A LOCALIZATION PROPERTY AT THE BOUNDARY FOR
MONGE-AMPERE EQUATION

O. SAVIN

1. INTRODUCTION
In this paper we study the geometry of the sections for solutions to the Monge-
Ampere equation
det D*u = f, u: Q=R convex,

which are centered at a boundary point zg € ). We show that under natural local
assumptions on the boundary data and the domain, the sections

Sn(zo) ={z € Q| u(z) < u(zo) + Vu(xo) - (x — xo) + h}

are “equivalent” to ellipsoids centered at z¢, that is, for each h > 0 there exists an
ellipsoid E}, such that

cEy, nQc Sh({Eo) —x9 C CEy ﬁ§7

with ¢, C' constants independent of h.
The situation in the interior is well understood. Caffarelli showed in [C1] that if

0<A<f<A inQ,
and for some x € €,
Sp(z) CC Q,
then Sy (x) is equivalent to an ellipsoid centered at x i.e.

kE C Sp(z)—z Ck'E

for some ellipsoid E of volume h™/? and for a constant k > 0 which depends only
on A\, A n.

This property provides compactness of sections modulo affine transformations.
This is particularly useful when dealing with interior C*® and W2P? estimates of
strictly convex solutions of

det D*u = f

when f > 0 is continuous (see [C2]).
Sections at the boundary were also considered by Trudinger and Wang in [TW]
for solutions of

det D*u = f
but under stronger assumptions on the boundary behavior of u and 912, and with

f € C*(Q). They proved C* estimates up to the boundary by bounding the mixed
derivatives and obtained that the sections are equivalent to balls.

The author was partially supported by NSF grant 0701037.
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2. STATEMENT OF THE MAIN THEOREM.

Let Q be a bounded convex set in R™. We assume throughout this note that
(2.1) B,(pen) C Q C {xz, >0} N B%,

for some small p > 0, that is Q C (R")" and € contains an interior ball tangent to
0Qat 0.
Let u : 2 — R be convex, continuous, satisfying

(2.2) det D*u=f, A< f<A inQ.

We extend u to be oo outside €.
By subtracting a linear function we may assume that

(2.3) Zn+1 = 0 is the tangent plane to u at 0,

in the sense that
u>0, u(0)=0,
and any hyperplane x,, 11 = ex,, € > 0 is not a supporting hyperplane for w.
In this paper we investigate the geometry of the sections of u at 0 that we denote
for simplicity of notation
Sp={zeQ: u(z)<h}.

We show that if the boundary data has quadratic growth near {x,, = 0} then,
as h — 0, S}, is equivalent to a half-ellipsoid centered at 0.
Precisely, our main theorem reads as follows.

Theorem 2.1. Assume that 2, u satisfy (2.1)-(2.3) above and for some p > 0,

(2.4) plz)? <u(z) <p a2 on dn{z, < p}.

Then, for each h < c(p) there exists an ellipsoid Ey, of volume h™'? such that
kE,NQ C Sy C k™ 'Ej,.

Moreover, the ellipsoid Ej, is obtained from the ball of radius h'/? by a linear
transformation A,:l (sliding along the x, = 0 plane)

AyEy, = h'/?B,
Ap(x) =2 —va,, v=Wi,V...,Vn_1,0),
with
lv| <k~ '[loghl.
The constant k above depends on u, \, A,n and c(p) depends also on p.

Theorem 2.1 is new even in the case when f = 1. The ellipsoid F}, or equiv-
alently the linear map Ay, provides information about the behavior of the second
derivatives near the origin. Heuristically, the theorem states that in Sy, the tangen-
tial second derivatives are bounded from above and below and the mixed second

derivatives are bounded by |log h|. This is interesting given that f is only bounded
and the boundary data and 0 are only C! at the origin.

Remark. Given only the boundary data ¢ of u on 02, it is not always easy to
check condition (2.4). Here we provide some examples when (2.4) is satisfied:

1) If ¢ is constant and the domain € is included in a ball included in {x,, > 0}.
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2) If the domain 05 is tangent of order 2 to {z, = 0} and the boundary data ¢
has quadratic behavior in a neighborhood of 0.

