POINTWISE C?® ESTIMATES AT THE BOUNDARY FOR THE
MONGE-AMPERE EQUATION

O. SAVIN

ABSTRACT. We prove a localization property of boundary sections for solutions
to the Monge-Ampere equation. As a consequence we obtain pointwise C2¢
estimates at boundary points under appropriate local conditions on the right
hand side and boundary data.

1. INTRODUCTION

Boundary estimates for the second derivatives of the solution to the Dirichlet
problem for the Monge-Ampere equation
det D?u = f in (,
U= on 01,

were first obtained by Ivockina [I] in 1980. A few years later independently Krylov
[K] and Caffarelli-Nirenberg-Spruck [CNS] obtained the global C%% estimates in
the case when 0f), ¢ and f are sufficiently smooth and this led to the solvability
of the classical Dirichlet problem for the Monge-Ampere equation. When the right
hand side f is less regular, i.e f € C®, the global C*? estimates were obtained
recently by Trudinger and Wang in [TW] for ¢, 9Q € C3.

In this paper we discuss pointwise C%* estimates at boundary points under ap-
propriate local conditions on the right hand side and boundary data. Our main
result can be viewed as a boundary Schauder estimate for the Monge-Ampere equa-
tion which extends up to the boundary the pointwise interior C>® estimate of
Caffarelli [C2] (see also [JW]). These sharp estimates play an important role for
example when dealing with fourth order Monge-Ampere type equations arising in
geometry, (see [TW], [LS]) or when the right hand side f depends also on the second
derivatives.

We start with the following definition (see [CC]).

Definition: Let 0 < a < 1. We say that a function u is pointwise C>“ at x¢ and
write

u € C*%(xq)

if there exists a quadratic polynomial P, such that
u(z) = Py () + O(|z — 20*T%).
We say that u € C?(zy) if
u(z) = Py, (7) 4+ o(|z — 20]?).
Similarly one can define the notion for a function to be C* and C*® at a point for

any integer k > 0.
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It is easy to check that if u is pointwise C?% at all points of a Lipschitz domain
Q) and the equality in the definition above is uniform in zg then u € C%%(Q) in the
classical sense. Precisely, if there exist M and ¢ such that for all points ¢ € Q2

|u(x) — Py ()| < Mz — 20T if |z — 20| <3, 2€Q

then
[D*t] ¢y < C(6,2) M.
Caffarelli showed in [C2] that if u is a strictly convex solution of
det D*u = f

and f € C%(zg), f(xo) > 0 at some interior point x¢ € 2, then u € C>%(zy). Our
main theorem deals with the case when xy € 0N2.

Theorem 1.1. Let Q be a conver domain and let u : Q@ — R convez, continuous,
solve the Dirichlet problem for the Monge-Ampere equation
{ det D?’u=f inQ,

(1.1) U= on 052,

with positive, bounded right hand side i.e
0<AS fF<A,

for some constants X\, A.
Assume that for some point xg € 02 we have

f € COL(Z‘O), @789 € C27a(x0)7

for some o € (0,1). If ¢ separates quadratically on O from the tangent plane of u
at xg, then
u € C*(z).

The way ¢ separates locally from the tangent plane at xg is given by the tan-
gential second derivatives of u at xy. Thus the assumption that this separation is
quadratic is in fact necessary for the C>® estimate to hold. Heuristically, Theorem
1.1 states that if the tangential pure second derivatives of u are bounded below
then the boundary Schauder estimates hold for the Monge-Ampere equation.

A more precise, quantitative version of Theorem 1.1 is given in section 7 (see
Theorem 7.1).

Given the boundary data, it is not always easy to check the quadratic separation
since it involves some information about the slope of the tangent plane at xg.
However, this can be done in several cases (see Proposition 3.2). One example is
when 0 is uniformly convex and ¢, 9Q € C3(zo). The C? condition of the data is
optimal as it was shown by Wang in [W]. Other examples are when 9€ is uniformly
convex and ¢ is linear, or when 0f2 is tangent of second order to a plane at zy and
¢ has quadratic growth near x.

