Cα(Ω), and ∂Ω ∈ C2,α, then the minimizer u ∈ C2,α(Ω) and the system (1.2) holds in the
classical sense.

We obtain Theorem 1.2 by showing that u separates quadratically on ∂Ω from its tangent
planes and then we apply the boundary Hölder gradient estimates for v which were obtained
in [LS].

As a consequence of Theorem 1.2, we obtain higher regularity if the data (f, dσ, dA,Ω)
is more regular.

Theorem 1.3. Assume that n = 2 and the conditions 1)-5) hold. If σ ∈ C∞(∂Ω), f ∈
C∞(Ω), A ∈ C∞(Ω), ∂Ω ∈ C∞, then u ∈ C∞(Ω).

In Section 6, we provide an example of Pogorelov type for a minimizer in dimensions
n ≥ 3 that shows that Theorem 1.3 does not hold in this generality in higher dimensions.

We explain briefly how Theorem 1.3 follows from Theorem 1.2. If u ∈ C2,α(Ω), then
U ij ∈ Cα(Ω) and Schauder estimates give v ∈ C2,α(Ω), thus vν ∈ C1,α(∂Ω). From the last
equation in (1.2) we obtain Uνν = detD2

x′u ∈ C1,α(∂Ω). This implies u ∈ C3,α(∂Ω) and
from the first equation in (1.2) we find u ∈ C3,α(Ω). We can repeat the same argument
and obtain that u ∈ Ck,α for any k ≥ 2.

As we mentioned above, our constraint minimization problem is motivated by the min-
imization of the Mabuchi energy functional from complex geometry in the case of toric
varieties

M(u) =

∫
Ω

− log detD2u+

∫
∂Ω

udσ −
∫

Ω

udA.
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In this case, dσ and dA are canonical measures on ∂Ω and Ω. Minimizers of M satisfy the
following fourth order equation, called Abreu’s equation [A]

uijij :=
n∑

i,j=1

∂2uij

∂xi∂xj
= −A,

where uij are the entries of the inverse matrix of D2u. This equation and the functional M
have been studied extensively by Donaldson in a series of papers [D1]-[D4] (see also [ZZ]).
In these papers, the domain Ω was taken to be a polytope P ⊂ Rn and A was taken to be
a positive constant. The existence of smooth solutions with suitable boundary conditions
has important implications in complex geometry. It says that we can find Kähler metrics
of constant scalar curvature for toric varieties.

More generally, one can consider minimizers of the following convex functional

(1.3) E(u) =

∫
Ω

F (detD2u) +

∫
∂Ω

udσ −
∫

Ω

udA

where F (tn) is a convex and decreasing function of t ≥ 0. The Mabuchi energy functional
corresponds to F (t) = − log t whereas in our minimization problem (P) (with f ≡ 1)

F (t) =

{∞ if t < 1,

0 if t ≥ 1.

Minimizers of E satisfy a system similar to (1.2):

(1.4)


−F ′(detD2u) = v in Ω,

U ijvij = −dA in Ω,

v = 0 on ∂Ω,

Uννvν = −σ on ∂Ω.

A similar system but with different boundary conditions was investigated by Trudinger
and Wang in [TW2]. If the function F is strictly decreasing then we see from the first and
third equations above that detD2u =∞ on ∂Ω, and therefore we cannot expect minimizers
to be smooth up to the boundary (as is the case with the Mabuchi functional M(u)).

If F is constant for large values of t (as in the case we considered) then detD2u becomes
finite on the boundary and smoothness up to the boundary is expected. More precisely
assume that

F ∈ C1,1((0,∞)), G(t) := F (tn) is convex in t, and G′(0+) = −∞,
and there exists t0 > 0 such that

F (t) = 0 on [t0,∞), F ′′(t) > 0 on (0, t0].

Theorem 1.4. Assume n = 2, and the conditions 1)-5) and the above hypotheses on F
are satisfied. If σ ∈ Cα(∂Ω), A ∈ Cα(Ω), ∂Ω ∈ C2,α then the normalized minimizer u of
the functional E defined in (1.3) satisfies u ∈ C2,α(Ω) and the system (1.4) holds in the
classical sense.
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The paper is organized as follows. In Section 2, we discuss the notion of stability for
the functional L and prove existence, uniqueness and compactness of minimizers of the
problem (P). In Section 3, we state a quantitative version of Theorem 1.2, Proposition 3.1,
and we also obtain the Euler-Lagrange equation. Proposition 3.1 is proved in sections 4
and 5, first under the assumption that the density A is bounded from below and then in
the general case. In Section 6, we give an example of a singular minimizer in dimension
n ≥ 3. Finally, in Section 7, we prove Theorem 1.4.

2. Stability inequality and existence of minimizers

Let Ω be a bounded convex set and define

L(u) =

∫
∂Ω

u dσ −
∫

Ω

u dA

for all convex functions u : Ω→ R with u ∈ L1(∂Ω, dσ). We assume that

(2.1) σ ≥ ρ on ∂Ω and A(x) ≤ ρ−1 in a neighborhood of ∂Ω,

for some small ρ > 0, and that L is stable, i.e.,

(2.2) L(u) > 0 for all u convex but not linear.

Assume for simplicity that 0 is the center of mass of Ω. We notice that (2.2) implies
L(l) = 0 for any l linear since l can be approximated by both convex and concave functions.
We “normalize” a convex function by subtracting its tangent plane at 0, and this does not
change the value of L. First, we prove some lower semicontinuity properties of L with
respect to normalized solutions.

Lemma 2.1 (Lower semicontinuity). Assume that (2.1) holds and (uk) is a normalized
sequence that satisfies

(2.3)

∫
∂Ω

uk dσ ≤ C, uk → u uniformly on compact sets of Ω,

for some function u : Ω→ R. Let ū be the minimal convex extension of u to Ω, i.e.,

ū = u in Ω, ū(x) = lim
t→1−

u(tx) if x ∈ ∂Ω.

Then ∫
Ω

u dA = lim

∫
Ω

uk dA,

∫
∂Ω

ū dσ ≤ lim inf

∫
∂Ω

uk dσ,

and thus

L(ū) ≤ lim inf L(uk).

Remark: The function ū has the property that its upper graph is the closure of the upper
graph of u in Rn+1.
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Proof. Since uk are normalized, they are increasing on each ray out of the origin. For each
η > 0 small, we consider the set Ωη := {x ∈ Ω : dist(x, ∂Ω) < η}, and from (2.1) we obtain∫

Ωη

uk dA ≤ Cρ−1η

∫
∂Ω

uk dσ ≤ Cη.

Since this inequality holds for all small η → 0, we easily obtain∫
Ω

u dA = lim

∫
Ω

uk dA.