3) ¢, 02 € C? at the origin, and (2 is uniformly convex at the origin.

We obtain compactness of sections modulo affine transformations.

Corollary 2.2. Under the assumptions of Theorem 2.1, assume that
lim f(x) = f(0)
and
u(z) = P(x) + o(|z[*) on 0N
with P a quadratic polynomial. Then we can find a sequence of rescalings

_ 1 _
ap(z) = Eu(hl/zAh L)

which converges to a limiting continuous solution iy : Qg — R with
kBf c Qo Cc k'Bf
such that
det D?ig = £(0)

and

g =P onQyN{z, =0},

o =1 on dQN{z, >0}

In a future work we intend to use the results above and obtain C%* and W2P

boundary estimates under appropriate conditions on the domain and boundary
data.

3. PRELIMINARIES

Next proposition was proved by Trudinger and Wang in [TW]. Since our setting
is slightly different we provide its proof.

Proposition 3.1. Under the assumptions of Theorem 2.1, for all h < ¢(p), there
exists a linear transformation (sliding along x,, = 0)
Ap(z) = 2 — va,,
with
vn =0, [v] < C(p)h 20D
such that the rescaled function
u(Apr) = u(z),
satisfies in .
Sh = AhSh = {ﬂ < h}

the following:

(i) the center of mass of Sy, lies on the x,-azis;

(i)

koh™'? < |Sp| = |Sh| < kg 'h"7?;



4 0. SAVIN

(iil) the part of DSy, where {& < h} is a graph, denoted by
éh = 6§h N {a < h} = {(x’,gh(m/))}
that satisfies

and R
g|$/|2 <a<2u 2 on Gy.
The constant ko above depends on p, A\, A,n and the constants C(p),c(p) depend
also on p.

In this section we denote by ¢, C' positive constants that depend on n, u, A, A.
For simplicity of notation, their values may change from line to line whenever there
is no possibility of confusion. Constants that depend also on p are denote by ¢(p),

Clp).
Proof. The function

n—1-"n

A
v = plz’|* + 22— C(p)wn
p

is a lower barrier for u in QN {z, < p} if C(p) is chosen large.
Indeed, then
v<wu ondQN{z, <p},

v<0<wu onQnN{z,=p},

and
det D?v > A.

In conclusion,
v<u inQnN{z, <p}

hence
(3.1) Sn N {n < py € {v < h} C {zn > clp)(pul2'* = h)}.
Let x7 be the center of mass of S;. We claim that
n
3.2 Ye, > he, = ,
(32) Theen > colplh®s o=

for some small cy(p) > 0.
Otherwise, from (3.1) and John’s lemma we obtain

Sy C {zn < C(n)coh® < h®} N {|z'| < C1h/?},
for some large C1 = C1(p). Then the function
_ hf || 2(n—1); (Tn\2
W=, + 2 (CW) FACH I (1)

is a lower barrier for u in Sy, if ¢¢ is sufficiently small.
Indeed,

ho h _
w< 745 AT (Cm)eo)’h < b in S,

and for all small h,
1—

Ct

2> + C(P)hco% <plr'P<u on o,

w < ex, +
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and
det D?w = 2A.
Hence
w <y in Sy,

and we contradict that 0 is the tangent plane at 0. Thus claim (3.2) is proved.
Now, define

Apx =z —vx,, V=

and
w(Apz) = u(x).
The center of mass of S, = A,S), is
.’Z‘Z = Ahx’;b

and lies on the z,-axis from the definition of Aj. Moreover, since x} € S}, we see
from (3.1)-(3.2) that

(2], - en)'/?