As a consequence of Theorem 1.1 we obtain a pointwise C? estimate in the case
when the boundary data and the domain are pointwise C3. As mentioned above,
the global version was obtained by Trudinger and Wang in [TW].

Theorem 1.2. Let Q be uniformly convex and let u solve (1.1). Assume that
feCxg), ,00¢€ C3(xg),
for some point x¢ € 9K, and some a € (0,1). Then u € C%%(xp).
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We also obtain the C%“ estimate in the simple situation when 9Q € C%< and ¢
is constant.

Theorem 1.3. Let Q be a uniformly conver domain and assume u solves (1.1)
with ¢ = 0. If f € C*(), 92 € C*<, for some a € (0,1) then u € C*(Q).

The key step in the proof of Theorem 1.1 is a localization theorem for boundary
points (see also [S]). It states that under natural local assumptions on the domain
and boundary data, the sections

Sp(zo) ={z € Q| uz) <u(zo) + Vu(zo) - (x — x0) + h},
with zg € 0 are “equivalent” to ellipsoids centered at xg.

Theorem 1.4. Let Q be convexr and u satisfy (1.1), and assume
o0, p € CHY(xp).

If ¢ separates quadratically from the tangent plane of u at xq, then for each small
h > 0 there exists an ellipsoid Ej, of volume h™/'? such that

cEy, N C Sh(xo) —x20 C CEy, 057
with ¢, C' constants independent of h.

Theorem 1.4 provides useful information about the geometry of the level sets
under rather mild assumptions and it extends up to the boundary the localization
theorem at interior points due to Caffarelli in [C1].

The paper is organized as follows. In section 2 we discuss briefly the compact-
ness of solutions to the Monge-Ampere equation which we use later in the paper
(see Theorem 2.7). For this we need to consider also solutions with possible dis-
continuities at the boundary. In section 3 we give a quantitative version of the
Localization Theorem (see Theorem 3.1). In sections 4 and 5 we provide the proof
of Theorem 3.1. In section 6 we obtain a version of the classical Pogorelov estimate
in half-domain (Theorem 6.4). Finally, in section 7 we use the previous results
together with a standard approximation method and prove our main theorem.

2. SOLUTIONS WITH DISCONTINUITIES ON THE BOUNDARY

Let u : Q — R be a convex function with €2 C R™ bounded and convex. Denote
by
U:={(z,2n+1) € AXR|] xp11 > u(x)}

the upper graph of u.
Definition 2.1. We define the values of u on 952 to be equal to ¢ i.e
ulon = ¢,
if the upper graph of ¢ : 9Q — R U {oco}
® = {(z,2n41) €U X R[] xpni1 = p(x)}
is given by the closure of U restricted to 02 x R,
O :=UnN (092 xR).
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From the definition we see that ¢ is lower semicontinuous.

If u: Q — R is a viscosity solution to
det D*u = f(x),

with f > 0 continuous and bounded on €2, then there exists an increasing sequence
of subsolutions, continuous up to the boundary,

Uy : Q= R, det D*u,, > f(x)
with
limu, =u in Q,
where the values of u on 902 are defined as above.

Indeed, let us assume for simplicity that 0 € ©, u(0) =0, u > 0. Then, on each
ray from the origin u is increasing, hence v. : 0 — R,

ve(2) = u((1 - o))
is an increasing family of continuous functions as € — 0, with
limv, =« in Q.
In order to obtain a sequence of subsolutions we modify v. as
ue(x) := v () + we(z),
with w, < —e, convex, so that
det D*w. > |f(x) — (1 —)*" f((1 - €)z)],

thus

det D*u.(z) = det(D?*v. + D*w.) > det D*v. + det D*w. > f(z).
The claim is proved since as € — 0 we can choose w, to converge uniformly to 0.
Proposition 2.2 (Comparison principle). Let u, v be defined on 0 with

det D*u > f(x) > det D*v
in the viscosity sense and
ulag < v|aq-

Then
u<wv in Q.

Proof. Since u can be approximated by a sequence of continuous functions on € it
suffices to prove the result in the case when u is continuous on  and w < v on
0. Then, u < v in a small neighborhood of 9 and the inequality follows from
the standard comparison principle.