For each z ∈ ∂Ω, and t < 1 we have uk(tz) ≤ uk(z). We let k →∞ in the inequality∫
∂Ω

uk(tz) dσ ≤
∫
∂Ω

uk(z) dσ

and obtain ∫
∂Ω

u(tz) dσ ≤ lim inf

∫
∂Ω

uk(z) dσ,

and then we let t→ 1−, ∫
∂Ω

ū dσ ≤ lim inf

∫
∂Ω

uk dσ.

�

Remark 2.2. From the proof we see that if we are given functionals Lk with measures σk,
Ak that satisfy (2.1) uniformly in k and

σk ⇀ σ, Ak ⇀ A,

and if (2.3) holds for a sequence uk, then the statement still holds, i.e.,

L(ū) ≤ lim inf Lk(uk).

By compactness, one can obtain a quantitative version of (2.2) known as stablity in-
equality. This was done by Donaldson, see Proposition 5.2.2 in [D1]. For completeness, we
sketch its proof here.

Proposition 2.3. Assume that (2.1) and (2.2) hold. Then we can find µ > 0 such that

(2.4) L(u) :=

∫
∂Ω

udσ −
∫

Ω

udA ≥ µ

∫
∂Ω

udσ

for all convex functions u normalized at 0.

Proof. Assume the conclusion does not hold, so there is a sequence of normalized convex
functions (uk) with ∫

∂Ω

ukdσ = 1, limL(uk) = 0,

thus

lim

∫
Ω

undA = 1.
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Using convexity, we may assume that uk converges uniformly on compact subsets of Ω to
a limiting function u ≥ 0. Let ū be the minimal convex extension of u to Ω. Then, from
Lemma 2.1, we obtain

L(ū) = 0,

∫
Ω

ū dA = 1,

thus ū ≥ 0 is not linear, and we contradict (2.2). �

Donaldson showed that when n = 2, the stability condition can be checked easily (see
Proposition 5.3.1 in [D1]).

Proposition 2.4. Assume n = 2, (2.1) holds and for all linear functions l we have

(2.5) L(l) = 0 and L(l+) > 0 if l+ 6≡ 0 in Ω,

where l+ = max(l, 0). Then L is stable, i.e., condition (2.2) is satisfied.

Proof. For completeness, we sketch the proof. Assume by contradiction that L(u) ≤ 0 for
some convex function u which is not linear in Ω. Let u∗ be the convex envelope generated
by the boundary values of ū - the minimal convex extension of u to Ω. Notice that u∗ = ū
on ∂Ω. Since L(u∗) ≤ L(ū) ≤ L(u) we find L(u∗) ≤ 0. Notice that u∗ is not linear since
otherwise 0 = L(u∗) < L(ū) ≤ 0 (we used that ū is not linear). After subtracting a linear
function we may assume that u∗ is normalized and u∗ is not identically 0.

We obtain a contradiction by showing that u∗ satisfies the stability inequality. By our
hypotheses there exists µ > 0 small such that

L(l+) ≥ µ

∫
∂Ω

l+ dσ,

for any l+. Indeed, by (2.1) this inequality is valid if the “crease” {l = 0} is near ∂Ω and
for all other l’s, it follows by compactness from (2.5). We approximate from below u∗ by
u∗k which is defined as the maximum of the tangent planes of u∗ at some points yi ∈ Ω,
i = 1, .., k. Since u∗ is a convex envelope in 2D, u∗k is a discrete sum of l+’s hence it satisfies
the stability inequality. Now we let k → ∞; since u∗k ≤ u∗, using Lemma 2.1, we obtain
that u∗ also satisfies the stability inequality. �

Proposition 2.5. Assume that (2.1) and (2.2) hold. Then there exists a unique (up to
linear functions) minimizer u of L subject to the constraint

u ∈ A := {v : Ω→ R| v convex, detD2v ≥ f},

where ρ ≤ f ≤ ρ−1 for some ρ > 0. Moreover, detD2u = f .

Proof. Let (uk) be a sequence of normalized solutions such that L(uk) → infA L. By the
stability inequality, we see that

∫
∂Ω
uk dσ are uniformly bounded, and after passing to a

subsequence, we may assume that uk converges uniformly on compact subsets of Ω to a
function u. Then u ∈ A and from the lower semicontinuity, we see that L(u) = infA L,
i.e., u is a minimizer. Notice that detD2u = f . Indeed, if a quadratic polynomial P with
detD2P > f touches u strictly by below at some point x0 ∈ Ω, in a neighborhood of
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x0, then we can replace u in this neighborhood by max{P + ε, u} ∈ A, and the energy
decreases.

Next we assume w is another minimizer. We use the strict concavity ofM 7→ log(detD2M)
in the space of positive symmetric matrices M , and obtain that for a.e. x where u, w are
twice differentiable

log detD2(
u+ w

2
)(x) ≥ 1

2
log detD2u(x) +

1

2
log detD2w(x) ≥ log f(x).

This implies (u + w)/2 ∈ A is also a minimizer and D2u = D2w a.e in Ω. Since f is
bounded above and below we know that u,w ∈ W 2,1

loc (see [DF]) in the open set Ω′ where
both u,w are strictly convex. This gives that u−w is linear on each connected component
of Ω′. If n = 2, then Ω′ = Ω hence u − w is linear. If n ≥ 3, Labutin showed in [L] that
the closed set Ω \Ω′ has Hausdorff dimension n− 2 + 2/n < n− 1, hence Ω′ is connected,
and we obtain the same conclusion that u− w is linear in Ω. �

Remark: The arguments above show that the stability condition is also necessary for the
existence of a minimizer. Indeed, if u is a minimizer and L(u0) = 0 for some convex function
u0 that is not linear, then u+ u0 is also a minimizer and we contradict the uniqueness.

Proof of Theorem 1.1. We assume that the data (fk, dσk, dAk,Ω) satisfies (2.1), (2.4) uni-
formly in k and ρ ≤ fk ≤ ρ−1. For each k, let wk be the convex solution to detD2wk = fk
in Ω with wk = 0 on ∂Ω. Since fk are bounded from above we find wk ≥ −C, and so by
the minimality of uk

Lk(uk) ≤ Lk(wk) ≤ C.

It follows from the stability inequality that∫
∂Ω

uk dσk ≤ C,

and we may assume, after passing to a subsequence, that uk → u uniformly on compact
sets.

We need to show that u is a minimizer for L with data (f, dσ, dA,Ω). For this it suffices
to prove that for any continuous v : Ω → R which solves detD2v = f in Ω, we have
L(u) ≤ L(v).