< Clp)h™",
and this proves (i).
If we restrict the map Ay on the set on 99 where {u < h}, i.e. on

712
98, N0Q C {x, < M} N {|z'| < ChY/?}
P
we have
[Apz — x| = |v|zn, < C(p)h™*?|2']> < C(p)h ™= |2,

and part (iii) easily follows.
Next we prove (ii). From John’s lemma, we know that after relabeling the z’
coordinates if necessary,

(3.3) DuBy C S, — % € C(n)DyBy
where
d 0 - 0
0 do - 0
Dp=1. . . .
0 0 - d,
Since

a<2p Y2 on G = {(z, gn(z))},
we see that the domain of definition of g, contains a ball of radius (ph/2)'/2. This
implies that
di>cah'?, i=1,--- ,n—1,
for some ¢; depending only on n and u. Also from (3.2) we see that
Ty - en =T - en > co(p)h”

which gives
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We claim that for all small h,
[1d: = ko2,
i=1

with ko small depending only on p,n, A, which gives the left inequality in (ii).
To this aim we consider the barrier,

n 2
Z;
W = €Ty, —|—;ch (dz>
We choose c¢ sufficiently small depending on p,n, A so that for all h < ¢(p),
w<h ondS,
and on the part of the boundary G, we have w < @ since
T

2
w < €xy, + £2|:17’|2 +ch ()
‘1

n

S

T

E /12
4|x| —|—chC’(n)d

IN

n

AN

Ela'[2 4 ch! = C(p) |2
R
Moreover, if our claim does not hold, then
det D*w = (2ch)™(J [ di) ™" > A,

thus w < @ in Sh. By definition, @ is obtained from u by a sliding along z,, = 0,
hence 0 is still the tangent plane of @ at 0. We reach again a contradiction since
U > w > ex, and the claim is proved.

Finally we show that

1S, < Ch™/?

for some C' depending only on A, n. Indeed, if
v="h on dS),

and

det D%y = A
then

v>u>0 In Sh.

Since

h>h—minv > c(n, \)[Sy|*/"
Sh

we obtain the desired conclusion.
O

In the proof above we showed that for all h < ¢(p), the entries of the diagonal
matrix Dy, from (3.3) satisfy

di>ch'?, i=1,..n—1
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n
n-+1
ch™? < Hdi < Ch"/2,

The main step in the proof of Theorem 2.1 is the following lemma that will be
proved in the remaining sections.

dn, > c(p)h®, a=

Lemma 3.2. There exist constants ¢, ¢(p) such that
(3.4) dp > ch'/?,
for all h < ¢(p).

Using Lemma 3.2 we can easily finish the proof of our theorem.

Proof of Theorem 2.1. Since all d; are bounded below by c¢h!/2? and their product
is bounded above by Ch™/? we see that

Ch'?2>d;>ch?  i=1,---.n
for all h < ¢(p). Using (3.3) we obtain
Sh C Chl/QBl.

Moreover, since
if-en>d, >chY? (i) =0,
and the part G, of the boundary dS), contains the graph of g, above |2'| < ch!/?,
we find that
ch*?’BiNQ c S,
with = Ap€, Sy, = ApSh. In conclusion
ch'?ByNQ C AnS, € ChY?B;.
We define the ellipsoid E}, as
By = AN (W2 By),
hence
cE,NQ C Sy, C CE}.
Comparing the sections at levels h and h/2 we find
cEp/ N QcCE,
and we easily obtain the inclusion
AhA;/lzBl c OB;.
If we denote
Apx = — vpay,
then the inclusion above implies
[vh — vyl < C,
which gives the desired bound
[vn| < C|log h|

for all small A.
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We introduce a new quantity b(h) which is proportional to d,h~1/2 and which
is appropriate when dealing with affine transformations.
Notation. Given a convex function v we define

bu(h) = h™ Y2 sup z,,.

Sh

Whenever there is no possibility of confusion we drop the subindex u and use the
notation b(h).

Below we list some basic properties of b(h).

1) If hl S hg then

2) A rescaling

given by a linear transformation A which leaves the z,, coordinate invariant does
not change the value of b, i.e

3) If A is a linear transformation which leaves the plane {x,, = 0} invariant the

values of b get multiplied by a constant. However the quotients b(hi)/b(hs) do not
change values i.e

bi(h1) _ bu(hn)

ba(h2)  bu(he)

4) If we multiply u by a constant, i.e.

(x) = pu(x)

then
ba(Bh) = B~ /2by(h),

and

ba(Bh1) _ bu(h1)

ba(Bha)  bu(h2)

From (3.3) and property 2 above,
c(n)d, < b(h)h*'? < C(n)d,,

hence Lemma 3.2 will follow if we show that b(h) is bounded below. We achieve
this by proving the following lemma.