O

A consequence of the comparison principle is that a solution det D?u = f is
determined uniquely by its boundary values u|ggq.

Next we define the notion of convergence for functions which are defined on
different domains.



POINTWISE C%* ESTIMATES 5

Definition 2.3. a) Let uy : Qr — R be a sequence of convex functions with
convex. We say that ug converges to u: Q2 — R i.e

U — U
if the upper graphs converge
U, — U in the Haudorff distance.

In particular it follows that Q; — © in the Hausdorff distance.
b) Let @i : 00 — R U {o0} be a sequence of lower semicontinuous functions.
We say that oy converges to ¢ : 9Q — RU {0} i.e
P =P
if the upper graphs converge
®, — ® in the Haudorff distance.

c) We say that fr : Qr — R converge to f : Q — R if fi are uniformly bounded
and

Je = f

uniformly on compact sets of 2.

Remark: When we restrict the Hausdorff distance to the nonempty closed sets
of a compact set we obtain a compact metric space. Thus, if Q, uy are uniformly
bounded then we can always extract a convergent subsequence uy,, — u. Similarly,
if Qk, ¢ are uniformly bounded we can extract a convergent subsequence i — ©.

Proposition 2.4. Let ug : O — R be convezx and

det D*uy, = fi, ukloa, = ¢k

If

Ug —> Uy, Pl —7 P, fk_>fa
then
(2.1) det D*u = f, wu=¢p* ondQ,

where ©* is the convexr envelope of ¢ on O i.e ®* is the restriction to I X R of
the convex hull generated by ®.

Remark: If Q is strictly convex then ¢* = .

Proof. Since

U, —=U, &,—® &,CU,
we see that ® C U. Thus, if K denotes the convex hull generated by ®, then
®* C K C U. Tt remains to show that U N (02 x R) C K.

Indeed consider a hyperplane
Tnt1 = ()
which lies strictly below K. Then for all large k
{uk -1 < 0} C Qk

and by Alexandrov estimate we have that

up — 1> —Cdy/"
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where dj represents the distance to 0. By taking k& — oo we see that
u—1>-Cd'"

thus no point on 9Q x R below the hyperplane belongs to U.
O

Proposition 2.4 says that given any ¢ bounded and lower semicontinuous, and
f > 0 bounded and continuous we can always solve uniquely the Dirichlet problem

det D>u = f in Q,

{ U= on 0f)
by approximation. Indeed, we can find sequences @i, fi of continuous, uniformly
bounded functions defined on strictly convex domains €2 such that ¢ — ¢ and
f — f. Then the corresponding solutions uy are uniformly bounded and continu-
ous up to the boundary. Using compactness and the proposition above we see that

uy, must converge to the unique solution v in (2.1).
In view of Proposition 2.4 we extend the Definition 2.1 in order to allow boundary

data that is not necessarily convex.

Definition 2.5. Let ¢ : 9Q — R be a lower semicontinuous function. When we
write that a convex function u satisfies
u = on Jf)
we understand
ulo = ¢
where ¢* is the convex envelope of ¢ on 0.
Whenever ¢* and ¢ do not coincide we can think of the graph of u as having a
vertical part on 02 between ¢* and ¢.
It follows easily from the definition above that the boundary values of u when
we restrict to the domain
Qy, = {u < h}
are given by
on=¢ on IAN{p < h}C Iy
and ¢p, = h on the remaining part of 0.

By Proposition 2.2, the comparison principle still holds. Precisely, if
det D?>u > f > det D?>v in Q,

then
u<v in .

The advantage of introducing the notation of Definition 2.5 is that the boundary
data is preserved under limits.

Proposition 2.6. Assume
det D%up, = fr, up = wr  on 0,
with Qy, o uniformly bounded and
ok =9, fe—f
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Then
U — U
and u satisfies
det D*u=f, u=¢ ondf.

Proof. Using compactness we may assume also that ¢ — 1. Since ¢, — ¢ we find

o> >
and the conclusion follows from Proposition 2.4.
O

Finally, we state a version of the last proposition for solutions with bounded
right-hand side i.e
A < det D*u < A,

where the two inequalities are understood in the viscosity sense.