Let vk be the solution to detD2vk = fk with boundary data vk = v on ∂Ω. Using
appropriate barriers it is standard to check that fk ⇀ f , fk ≤ ρ−1 implies vk → v uniformly
in Ω. Then, we let k →∞ in Lk(uk) ≤ Lk(vk), use Remark 2.2 and obtain

L(u) ≤ lim inf Lk(uk) ≤ limLk(vk) = L(v),

which finishes the proof. �
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3. Preliminaries and the Euler-Lagrange equation

We rewrite our main hypotheses in a quantitative way. We assume that for some small
ρ > 0 we have

H1) the curvatures of ∂Ω are bounded from below by ρ and from above by ρ−1;
H2) ρ ≤ f ≤ ρ−1;
H3) dσ = σ(x) dHn−1b∂Ω, with ρ ≤ σ(x) ≤ ρ−1;
H4) dA = A(x) dx in a small neighborhood Ωρ := {x ∈ Ω| dist (x, ∂Ω) < ρ} of ∂Ω with

A(x) ≤ ρ−1.
H5) for any convex function u normalized at the center of mass of Ω, we have

L(u) :=

∫
∂Ω

u dσ −
∫

Ω

u dA ≥ ρ

∫
∂Ω

u dσ.

We denote by c, C positive constants depending on ρ, and their values may change from
line to line whenever there is no possibility of confusion. We refer to such constants as
universal constants.

Our main theorem, Theorem 1.2, follows from the next proposition which deals with less
regular data.

Proposition 3.1. Assume that n = 2 and the conditions H1-H5 hold.
(i) Then the minimizer u obtained in Proposition 2.5 satisfies u ∈ C1,β(Ω) ∩ C1,1(∂Ω) for
some universal β ∈ (0, 1) and u separates quadratically from its tangent planes on ∂Ω, i.e.,

C−1|x− y|2 ≤ u(y)− u(x)−∇u(x)(y − x) ≤ C|x− y|2, ∀x, y ∈ ∂Ω,

for some C > 0 universal.
(ii) If in addition σ ∈ Cα(∂Ω), then u |∂Ω∈ C2,γ(∂Ω), with γ := min{α, β} and

‖u‖C2,γ(∂Ω) ≤ C‖σ‖Cγ(∂Ω).

It is interesting to remark that in part (ii), we obtain u ∈ C2,γ(∂Ω) even though f and
A are assumed to be only L∞.

Proposition 3.1 implies Theorem 1.2. Theorem 7.3 in [S2] states that a solution to the
Monge-Ampère equation which separates quadratically from its tangent planes on the
boundary satisfies the classical Cα-Schauder estimates. Thus, if the assumptions of Propo-
sition 3.1 ii) are satisfied and f ∈ Cα(Ω) then u ∈ C2,γ(Ω) with its C2,γ norm bounded
by a constant C depending on ρ, α, ‖σ‖Cα(∂Ω), ‖∂Ω‖C2,α , and ‖f‖Cα(Ω). This implies that

the system (1.2) holds in the classical sense. If α ≤ β then we are done. If α > β then we
use v ∈ C2,β(Ω) in the last equation of the system and obtain u ∈ C2,α(∂Ω) which gives
u ∈ C2,α(Ω). �

We prove Proposition 3.1 in the next two sections. Part (ii) follows from part (i) and
the boundary Harnack inequality for the linearized Monge-Ampère equation which was
obtained in [LS] (see Theorem 2.4). This theorem states that if a solution to the Monge-
Ampère equation with bounded right hand side separates quadratically from its tangent
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planes on the boundary, then the classical boundary estimate of Krylov holds for solutions
of the associated linearized equation.

In order to simplify the ideas we prove the proposition in the case when the hypotheses
H1, H2, H4 are replaced by

H1’) Ω = B1;
H2’) f ∈ C∞(Ω), ρ ≤ f ≤ ρ−1;
H4’) dA = A(x) dx with ρ ≤ A(x) ≤ ρ−1 in Ω and A ∈ C∞(Ω).
We use H1’ only for simplicity of notation. We will see from the proofs that the same

arguments carry to the general case. We use H2’ so that D2u is continuous in Ω and the
linearized Monge-Ampere equation is well defined. Our estimates do not depend on the
smoothness of f , thus the general case follows by approximation from Theorem 1.1. Later
in section 5 we show that H4’ can be replaced by H4, i.e the bounds for A from below and
above are not needed.

First, we establish a result on uniform modulus of convexity for minimizers of L in 2D.

Proposition 3.2. Let u be a minimizer of L that satisfies the hypotheses above. Then, for
any δ < 1, there exist c(δ) > 0 depending on ρ, δ such that

x ∈ B1−δ ⇒ Sh(x) ⊂⊂ B1 if h ≤ c(δ).

In the above proposition, we denoted by Sh(x) the section of u centered at x at height
h:

Sh(x) = {y ∈ B̄1 : u(y) < u(x) +∇u(x)(y − x) + h}.
This result is well-known (see, e.g., Remark 3.2 in [TW3]). For completeness, we include

its proof here.

Proof. Without loss of generality assume u is normalized in B1, that is u ≥ 0, u(0) = 0.
From the stability inequality (2.4), we obtain∫

∂B1

udx ≤ C.

This integral bound and the convexity of u imply

|u|, |Du| ≤ C(δ) in B1−δ/2,

for any δ < 1. We show that our statement follows from these bounds. Assume by contra-
diction that the conclusion is not true. Then, we can find a sequence of convex functions
uk satisfying the bounds above such that

(3.1) uk(yk) ≤ uk(xk) +∇uk(xk)(yk − xk) + hk

for sequences xk ∈ B1−δ, yk ∈ ∂B1−δ/2 and hk → 0. Because Duk is uniformly bounded,
after passing to a subsequence if necessary, we may assume

uk → u∗ uniformly on B1−δ/2, xk → x∗, yk → y∗.
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Moreover u∗ satisfies ρ ≤ detD2u∗ ≤ ρ−1, and

u∗(y∗) = u∗(x∗) +∇u∗(x∗)(y∗ − x∗),

i.e., the graph of u∗ contains a straight-line in the interior. However, any subsolution v to
detD2v ≥ ρ in 2D does not have this property and we reached a contradiction. �

Since f ∈ Cα we obtain that u ∈ C2,α(B1) thus the linearized Monge-Ampère equation
is well defined in B1. Next lemma deals with general linear elliptic equations in B1 which
may become degenerate as we approach ∂B1.

Lemma 3.3. Let Lv := aij(x)vij be a linear elliptic operator with continuous coefficients
aij ∈ Cα(B1) that satisfy the ellipticity condition (aij(x))ij > 0 in B1. Given a continuous
boundary data ϕ, there exists a unique solution v ∈ C(B1)∩C2(Ω) to the Dirichlet problem

Lv = 0 in B1, v = ϕ on ∂B1.