Lemma 3.3. There exist cg, c(p) such that if h < ¢(p) and b(h) < ¢y then

(3.5) lz((t:)) > 2,

for some t € [co, 1].



A LOCALIZATION PROPERTY 9

This lemma states that if the value of b(h) on a certain section is less than a
critical value cg, then we can find a lower section at height still comparable to A
where the value of b doubled. Clearly Lemma 3.3 and property 1 above imply that
b(h) remains bounded for all h small enough.

The quotient in (3.5) is the same for @ which is defined in Proposition 3.1. We
normalize the domain Sj, and @ by considering the rescaling

1
v(w) = pa(h'/?Ax)
where A is a multiple of Dy, (see (3.3)), A =D, such that

det A =1.

Then
ch™ 1% < v < Ch_1/2,

and the diagonal entries of A satisfy
a; 2 ¢, i:172,"'7ﬂ—1,
cby(h) < a, < Cby(h).

The function v satisfies
A < det D?v < A,

v >0, v(0)=0,
is continuous and it is defined in Q, with

Q,:={v <1} =h"1/24715,.
Then

z* +cB; C Q, C CBf,

for some x*, and

ct™/? < [Sy(v)] < Ct"/2, V<1,
where S¢(v) denotes the section of v. Since
a=nh in 8S,N{x, > C(p)h},
then
v=1 ondQ N{z, >0}, o:=C(p)h* .
Also, from Proposition 3.1 on the part G of the boundary of 9, where {v < 1}
we have

n—1 n—1
1
(3.6) Sk Z aZx? <wv <2t Z a?x?.
i=1 i=1

In order to prove Lemma 3.3 we need to show that if o, a,, are sufficiently small
depending on n, u, A\, A then the function v above satisfies

(3.7) bo(t) > 2b,(1)
for some 1 >t > c¢.
Since o < 1, the smallness condition on o is satisfied by taking h < ¢(p) suf-

ficiently small. Also a,, being small is equivalent to one of the a;, 1 <i <n—1
being large since their product is 1 and a; are bounded below.
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In the next sections we prove property (3.7) above by compactness, by letting
o — 0, a; = oo for some i. First we consider the 2D case and in the last section
the general case.

4. THE 2 DIMENSIONAL CASE.

In order to fix ideas, we consider first the 2 dimensional case.
We study the following class of solutions to the Monge-Ampere equation. Fix
1> 0 small, A\, A. We denote by D, the set of convex, continuous functions

u: Q=R

such that
(4.1) A < det D*u < A;
(4.2) 0€ 09, Byu(xo) CQC By, forsome zo;
(4.3) ph™? < |Sp| < pm R
(4.4) u=1 ondN\G, 0<u<1l onG, u(0)=0,
with G a closed subset of 0f2 included in B,,

GC 00QNB,.

Proposition 4.1. Assume n = 2. For any M > 0 there exists c¢g small depending
on M, u, N\, A, such that if u € D, and o < ¢y, then

b(h) := (supz)h V2 > M
S

h

for some h > ¢q.
Property (3.7) easily follows from the proposition above. Indeed, by choosing
M =2u"" > 2b(1)
we prove the existence of a section h > ¢y such that
b(h) > 2b(1).

Also, the function v of the previous section satisfies v € D, (after renaming the
constant u) provided that o is sufficiently small and a; sufficiently large.

We prove Proposition 4.1 by compactness. First we discuss briefly the com-
pactness of bounded solutions to Monge-Ampere equation. For this we need to
introduce solutions with possibly discontinuous boundary data.

Let v : 2 — R be a convex function with & C R" bounded and convex. We
denote by

Ty :={(z,2n11) € QX R| 211 > u(z)}

the upper graph of u.
Definition 4.2. We define the values of u on 92 to be equal to ¢ i.e
ulon = ¢,
if the upper graph of ¢ : 9Q — R U {co}
O = {(z,2n41) €O XR| zpt1 > p(x)}
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is given by the closure of I';, restricted to 9Q x R,
®:=T,N (02 xR).