Theorem 2.7. Assume
A <det D?up < A, wuy = wr  on 0y,
and Q, o uniformly bounded.
Then there exists a subsequence k,, such that
Uk, — Uy Pk, — P
with
A<detD*u <A, u=¢ on .

3. THE LOCALIZATION THEOREM

In this section we state the quantitative version of the localization theorem at
boundary points (Theorem 3.1).
Let © be a bounded convex set in R"™. We assume that

(3.1) B,(pen) C Q C {xz, >0} N B%,

for some small p > 0, that is @ C (R™)" and €2 contains an interior ball tangent to
0Qat 0.
Let u : 2 — R be continuous, convex, satisfying

(3.2) detD*u=f,  0<A<f<A inQ.

We extend u to be oo outside €.
After subtracting a linear function we assume that

(3.3) Zpy1 = 0 is the tangent plane to u at 0,

in the sense that
u>0, u(0)=0,

and any hyperplane x,, 11 = ex,, € > 0, is not a supporting plane for w.

We investigate the geometry of the sections of u at 0 that we denote for simplicity
of notation

Sp={reQ: u(z)<h}

We show that if the boundary data has quadratic growth near {x,, = 0} then,
as h — 0, S, is equivalent to a half-ellipsoid centered at 0.

Precisely, our theorem reads as follows.
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Theorem 3.1 (Localization Theorem). Assume that Q, u satisfy (3.1)-(3.3) above
and for some p > 0,
(3.4) plr)? <u(z) < p x> on dQN{z, < p}.
Then, for each h < c(p) there exists an ellipsoid Ey, of volume h™'? such that
kE}, N C Sy C k‘_lEh N Q.
Moreover, the ellipsoid Ej, is obtained from the ball of radius h*/? by a linear
transformation A; " (sliding along the x,, = 0 plane)

AnE, = h'2B;

Ap(z) =2 —vz,, v=1,V2...,Vn-1,0),
with
lv| <k H|loghl.
The constant k above depends on p, A, A,n and c¢(p) depends also on p.

The ellipsoid E},, or equivalently the linear map Ay, provides information about
the behavior of the second derivatives near the origin. Heuristically, the theorem
states that in S, the tangential second derivatives are bounded from above and
below and the mixed second derivatives are bounded by |log h|.

The hypothesis that u is continuous up to the boundary is not necessary, we just
need to require that (3.4) holds in the sense of Definition 2.5.

Given only the boundary data ¢ of u on 02, it is not always easy to check the
main assumption (3.4) i.e that ¢ separates quadratically on 9 (in a neighborhood
of {x,, = 0}) from the tangent plane at 0. Proposition 3.2 provides some examples
when this is satisfied depending on the local behavior of 92 and ¢ (see also the
remarks below).

Proposition 3.2. Assume (3.1),(3.2) hold. Then (3.4) is satisfied if any of the
following holds:

1) ¢ is linear in a neighborhood of 0 and Q is uniformly convex at the origin.

2) 00 is tangent of order 2 to {x, = 0} and ¢ has quadratic growth in a neighbor-
hood of {x,, = 0}.
3) ¢, 02 € C3(0), and Q is uniformly convex at the origin.

Proposition 3.2 is standard (see [CNS], [W]). We sketch its proof below.

Proof. 1) Assume ¢ = 0 in a neighborhood of 0. By the use of standard barriers,
the assumptions on 2 imply that the tangent plane at the origin is given by

Ln+l = —HTn

for some bounded g > 0. Then (3.4) clearly holds.
2) After subtracting a linear function we may assume that

pla' > <o < pmta)?

on 91 in a neighborhood of {z,, = 0}. Using a barrier we obtain that [y, the tangent
plane at the origin, has bounded slope. But 9 is tangent of order 2 to {x,, = 0},
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thus Iy grows less than quadratic on 92 in a neighborhood of {z, = 0} and (3.4)
is again satisfied.