Proof. For each small δ, we consider the standard Dirichlet problem for uniformly elliptic
equations Lvδ = 0 in B1−δ, vδ = ϕ on ∂B1−δ. Since vδ satisfies the comparison principle
with linear functions, it follows that the modulus of continuity of vδ at points on the
boundary ∂B1−δ depends only on the modulus of continuity of ϕ. Thus, from maximum
principle, we see that vδ converges uniformly to a solution v of the Dirichlet problem above.
The uniqueness of v follows from the standard comparison principle. �

Remark 3.4. The modulus of continuity of v at points on ∂B1 depends only on the modulus
of continuity of ϕ.

Remark 3.5. If Lm is a sequence of operators satisfying the hypotheses of Lemma 3.3 with
aijm → aij uniformly on compact subsets of B1 and Lmvm = 0 in B1, vm = ϕ on ∂B1, then
vm → v uniformly in B1.

Indeed, since vm have a uniform modulus of continuity on ∂B1 and, for all large m, a
uniform modulus of continuity in any ball B1−δ, we see that we can always extract a uniform
convergent subsequence in B1. Now it is straightforward to check that the limiting function
v satisfies Lv = 0 in the viscosity sense.

Next, we establish an integral form of the Euler-Lagrange equations for the minimizers
of L.

Proposition 3.6. Assume that u is the normalized minimizer of L in the class A. If
ϕ ∈ C2(Ω) ∩ C0(Ω) is a solution to the linearized Monge-Ampère equation

U ijϕij = 0 in Ω,

then

L(ϕ) :=

∫
∂Ω

ϕdσ −
∫

Ω

ϕdA = 0.
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Proof. Consider the solution uε = u+ εϕε to{
detD2uε = f in B1,

uε = u+ εϕ on ∂B1.

Since ϕε satisfies comparison principle and comparison with planes, its existence follows as
in Lemma 3.3 by solving the Dirichlet problems in B1−δ and then letting δ → 0.

In B1, ϕε satisfies

0 =
1

ε
(detD2uε − detD2u) =

1

ε

∫ 1

0

d

dt
detD2(u+ tεϕε)dt = aijε ∂ijϕε

where

(aijε )ij =

∫ 1

0

Cof (D2(u+ tεϕε))dt.

Because u is strictly convex in 2D and uε → u uniformly on B1, D2uε → D2u uniformly
on compact sets of B1. Thus, as ε→ 0, aijε → U ij uniformly on compact sets of B1 and by
Remark 3.5, we find ϕε → ϕ uniformly in B1. By the minimality of u, we find

0 ≤ lim
ε→0+

1

ε
(L(uε)− L(u)) =

∫
∂B1

ϕdσ −
∫
B1

ϕdA.

By replacing ϕ with −ϕ we obtain the opposite inequality. �

4. Proof of Proposition 3.1

In this section, we prove Proposition 3.1 where H1’, H2’ and H4’ are satisfied. Given a
convex function u ∈ C∞(B1) (not necessarily a minimizer of L) with ρ ≤ detD2u ≤ ρ−1,
we let v be the solution to the following Dirichlet problem

(4.1) U ijvij = −A in B1, v = 0 on ∂B1.

Notice that Ψ := C(1− |x|2) is an upper barrier for v if C is large enough, since

U ijΨij ≤ −C tr U ≤ −C(detD2U)1/n = −C(detD2u)
n−1
n ≤ −Cρ

n−1
n ≤ −A,

hence

(4.2) 0 ≤ v(x) ≤ C(1− |x|2) ∼ dist(x, ∂B1).

As in Lemma 3.3, the function v is the uniform limit of the corresponding vδ that solve
the Dirichlet problem in B1−δ. Indeed, since vδ also satisfies (4.2), we see that

|vδ1 − vδ2|L∞ ≤ C max{δ1, δ2}.

Let ϕ be the solution of the homogenous problem

U ijϕij = 0 in B1, ϕ = l+ on ∂B1,

where l+ = max{0, l} for some linear function l = b + ν · x of slope |ν| = 1. Denote by
S := B1 ∩ {l = 0} the segment of intersection of the crease of l with B1. Then
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Lemma 4.1. ∫
B1

ϕdA =

∫
B1

l+ dA+

∫
S
uττv dH1,

where τ is the unit vector in the direction of S, hence τ ⊥ ν.

Proof. It suffices to show the equality in the case when u ∈ C∞(B1). The general case
follows by writing the identity in B1−δ with vδ (which increases as δ decreases), and then
letting δ → 0.

Let l̃ε be a smooth approximation of l+ with

D2lε ⇀ ν ⊗ ν dH1b S as ε→ 0,

and let ϕε solve the corresponding Dirichlet problem with boundary l̃ε. Then, we integrate
by parts and use ∂iU

ij = 0,∫
B1

(ϕε − l̃ε) dA = −
∫
B1

(ϕε − l̃ε)U ijvij dx

=

∫
B1

∂i(ϕε − l̃ε)U ijvj dx

= −
∫
B1

∂ij(ϕε − l̃ε)U ijv dx

=

∫
B1

U ij∂ij l̃ε v dx.

We let ε→ 0 and obtain ∫
B1

(ϕ− l+) dA =

∫
S
Uννv dH1,

which is the desired conclusion since Uνν = uττ . �

From Lemma 4.1 and Proposition 3.6, we obtain

Corollary 4.2. If u is a minimizer of L in the class A then∫
S
uττv dH1 =

∫
∂B1

l+ dσ −
∫
B1

l+ dA.

The hypotheses on σ and A imply that if the segment S has length 2h with h ≤ h0 small,
universal then

ch3 ≤
∫
S
uττv dH1 ≤ Ch3,

for some c, C universal.

Lemma 4.3. Let X1 and X2 be the endpoints of the segment S defined as above. Then

(4.3)

∫
S
uττ (1− |x|2) dH1 = 4h

(
u(X1) + u(X2)

2
−
∫
−
S
udH1

)
,

where 2h denotes the length of S.
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Proof. Again we may assume that u ∈ C2(B1) since the general case follows by approxi-
mating B1 by B1−δ. Assume for simplicity that τ = e1. Then∫

S
uττ (1− |x|2)dH1 =

∫ h

−h
∂2
t u(t, a)(h2 − t2) dt

for some fixed a and integrating by parts twice, we obtain (4.3). �

We remark that the right hand side in (4.3) represents twice the area between the segment
with end points (X1, u(X1)), (X2, u(X2)) and the graph of u above S.