From the definition we see that ¢ is always lower semicontinuous. The following
comparison principle holds: if w :  — R is continuous and
det D?w > A > det D%, wloa < ulsq,
then
w<wu in .

Indeed, from the continuity of w we see that for any ¢ > 0, there exists a small
neighborhood of 92 where w — & < w. This inequality holds in the interior from
the standard comparison principle, hence w < u in Q.

Since the convex functions are defined on different domains we use the following
notion of convergence.

Definition 4.3. We say that the convex functions u,, : €, — R converge to
u : €2 — R if the upper graphs converge
Ty, — T, in the Hausdorff distance.
Similarly, we say that the lower semicontinuous functions ¢,, : 9, — R con-
verge to ¢ : 02 — R if the upper graphs converge

®,, — & in the Hausdorfl distance.

Clearly if u,, converges to u, then u,, converges uniformly to « in any compact
set of Q, and €, — Q in the Hausdorff distance.

Remark: When we restrict the Hausdorff distance to the nonempty closed sets
of a compact set we obtain a compact metric space. Thus, if ,,, u,, are uniformly
bounded then we can always extract a subsequence my such that wu,,, — u and
Umy, |ank — Q.

Next lemma gives the relation between the boundary data of the limit u and .

Lemma 4.4. Let u,, : Q,, = R be conver functions, uniformly bounded, such that
A < det D?u,, < A
and
Um — Uy, Um|og,, — P
Then
A < det D*u < A,
and the boundary data of u is given by ¢* the convex envelope of ¢ on IN).
Proof. Clearly ® C T, hence ®* C T',. It remains to show that the convex set K
generated by ® contains I', N (99 x R).
Indeed consider a hyperplane
Tpy1 = U(z)
which lies strictly below K. Then, for all large m
{t, =1 <0} C Qs
and by Alexandrov estimate we have that

Uy — | > —Cd"™
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where d,, (x) represents the distance from z to 9€,,. By taking m — oo we see that
u—1>-Cd’/"
thus no point on 9Q below [ belongs to I',,.

In view of the lemma above we introduce the following notation.

Definition 4.5. Let ¢ : 0 — R be a lower semicontinuous function. When we
write that a convex function u satisfies
u = on Jf)
we understand
uloq = ¢
where ¢* is the convex envelope of ¢ on 0f.

Whenever ¢* and ¢ do not coincide we can think of the graph of u as having a
vertical part on 02 between ¢* and ¢.
It follows easily from the definition above that the boundary values of v when
we restrict to the domain
Q= {U < h}
are given by
op=¢ on IQN{p < h} C O,
and ¢y, = h on the remaining part of 0Qy,.
The comparison principle still holds. Precisely, if w : Q — R is continuous and
det D?w > A > det D%u, wlaq < @,
then
w<wu in .

The advantage of introducing the notation of Definition 4.5 is that the boundary
data is preserved under limits.

Proposition 4.6 (Compactness). Assume
A <det D%upy <A, Upm = @m  0on O,
and Qp,, ©m uniformly bounded.
Then there exists a subsequence my such that
umk % u? @mk % (10
with
A<detD*u <A, u=¢ ondQ.

Indeed, we see that we can also choose my such that ¢}, ~— 1. Since @, — ¢
we obtain

o> >,
and the conclusion follows from Lemma 4.4.

Now we are ready to prove Proposition 4.1.
Proof of Proposition 4.1. If ¢y does not exist we can find a sequence of functions
Um, € D1/ such that

bu, (h) < M, Vh> L.
m
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By Proposition 4.6 there is a subsequence which converges to a limiting function
u satisfying (4.1)-(4.2)-(4.3) and (see Definition 4.5) u = ¢ on 99 with

(4.5) =1 ond2\{0},  ¢(0)=0,
and moreover u has an obstacle by below in 2
1

We consider the barrier

1 A
w = 0(|zy| + =2?) + =22 — Ny

2 0
with § small depending on p, and N large so that
A
6z§ — Nzo <0 in Bi"/#.
Then
w < on Jf,
and
det D?w > A.
Hence

w<wu in
which gives
u > 0|z1| — Nxs.
Next we construct another explicit subsolution v such that whenever v is above

the two obstacles

2

1
0lz1| — Nxo, Wx%

we have
det D?>v > A and v <1.
Then we can conclude that
u >,

and we show that this contradicts the lower bound on |S}|.
We look for a function of the form