3) Since  is uniformly convex at the origin, we can use barriers and obtain that
lp has bounded slope. After subtracting this linear function we may assume [y = 0.
Since ¢, 92 € C3(0) we find that

¢ = Qo(z") +o(|2']°)
with Q¢ a cubic polynomial. Now ¢ > 0, hence @)y has no linear part and its
quadratic part is given by, say
Z %xf, with  p; > 0.
<n
We need to show that p; > 0.

If u; = 0, then the coefficient of x3 is 0 in Qp. Thus, if we restrict to 9 in a
small neighborhood near the origin, then for all small h the set {¢ < h} contains

{Jo1] < r(R)RPY N {[2] < ch'/?)
for some ¢ > 0 and with
r(h) = oo as h— 0.
Now S, contains the convex set generated by {¢ < h} thus, since Q is uniformly
convex,
|Sh| > C/(T(h)h1/3)3h(n_2)/2 > c'r(h)?’hn/z.
On the other hand, since u satisfies (3.2) and
0<u<h in Sy

we obtain (see (4.4))
|Su| < Ch™2,

for some C' depending on A and n, and we contradict the inequality above as h — 0.
O

Remark 3.3. The proof easily implies that if 9Q, ¢ € C3(Q) and Q is uniformly
convex, then we can find a constant p which satisfies (3.4) for all z € 9.

Remark 3.4. From above we see that we can often verify (3.4) in the case when ¢,
9Q € CH1(0) and Q is uniformly convex at 0. Indeed, if l, represents the tangent
plane at 0 to ¢ : 9Q — R (in the sense of (3.3)), then (3.4) holds if either ¢
separates from [, quadratically near 0, or if ¢ is tangent to I, of order 3 in some
tangential direction.

Remark 3.5. Given ¢, 9Q € C11(0) and Q uniformly convex at 0, then (3.4) holds
if X is sufficiently large.

4. PROOF OF THEOREM 3.1 (I)

We prove Theorem 3.1 in the next two sections. In this section we obtain some
preliminary estimates and reduce the theorem to a statement about the rescalings
of u. This statement is proved in section 5 using compactness.

Next proposition was proved by Trudinger and Wang in [TW]. It states that
the volume of S), is proportional to h™/2 and after an affine transformation (of
controlled norm) we may assume that the center of mass of S}, lies on the z,, axis.
Since our setting is slightly different we provide its proof.
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Proposition 4.1. Under the assumptions of Theorem 3.1, for all h < ¢(p), there
exists a linear transformation (sliding along x,, = 0)
Ap(z) = — va,,
with
va =0, |v| < C(p)h™ T
such that the rescaled function
u(Apx) = u(z),
satisfies in
Sp = ApSy = {ﬂ < h}
the following:
(i) the center of mass of Sy, lies on the ,,-azis;
(ii)
koh"'? < |Sh| = |Sh| < kg 'R
(i) the part of S, where {@ < h} is a graph, denoted by
G =05, N{a < h} ={(a', ("))}
that satisfies
gn < Cp)la'|?
and
g|nc'|2 <a<2u Yz on Gh.

The constant ko above depends on p, A\, A,n and the constants C(p),c(p) depend
also on p.

In this section we denote by ¢, C' positive constants that depend on n, u, A, A.
For simplicity of notation, their values may change from line to line whenever there
is no possibility of confusion. Constants that depend also on p are denote by ¢(p),

Clp).
Proof. The function

n—1

A
vimpla' P4 gl — Clo)a

is a lower barrier for u in QN {z, < p} if C(p) is chosen large.
Indeed, then
v<wu ondQN{z, <p},

v<0<wu onQN{z,=np}

and
det D%v > A.