Definition 4.4. We say that u admits a tangent plane at a point z ∈ ∂B1, if there exists
a linear function lz such that

xn+1 = lz(x)

is a supporting hyperplane for the graph of u at (z, u(z)) but for any ε > 0,

xn+1 = lz(x)− εz · (x− z)

is not a supporing hyperplane. We call lz a tangent plane for u at z.

Remark 4.5. Notice that if detD2u ≤ C then the set of points where u admits a tangent
plane is dense in ∂B1. Indeed, using standard barriers it is not difficult to check that any
point on ∂B1 where the boundary data u|∂B1 admits a quadratic polynomial from below
satisfies the definition above. In the definition above we assumed u = ū on ∂B1 with ū
defined as in the Lemma 2.1, therefore u|∂B1 is lower semicontinuous.

Assume that u admits a tangent plane at z, and denote by

ũ = u− lz.

Lemma 4.6. There exists η > 0 small universal such that the section

S̃z := {x ∈ B1| ũ < η(x− z) · (−z)},
satisfies

S̃z ⊂ B1 \B1−ρ, |S̃z| ≥ c,

for some small c universal.

Proof. We notice that (4.3) is invariant under additions with linear functions. We apply it
to ũ with X1 = z, X2 = x and use ũ ≥ 0, ũ(z) = 0 together with (4.2) and Corollary 4.2
and obtain

ũ(x) ≥ c|x− z|2 x ∈ ∂B1 ∩Bh0(z).

From the uniform strict convexity of ũ, which was obtained in Proposition 3.2, we find
that the inequality above holds for all x ∈ ∂B1 for possibly a different value of c. Thus, by
choosing η sufficiently small, we obtain

S̃z ⊂ B1, S̃z ∩B1−ρ = ∅,
where the second statement follows also from Proposition 3.2.
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Next we show that |S̃z| cannot be arbitrarily small. Otherwise, by the uniform strict
convexity of ũ, we obtain that S̃z ⊂ Bε4(z) for some small ε > 0. Assume for simplicity of
notation that z = −e2. Then the function

w := η(x2 + 1) +
ε

2
x2

1 +
1

2ρε
(x2 + 1)2 − 2ε(x2 + 1),

is a lower barrier for ũ in B1 ∩Bε4(z). Indeed, notice that if ε is sufficiently small then

w ≤ η(x2 + 1) ≤ ũ on ∂(B1 ∩Bε4(z)), detD2w = ρ−1 ≥ detD2ũ.

In conclusion, ũ ≥ w ≥ (η/2)(x2 + 1) and we contradict that 0 is a tangent plane for ũ at
z. �

Lemma 4.7. Let u be the normalized minimizer of L. Then ‖u‖C0,1(B1) ≤ C, and u admits
tangent planes at all points of ∂B1. Also, u separates at least quadratically from its tangent
planes i.e

u(x) ≥ lz(x) + c|x− z|2, ∀x, z ∈ ∂B1.

Proof. Let z be a point on ∂B1 where u admits a tangent plane lz. From the previous
lemma we know that u satisfies the quadratic separation inequality at z and also that
ũ = u− lz is bounded from above and below in S̃z, i.e.,

|u− lz| ≤ C in S̃z.

We obtain ∫
S̃z

|lz| dx− C ≤
∫
S̃z

u dx ≤
∫
B1

u dx ≤ C

∫
∂B1

u dσ ≤ C,

and since S̃z ⊂ B1 has measure bounded from below we find

lz(z), |∇lz| ≤ C.

By Remark 4.5, this holds for a.e. z ∈ ∂B1 and, by approximation, we find that any point
in ∂B1 admits a tangent plane that satisfies the bounds above. This also shows that u is
Lipschitz and the lemma is proved. �

Lemma 4.8. The function v satisfies the lower bound

v(x) ≥ c dist(x, ∂B1),

for some small c universal.

Proof. Let z ∈ ∂B1 and let l be a linear functional with

l(x) = lz(x)− b z · (x− z), for some 0 ≤ b ≤ η.

where lz denotes a tangent plane at z. We consider all sections

S = {x ∈ B1| u < l}
which satisfy

inf
S

(u− l) ≤ −c0,
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for some appropriate c0 small, universal. We denote the collection of such sections Mz.
From Lemma 4.6, we see that Mz 6= ∅ since S̃z (or b = η) satisfies the property above.
Notice also that S ⊂ S̃z ⊂ B1 and z ∈ ∂S. For any section S ∈Mz we consider its center
of mass zS, and from the property above we see that zS ∈ B1−c for some small c > 0
universal.

First, we show that the lower bound for v holds on the segment [z, zS]. Indeed, since

U ij[c(l − u)]ij = −2c detD2u ≥ −2cρ−1 ≥ −A = U ijvij,

and c(l − u) ≤ 0 = v on ∂B1 we conclude that

(4.4) c(l − u)+ ≤ v in B1.

Now, we use the convexity of u and the fact that the property of S implies (u−l)(zS) < −c,
and conclude that

v(x) ≥ c(l − u)(x) ≥ c|x− z| ≥ c dist(x, ∂B1) ∀x ∈ [z, zS].

Now, it remains to prove that the collection of segments [z, zS], z ∈ ∂B1, S ∈Mz cover
a fixed neighborhood of ∂B1. To this aim we show that the multivalued map

z ∈ ∂B1 7−→ F (z) := {zS| S ∈Mz}
has the following properties

1) the map F is closed in the sense that

zn → z∗ and zSnn → y∗ ⇒ y∗ ∈ F (z∗)

2) F (z) is a connected set for any z.
The first property follows easily from the following facts: zS varies continuously with

the linear map l that defines S = {u < l}; and if lzn → l∗ then l∗ ≤ lz∗ for some tangent
plane lz∗ .

To prove the second property we notice that if we increase continuously the value of the
parameter b (which defines l) up to η then all the corresponding sections belong also to

Mz. This means that in F (z) we can connect continuously zS with zS̃z for some section

S̃z. On the other hand the set of all possible zS̃z is connected since the set lz of all tangent
planes at z is connected in the space of linear functions.

Since F (z) ⊂ B1−c, it follows that for all δ < c the intersection map

z 7−→ Gδ(z) = {[z, y] ∩ ∂B1−δ| y ∈ F (z)}
has also the properties 1 and 2 above. Now it is easy to check that the image of Gδ covers
the whole ∂B1−δ, hence the collection of segments [z, zS] covers B1 \ B1−c and the lemma
is proved.

�

Now, we are ready to prove the first part of Proposition 3.1.