1
v i= Tf(o) + 2M2x§’

where r, 0 represent the polar coordinates in the 1, zs plane.
The domain of definition of v is the angle

K::{QQSQSTF—GQ}
with 6y small so that

1 1
mw% < 5(6|x1| — Nz3) on OKNB,.
In the set ]
fv= Wﬂfg
i.e. where
1 sin® 6
>
r — 2M2f
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we have
1 sin?6 _ 1 sin* 6,
4. D2 — (4 > ("
(4.7) et D% = (7" + )7 2 5+ D G5
We let

() = gelF=0,
where Cj is large depending on 0y, M, A so that (see (4.7))
det D?v > A

in the set where 1
fv= ng}-
On the other hand we can choose o small so that
v < dlz1| — Nzo on OKNB,
and )
v <1 on theset {v> Wx%}
In conclusion
U >V > Exg,
hence
u > max{exry,0|z1| — Nxzo}.
This implies
|Sy| < Ch?

for all small A and we contradict that

S| > ph,  ¥h e [0,1].

5. THE HIGHER DIMENSIONAL CASE

In higher dimensions it is more difficult to construct an explicit barrier as in
Proposition 4.1 in the case when in (3.6) only one a; is large and the others are
bounded. We prove our result by induction depending on the number of large
eigenvalues a;.

Fix p small and A, A. For each increasing sequence

o S <. <o
with
a1 Z H,
we consider the family of solutions
Df,‘(al, ag, ..., Oénfl)

of convex, continuous functions v : 8 — R that satisfy

(5.1) A<detD*u<A inQ, uw>0in;
(5.2) 0€09Q, Bu(zg)CQC BT/M for some xg;
(5.3) ph™/? < |Sp| < p~th?,

(5.4) u=1 ondQ\G;
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and
n—1 n—1
(5.5) L Z el <u<pu!t Z oZa? on G,
1 1

where G is a closed subset of 02 which is a graph in the e,, direction and is included
in boundary in {z, <o}.

For convenience we would like to add the limiting solutions when agi1 — oo
and 0 — 0. We denote by

Df(aq, ..., qk,00,00,...,00)

the class of functions v : Q@ — R that satisfy properties (5.1)-(5.2)-(5.3) and (see
Definition 4.5) u = ¢ on 9§ with

(5.6) p=1 ondQ\G;
k k

(5.7) MZO(?JZ? < @ <min{l, ,p" Zafzf} on G,
1 1

where G is a closed set
Gcoon{x; =0, i>k},

and if we restrict to the space generated by the first & coordinates then

k k
(Y ekt <1} cGe (Y ol < 1),
1 1

We extend the definition of D (a1, v, ..., a,—1) to include also the pairs with
p<ar <...<op <00, Qptl='"=0Qp_1 =00
for which o = 0 i.e. D(a1, g, ..., ak,00,...,00).
Proposition 4.6 implies that if
Um € DY (at",... a5 )

is a sequence with
m
Om —0 and api; — o0

for some fixed 0 < k < n — 2, then we can extract a convergent subsequence to a
function u with

u € Df(a1,..,a;,00,..,00)
for some !l <k and a; < ... <aq.
Proposition 5.1. For any M >0 and 1 < k < n—1 there exists C), depending on
M, p, X\, Ay, k such that if u € D¥(aq, s, ..., an—1) with

ar>Cy, o <Gt

then

b(h) = (supa)h~Y/2 = M
Sh

for some h with Ck_1 <h<1.

As we remarked in the previous section, property (3.7) and therefore Lemma 3.3
follow from Proposition 5.1 by taking k =n — 1 and M = 2~ L.

We prove the proposition by induction on k.
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Lemma 5.2. Proposition 5.1 holds for k = 1.

Proof. By compactness we need to show that there does not exist u € D (oo, ..., 00)
with b(h) < M for all h.
The proof is almost identical to the 2 dimensional case. One can see as before
that )
u > max{d|z’| — Nz, Wxi}
and then construct a barrier of the form
1 0
=7f(0) + a2, 0 <0< =
v Tf()+2M2xna (O )
where r = |x| and 6 represents the angle in [0, 77/2] between the ray passing through
x and the {z,, = 0} plane.

Now,
" ! o n—2 . 2
o f"Hf [ fcosf— f'sinf sin“ 6
det D“v = " < p— e
‘We have
f sin® 0 1
- > sz 0 the set {v > Wxi}

and we choose a function of the form
£(0) := veCo (5=

which is decreasing in 6.

Then
-1

det D%v > > A

"+ f (sin?6,\"
f 2M?
if Cy is chosen large.
We obtain as before that
u > max{§|x’| — Nay,ex,}
which gives
|Sh| < Ch™

and we reach a contradiction.

Now we prove Proposition 5.1 by induction on k.

Proof of Proposition 5.1. In this proof we denote by ¢, C positive constants that
depend on M, p, A, A, n and k.

We assume that the statement holds for & and we prove it for k + 1.

It suffices to show the existence of C41 only in the case when ay, < Cj, otherwise
we use the induction hypothesis.

If no Cy41 exists then we can find a limiting solution

ueDg(17l,...7l,oo7...7oo)
with
(5.8) b(h) < MRY?, Yh >0

where i depends on p and Cy.
We show that such a function v does not exist.
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Denote
v=(y,z2n), y=(21,...,2) €ER", 2= (Tpq1,...,201) ER*ITH

On the 092 plane we have

© > w = 0|2|? + 6|z + z? — Nz,

A
5n71
for some small § depending on ji, and IV large so that

A

5n71xfl — Nz, <0 on BTF

1/

Since
det D%w > A,

we obtain u > w on €2 hence
(5.9) u(x) > 6|z| — Nzy,.
We look at the section Sy of u. From (5.8)-(5.9) we see that
(5.10) Sp C {xy, > %(5\z| —h)yn{z, < Mh'/?}.

We notice that an affine transformation x — Tz,

Ter =x+1z1+vezo+ ...+ Vpek12n—k—1+ Vn—kTn
with
V1,V2y ..« Up—k € spanfer,... e}

i.e a sliding along the y direction, leaves the z, x,, coordinate invariant together with
the subspace (y,0,0).

The section S}, := T'S}, of the rescaling

w(Tx) = u(x)
satisfies (5.10) and @ = ¢ on dS), with
g=¢ onG:={p<h}cCQaG,
@=h ondS,\G.
From John’s lemma we know that S}, is equivalent to an ellipsoid Ej,. We choose

T an appropriate sliding along the y direction, so that T'E;, becomes symmetric
with respect to the y and (z, z,,) subspaces, thus

75+ c(n)|Su| V" ABy € S, € C(n)|8p|YVmABy, det A =1

and the matrix A leaves the y and the (z,x,) subspaces invariant.
By choosing an appropriate system of coordinates in the y and z variables we
may assume

Ay, z,zn) = (A1y, A2(2,20))

with
B 0 - 0
0 By -+ 0
A= . . )
0 0 - B

with 0 < 8y < --- < g, and
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Ye+1 O 0 O+
0 Vi 0 Okyo
Ay = : :
0 0 Tn—1 9n—1
0 0 0 0,

with v, 6, > 0.
Next we use the induction hypothesis and show that S, is equivalent to a ball.
Lemma 5.3. There exists Cy such that
Sy € Coh™/? By .
Proof. Using that ~
|Sh‘ ~ hn/2
we obtain i
@ 4+ ch'?AB, € Sy, € Ch'/?AB,.

We need to show that
Al <C.