Proof of Proposition 3.1 (i). In Lemma 4.6, we obtained the quadratic separation from
below for ũ = u − lz. Next we show that ũ separates at most quadratically on ∂B1 in a
neighborhood of z.
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Assume for simplicity of notation that z = −e2. We apply (4.3) to ũ with X1 = (−h, a),
X2 = (h, a), then use Corollary 4.2 and Lemma 4.8 and obtain

ũ(X1) + ũ(X2)

2
−
∫
−
S
ũ ≤ Ch2.

On the other hand, for small h, the segment [z, zS̃z ] intersects [X1, X2] at a point y = (t, a)
with |t| ≤ Ch2 ≤ h/2. Moreover, since y ∈ S̃z we have ũ(y) ≤ η(a + 1) ≤ Ch2. On the
segment [X1, X2] , ũ satisfies the conditions of Lemma 4.9 which we prove below, hence

ũ(X1), ũ(X2) ≤ Ch2.

In conclusion, u separates quadratically on ∂B1 from its tangent planes and therefore
satisfies the hypotheses of the Localization Theorem in [S2], [LS]. From Theorem 2.4 and
Proposition 2.6 in [LS], we conclude that

(4.5) ‖u‖C1,β(B1), ‖v‖Cβ(B1), ‖vν‖Cβ(∂B1) ≤ C,

for some β < 1, C universal. �

Lemma 4.9. Let f : [−h, h]→ R+ be a nonnegative convex function such that

f(−h) + f(h)

2
− 1

2h

∫ h

−h
f(x)dx ≤Mh2, f(t) ≤Mh2,

for some t ∈ [−h/2, h/2]. Then

f(±h) ≤ Ch2,

for some C depending on M .

Proof. The inequality above states that the area between the line segment with end points
(−h, f(−h)), (h, f(h)) and the graph of f is bounded by 2Mh3. By convexity, this area
is greater than the area of the triangle with vertices (−h, f(−h)), (t, f(t)), (h, f(h)). Now
the inequality of the heights f(±h) follows from elementary euclidean geometry. �

Finally, we are ready to prove the second part of Proposition 3.1.

Proof of Proposition 3.1 (ii). Let ϕ be such that

U ijϕij = 0 in Ω, ϕ ∈ C1,1(∂B1) ∩ C0(B1).

Since u satisfies the quadratic separation assumption and f is smooth up to the boundary,
we obtain from Theorem 2.5 and Proposition 2.6 in [LS]

‖v‖C1,β(B1), ‖ϕ‖C1,β(B1) ≤ K, and |U ij| ≤ K| log δ|2 on B1−δ,

for some constant K depending on ρ, ‖f‖Cβ(B1), and ‖ϕ‖C1,1(∂B1).
We will use the following identity in 2D:

U ijvjνi = U τνvτ + Uννvν .
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Integrating by parts twice, we obtain as in (1.1)∫
B1−δ

ϕdA = −
∫
B1−δ

ϕU ijvij dx

=

∫
∂B1−δ

ϕiU
ijvνj −

∫
∂B1−δ

ϕU ijvjνi

= −
∫
∂B1−δ

ϕU ννvν + o(δ)

where in the last equality we used the estimates

|v| ≤ Cδ, |vτ | ≤ Kδβ, |ϕ|, |∇ϕ| ≤ K, U ij ≤ K| log δ|2 on ∂B1−δ.

Since on ∂Br

Uνν = uττ = r−2uθθ + r−1uν ,

u ∈ C1,β(B1) and u(reiθ) converges uniformly as r → 1, and uθθ is uniformly bounded from
below, we obtain

Uνν dH1b∂Br⇀ (uθθ + uν) dH1b∂B1 as r → 1.

We let δ → 0 in the equality above and find∫
B1

ϕdA = −
∫
∂B1

ϕ (uθθ + uν)vν dH1.

Now the Euler-Lagrange equation, Lemma 3.6, gives

(uθθ + uν)vν = −σ on ∂B1.

We use that ‖vν‖Cβ(∂B1) ≤ C and, from Lemma 4.8, vν ≤ −c on ∂B1 and obtain

‖u‖C2,γ(∂B1) ≤ C‖σ‖Cγ(∂B1).

�

5. The general case for A

In this section, we remove the assumptions that A is bounded from below by ρ in B1

and also we assume that A is bounded from above only in a neighborhood of the boundary.
Precisely, we assume that A ≥ 0 in B1 and A ≤ ρ−1 in B1\B1−ρ. We may also assume A
is smooth in B1 since the general case follows by approximation. Notice that

∫
B1
Adx is

bounded from above and below since it equals
∫
∂B1

dσ.
Let v be the solution of the Dirichlet problem

(5.1) U ijvij = −A, v = 0 on ∂B1.

In Section 4, we used that A is bounded from above when we obtained v ≤ C(1− |x|2),
and we used that A is bounded from below in Lemma 4.8 (see (4.4)). We need to show
that these bounds for v also hold in a neighborhood of ∂B1 under the weaker hypotheses
above. First, we show
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Lemma 5.1.
v ≤ C on ∂B1−ρ/2, v ≥ c(δ) on B1−δ,

with C universal, and c(δ) > 0 depending also on δ.

Proof. As before, we may assume that u ∈ C∞(B1) since the general case follows by
approximating B1 by B1−ε.

We multiply the equation in (5.1) by (1− |x|2), integrate by parts twice and obtain∫
B1

2v tr U dx =

∫
B1

A(x)(1− |x|2) dx ≤ C,

and since tr U ≥ c we obtain ∫
B1

v dx ≤ C.

We know
1) v ≥ 0 solves a linearized Monge-Ampère equation with bounded right hand side in

B1 \B1−ρ ,
2) u has a uniform modulus of convexity on compact sets of B1.

Now we use the Harnack inequality of Caffarelli-Gutierrez [CG] and conclude that

sup
V
v ≤ C(inf

V
v + 1), V := B1−ρ/4 \B1−3ρ/4,

and the integral inequality above gives supV v ≤ C.
Next, we prove the lower bound. We multiply the equation in (5.1) by ϕ ∈ C∞0 (B1) with

ϕ = 0 if |x| ≥ 1− δ/2, ϕ = 1 in B1−δ, ‖D2ϕ‖ ≤ C/δ2,

integrate by parts twice and obtain

C(δ)

∫
U
v tr U ≥ −

∫
B1

v U ijϕij =

∫
B1

Aϕ ≥ c, U := B1−δ/2 \B1−δ,

where the last inequality holds provided that δ is sufficiently small. Since u is normalized
we obtain (see Proposition 3.2) , |∇u| ≤ C(δ) in U thus∫

U
tr U =

∫
U
4u =

∫
∂U
uν ≤ C(δ).

The last two inequalities imply supU v ≥ c(δ), hence there exists x0 ∈ U such that v(x0) ≥
c(δ). We use 1), 2) above and Harnack inequality and find v ≥ c(δ) in Bδ̄(x0) for some
small δ̄ depending on ρ and δ. Since v is a supersolution, i.e U ijvij ≤ 0, we can apply
the weak Harnack inequality of Caffarelli-Gutierrez, Theorem 4 in [CG]. From property 2)
above, we see that we can extend the lower bound of v from Bδ̄(x0) all the way to U , and
by the maximum principle this bound holds also in B1−δ/2.

�

The upper bound in Lemma 5.1 gives as in (4.2) the upper bound for v in a neighborhood
of ∂B1, i.e

v(x) ≤ C(1− |x|2) on B1 \B1−ρ/2.
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This implies as in Section 4 that Lemma 4.7 holds i.e., u separates at least quadratically
from its tangent planes on ∂B1. It remains to show that also Lemma 4.8 holds. Since A
is not strictly positive, c(l − u) is no longer a subsolution for the equation (5.1) and we
cannot bound v below as we did in (4.4). In the next lemma, we construct another barrier
which alows us to bound v from below on the segment [z, zS].

Lemma 5.2. Let ũ : B1 → R be a convex function with ũ ∈ C(B1) ∩ C2(B1), and

ρ ≤ detD2ũ ≤ ρ−1.

Assume that the section S := {ũ < 0} is included in B1 and is tangent to ∂B1 at a point
z ∈ ∂B1, and also that

inf
S
ũ ≤ −µ,

for some µ > 0. If

Ũ ijvij ≤ 0 in B1, v ≥ 0 on ∂B1,

then

v(x) ≥ c(µ, ρ)|x− z| inf
S′
v ∀x ∈ [z, zS], S ′ := {ũ ≤ 1

2
inf
S
ũ},

where zS denotes the center of mass of S, and c(µ, ρ) is a positive constant depending on
µ and ρ.

The functions ũ = u− l and v in the proof of Lemma 4.8 satisfy the lemma above, if η
in Lemma 4.6 is small, universal. Using also the lower bound on v from Lemma 5.1, we
find

v ≥ c|x− z| on [z, zS],

for some c universal, and the rest of the proof of Lemma 4.8 follows as before. This shows
that Proposition 3.1 holds also with our assumptions on the measure A.

Proof of Lemma 5.2. We construct a lower barrier for v of the type

w := ekw̄ − 1, w̄ := −ũ+
ε

2
(|x|2 − 1),

for appropriate constants k large and ε� µ small. Notice that w ≤ 0 on ∂B1 since w̄ ≤ 0
on ∂B1. Also

w̄ ≥ c |x− z| on [z, zS],

since, by convexity, −ũ ≥ c|x − z| on [z, zS] for some c depending on µ and ρ. It suffices
to check that

Ũ ijwij ≥ 0 on B1 \ S ′,
since then we obtain v ≥ (infS′ v) cw in B1 \ S ′ which easily implies the conclusion. In
B1 \ S ′ we have |∇w̄| ≥ c(µ) > 0 provided that ε is sufficiently small, thus

Ũ ijw̄iw̄j = (detD2ũ)(∇w̄)T (D2ũ)−1∇w̄ ≥ cΛ−1,
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where Λ is the largest eigenvalue of D2ũ. Then, we use that tr Ũ ≥ cλ−1 ≥ cΛ
1

n−1 where λ
is the smallest eigenvalue of D2ũ, and obtain

Ũ ijwij = kekw̄
(
Ũ ijw̄ij + kŨ ijw̄iw̄j

)
≥ kekw̄

(
−n+ ε tr Ũ + kcΛ−1

)
≥ kekw̄

(
−n+ c(εΛ

1
n−1 + kΛ−1)

)
≥ 0,

if k is chosen large depending on ε, ρ, µ and n. �

6. Singular minimizers in dimension n ≥ 3.

Let

u(x) := |x′|2−
2
nh(xn),

be the singular solution to detD2u = 1 constructed by Pogorelov, with h a smooth even
function, defined in a neighborhood of 0 and h(0) = 1, satisfying an ODE(

(1− 2

n
)hh′′ − (2− 2

n
)h′2
)
hn−2 = c.

We let

v(x) := |x′|2−
2
n q(xn)

be obtained as the infinitesimal difference between u and a rescaling of u,

v(x′, xn) := lim
ε→0

1

ε
[u(x′, xn)− (1 + ε)−γu(x′, (1 + ε)xn)],

for some small γ < 2/n. Notice that

q(t) = γh(t)− h′(t)t
and q > 0 in a small interval (−a, a) and q vanishes at its end points. Also,

U ijvij = nγ − 2 < 0 in Ω := Rn−1 × [−a, a],

v = 0, Uννvν = Unnvn = −σ0 on ∂Ω,

for some constant σ0 > 0. The last equality follows since Unn is homogenous of degree
−(n− 1)(2/n) in |x′| and vn is homogenous of degree 2− 2/n in |x′|.

Notice that if u, v are solutions of the system (1.2) in the infinite cylinder Ω for uniform
measures A and σ. In order to obtain a solution in a finite domain Ω0 we modify v outside
a neighborhood of the line |x′| = 0 by subtracting a smooth convex function ψ which
vanishes in B1 and increases rapidly outside B1. Precisely we let

ṽ := v − ψ, Ω0 := {ṽ > 0}
and then we notice that u, ṽ, solve the system (1.2) in the smooth bounded domain Ω0 for
smooth measures A and σ.
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Since

|U ij| ≤ Cr
2
n
−2, if |x′| ≥ r,

we integrate by parts in the domain Ω0 \ {|x′| ≤ ε} and then let ε→ 0 and find∫
Ω0

ϕdA = −
∫

Ω0

U ijϕijv +

∫
∂Ω0

ϕdσ, ∀ϕ ∈ C2(Ω0),

or

L(ϕ) =

∫
Ω0

U ijϕij v.

This implies that L is stable, i.e L(ϕ) > 0 for any convex ϕ which is not linear. Also, if
w ∈ C2(Ω0) satisfies detD2w = 1, then U ij(w − u)ij ≥ 0, and we obtain

L(w)− L(u) =

∫
Ω0

U ij(w − u)ij v ≥ 0,

i.e u is a minimizer of L.
We remark that the domain Ω0 has flat boundary in a neighborhood of the line {|x′| = 0}

and therefore is not uniformly convex. However this is not essential in our example. One
can construct for example a function v̄ in a uniformly convex domain by modifying v as

v̄ := |x′|2−
2
n q(xn(1 + δ|x′|2)),

for some small δ > 0.