Since Sj, satisfies (5.10) we see that
Sn C {l(z,2n) < CHY2},
which together with the inclusion above gives ||Az|| < C hence
Vi <O, 0] < C.
Also S), contains the set
{(v.0,0) lyl <a'?n'?} G,
which implies
Bi>ec>0, i=1,---,k.
We define the rescaling
w(z) = yi(h'/? Ax)
which is defined in a domain €, := h=1/24-18, such that
Be(z0) CQy C B, 0€ 0Qy,
and w = ¢, on 99, with
Yw =1 on 0Qy, \ Gy,

Ay Bt < g <min{l, i1 B2} on G,
where G, := h=1/2471G.
This implies that
w € Dy(Br, Ba, - - -, Prs 00, . .., 00)
for some value i depending on u, M, A, A, n, k.
We claim that

First we notice that
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Since

HnHBiH'yj:detAZI

v < C,
we see that if b, (h) (and therefore 6,,) liecomes smaller than a critical value c, then
Br > Ci(fi, M, X\ A, n),
with M := 27!, and by the induction hypothesis
bw(h) > M > 2b,(1)

and

for some h > C,;l. This gives

by (hh) _ bw(h) > 9
bu(h) — buw(1) ~
which implies by (hh) > 2b,(h) and our claim follows.
Next we claim that v; are bounded below by the same argument. Indeed, from
the claim above 8, is bounded below and if some vy; is smaller than a small value
¢, then

b

Bk 2 Ck:(ﬂ7 M]_,A,A,TL)

with oM
Ml = = .
HCx
By the induction hypothesis
~ - 2M
bw(h) 2 1 Z bw(1)7
Cx
hence ~
by(hh) _ 2M
>
bu(h) — ¢

which gives bu(hﬁ) > 2M, contradiction. In conclusion 6, v; are bounded below
which implies that §8; are bounded above. This shows that || A|| is bounded and the
lemma is proved.

O

Next we use the lemma above and show that the function w has the following
property.
Lemma 5.4. If for some p,q > 0,
u>p(lzl —qzn),  a<q
then
u>p'(lz] = (g = n)an)
for some p' < p, and with n > 0 depending on qy and pu, M, X\, A, n, k.

Proof. From Lemma 5.3 we see that after performing a linear transformation T
(siding along the y direction) we may assume that

Sp C Coh'/?By.
Let )
w(x) = Eu(hl/zx)
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for some small h < p.
Then

Sy(w) == Qy =h~'28, C B,
and our hypothesis becomes

p
(5.11) w = W(M — qzy),

Moreover the boundary values ¢,, of w on 92, satisfy
w =1 on 0, \ Gy

flyl® < w <min{1, 77 y[’} on G,
where G, := h~/?{p < h}.
Next we show that y,, > v on 9€),, where v is defined as

A
vi=0lz|* + p (21 — qzn)? + N(21 — qzy) + 04y,
and ¢ is small depending on i and Cp, and N is chosen large such that
2
syt + Nt

is increasing in the interval [t| < (1 + ¢o)Co.
From the definition of v we see that

det D%v > A.

On the part of the boundary 0€),, where z; < gx,, we use that Q,, C B¢, and
obtain

v < (|2 + 20) < Qu
On the part of the boundary 9, where z; > gz, we use (5.11) and obtain
1= w2 C(|z] — gzn) = C(z1 — qn)
with C arbitrarily large provided that h is small enough. We choose C' such that
the inequality above implies

A

ST (31— azn)” + N(z1 = qza) <

| =

Then

1
Pw=1> 3 +6(Jz* + ) > 0.

In conclusion ¢,, > v on 9€),, hence the function v is a lower barrier for w in
Q. Then
w > N(z1 — qxy,) + 0z,
and, since this inequality holds for all directions in the z-plane, we obtain
w2 N(lzl = (g=mza), 0= -
Scaling back we get
| = (g=m)zn)  in S

>p'(|z
= 0, this inequality holds globally, and the lemma is

u
Since u is convex and u(0)
proved.

(]
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We remark that Lemma 5.4 can be used directly to prove Proposition 4.1 and
Lemma 5.2.

End of the proof of Proposition 5.1. From (5.9) we obtain an initial pair (p, o)
which satisfies the hypothesis of Lemma 5.4. We apply this lemma a finite number
of times and obtain that

u > €(|z] 4 zn),
and we contradict that Sy, is equivalent to a ball of radius h'/2.
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