7. Proof of Theorem 1.4

We assume for simplicity that Ω = B1. The existence of a minimizer u for the convex
functional E follows as in Section 2. First, we show that

(7.1) t1 ≤ detD2u ≤ t0

for some t1 depending on F and ρ. The upper bound follows easily. If detD2u > t0 in a
set of positive measure then the function w defined as

detD2w = min{ t0, detD2u}, w = u on ∂B1,

satisfies E(w) < E(u) since F (detD2w) = F (detD2u) and L(w) < L(u).
In order to obtain the lower bound in (7.1) we need the following lemma.

Lemma 7.1. Let w be a convex functions in B1 with

(detD2w)
1
n = g ∈ Ln(B1).

Let w+ϕ be another convex function in B1 with the same boundary values as w such that

(detD2(w + ϕ))
1
n = g − h, for some h ≥ 0.

Then ∫
B1

ϕ gn−1 ≤ C(n)

∫
B1

h gn−1.
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Proof. By approximation, we may assume that w, ϕ are smooth in B1. Using the concavity
of the map M 7→ (detM)

1
n in the space of symmetric matrices M ≥ 0, we obtain

(detD2(w + ϕ))
1
n ≤ (detD2w)

1
n +

1

n
(detD2w)

1
n
−1W ijϕij,

hence
−nh gn−1 ≤ W ijϕij.

We multiply both sides with Φ := 1
2
(1− |x|2) and integrate. Since both ϕ and Φ vanish on

∂B1 we integrate by parts twice and obtain

−C(n)

∫
B1

h gn−1 ≤
∫
B1

W ijΦij ϕ = −
∫
B1

(tr W )ϕ.

Using

trW ≥ c(n)(detW )
1
n = c(n)(detD2w)

n−1
n = c(n)gn−1

we obtain the desired conclusion. �

Now we prove the lower bound in (7.1). Define w such that w = u on ∂B1 and

detD2w = max{ t1, detD2u},
for some small t1. Since G(t) = F (tn) is convex and detD2w ≥ t1, we have

G((detD2w)1/n) ≤ G((detD2u)1/n) +G′(t
1/n
1 )((detD2w)1/n − (detD2u)1/n).

We denote
u− w = ϕ, (detD2w)1/n = g, (detD2u)1/n = g − h,

and we rewrite the inequality above as

F (detD2w) ≤ F (detD2u) +G′(t
1/n
1 )h.

From Lemma 7.1, we obtain ∫
B1

h gn−1 ≥ c(n)

∫
B1

ϕ gn−1

and since h is supported on the set where the value of g = t
1/n
1 is minimal, we find that∫

B1

h ≥ c(n)

∫
B1

ϕ.

This gives ∫
B1

F (detD2w)− F (detD2u) ≤ c(n)G′(t
1/n
1 )

∫
B1

ϕ,

thus, using the minimality of u and G′(0+) = −∞,

0 ≤ E(w)− E(u) ≤
∫
B1

ϕdA+ c(n)G′(t
1/n
1 )

∫
B1

ϕ ≤ 0,

if t1 is small enough. In conclusion, ϕ = 0 and u = w and (7.1) is proved.
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We denote
detD2u = f, t1 ≤ f ≤ t0.

Any minimizer for L in the class of functions whose determinant equals f is a minimizer for
E as well. In order to apply Theorem 1.2 we need f to be Holder continuous. However, we
can approximate f by smooth functions fn and find smooth minimizers un for approximate
linear functionals Ln with the constraint detD2un = fn. By Proposition 3.1 (see (4.5)),

‖un‖C1,β(B1), ‖vn‖Cβ(B1) ≤ C,

hence we may assume (see Theorem 1.1) that, after passing to a subsequence, un → u and
vn → v uniformly for some function v ∈ Cβ(B1). We show that

(7.2) v = −F ′(f).

Then by the hypotheses on F we obtain detD2u = f ∈ Cβ(B1) and from Theorem 1.2 we
easily obtain

‖u‖C2,α(B1), ‖v‖C2,α(B1) ≤ C,

for some C depending on ρ, α, ‖σ‖Cα(B1), ‖A‖Cα(B1) and F .

In order to prove (7.2) we need a uniform integral bound (in 2D) between solutions to
the Monge-Ampère equation and solutions of the corresponding linearized equation.

Lemma 7.2. Assume n = 2 and let w be a smooth convex function in B1 with

λ ≤ detD2w := g ≤ Λ,

for some positive constants λ, Λ. Let w + εϕ be a convex function with

detD2(w + εϕ) = g + εh, ϕ = 0 on ∂B1

for some smooth function h with ‖h‖L∞ ≤ 1. If ε ≤ ε0 then∫
B1

|h−W ijϕij| ≤ Cε.

for some C, ε0 depending only on λ, Λ.

We postpone the proof of the lemma untill the end of the section.
Now let h be a smooth function, ‖h‖L∞ ≤ 1, and we solve the equations

detD2(un + εϕn) = fn + εh, ϕn = 0 on ∂B1,

with un, fn as above. From (1.1) we see that

Ln(ϕn) =

∫
B1

(U ij
n ∂ijϕn) vn,

hence, by the lemma above

|Ln(ϕn)−
∫
B1

h vn| ≤ Cε

with C universal. We let n→∞ and obtain

|L(ϕ)−
∫
B1

h v| ≤ Cε.
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with ϕ the solution of

detD2(u+ εϕ) = f + εh, ϕ = 0 on ∂B1.

The inequality E(u+ εϕ) ≥ E(u) implies∫
B1

(F (f + εh)− F (f) + εh v) ≥ −Cε2,

hence, as ε→ 0, ∫
B1

(F ′(f) + v)h ≥ 0 for any smooth h,

which gives (7.2). �

Proof of Lemma 7.2. Using the concavity of (detD2w)1/n we obtain

(g + εh)1/n ≤ g1/n +
ε

n
g1/n−1W ijϕij,

thus, for ε ≤ ε0

(7.3) h− Cε ≤ W ijϕij.

Since n = 2 we have

detD2(w + εϕ) = detD2w + εW ijϕij + ε2 detD2ϕ,

hence
h−W ijϕij = ε detD2ϕ.

From the pointwise inequality (7.3), we see that in order to prove the lemma it suffices to
show that ∫

B1

detD2ϕ ≥ −C.

Integrating by parts and using ϕ = 0 on ∂B1 we find∫
B1

2 detD2ϕ =

∫
B1

Φijϕij =

∫
∂B1

Φijϕiνj =

∫
∂B1

Φννϕν =

∫
∂B1

ϕ2
ν ≥ 0

where we used that Φνν = ϕττ = ϕν . �
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