In conclusion,
v<u inQN{x, <p}

hence

(4.1) S {en < p} € {v < B} C {0 > clp) (ula'? — h)}.
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Let x7 be the center of mass of S;. We claim that
n
n+1

(4.2) Ty - en > co(p)h”, a=

)

for some small ¢y(p) > 0.
Otherwise, from (4.1) and John’s lemma we obtain

Sy C {x, < C(n)eoh® < A} N {|a’| < CLhY/?Y,

for some large C1 = C1(p). Then the function
h( 12/l \* . o1, (Tn)?
WSty (Clha/Q +ACK I (2)

is a lower barrier for u in S}y, if ¢¢ is sufficiently small.
Indeed,

ho h _
w< 745 AT (Cmeo)’h < b in S,

and for all small h,

|2'|* + C(P)hcol% < plr']? <u on 99Q,

and
det D?w = 2A.
Hence
w<u in Sy,

and we contradict that 0 is the tangent plane at 0. Thus claim (4.2) is proved.
Now, define

7

*

T

Apx =x —vx,, V= h

* )

Ti - en
and
w(Apz) = u(x).
The center of mass of S, = A,S), is
.’Z‘Z = Ahx’;b

and lies on the x,-axis from the definition of Aj;. Moreover, since x} € Sy, we see
from (4.1)-(4.2) that

(a7, - en)'/?

lv| < C(p) (@7 en)

< Clp)h =",

and this proves (i).
If we restrict the map Aj, on the set on 9 where {u < h}, i.e. on
Ll

98, NN C {x, < 7} N {|z'| < Cht/?}

we have
[Ane = | = [v]an < Clp)h™ |2/ [* < C(p)h""|#'),
and part (iii) easily follows.
Next we prove (ii). From John’s lemma, we know that after relabeling the z’
coordinates if necessary,

(4.3) DyB, C S), — &, ¢ C(n)Dy,B;
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where
d 0 - 0
0 dy -+ 0
D}L = . . . .
0 0 - d,
Since

@< 2u 2?2 on Gy = {(z', gn(z"))},
we see that the domain of definition of g, contains a ball of radius (uh/2)'/2. This
implies that
d; > c1h'/?, i=1,-.,n—1,

for some ¢; depending only on n and p. Also from (4.2) we see that

Iy - en =y - ey > co(p)h”
which gives

dp > c(n)x} - en > c(p)h®™.

We claim that for all small h,

d; > koh™'?,

—.

=1

with kg small depending only on p,n, A, which gives the left inequality in (ii).
To this aim we consider the barrier,

n 2
T
=ex, E h{=1] .
W = €Ty + 2 c <d1>
We choose c¢ sufficiently small depending on p,n, A so that for all h < ¢(p),

w<h on 8§h,

and on the part of the boundary G, we have w < @ since

2
c T

w < ex, + —|2'|* +ch (")
€

n

S

Tn

%|x'|2 + chC(n)7

IN

n

IN

Ela'[? 4 ch! = C(p) |2
o2

< = .

<L)
Moreover, if our claim does not hold, then

det D*w = (2ch)™(J [ di) " > A,

thus w < @ in S;,. By definition, @ is obtained from u by a sliding along z,, = 0,
hence 0 is still the tangent plane of @ at 0. We reach again a contradiction since

4 > w > ex, and the claim is proved.
Finally we show that

(4.4) |Sp| < Ch™/?
for some C depending only on A, n. Indeed, if
v="h ondSy,
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and
det D%y = A
then 3
v>u>0 in Sy
Since

h > h—minv > ¢(n, \)|S,|[>/™
Sh
we obtain the desired conclusion.
O

In the proof above we showed that for all h < ¢(p), the entries of the diagonal
matrix Dy, from (4.3) satisfy

di>ch'? i=1,...n-1

n
n+1

dn, > c(p)h®, o=

ch™? < Hdi < Ch™2,

The main step in the proof of Theorem 3.1 is the following lemma that will be
completed in Section 5.

Lemma 4.2. There exist constants ¢, c(p) such that
(4.5) dp > ch/?,
for all h < ¢(p).

Using Lemma 4.2 we can easily finish the proof of our theorem.

Proof of Theorem 3.1. Since all d; are bounded below by ch!/? and their product
is bounded above by Ch™/? we see that

ChY? >d;>ch'/?  i=1,---|n
for all h < ¢(p). Using (4.3) we obtain
Sp € Ch'?B;.

Moreover, since
iy en >dy, > ch? (31) =0,

and the part GJ, of the boundary 85, contains the graph of g, above |z’| < ch!/2,
we find that o

ch'?B;NQ C Sy,
with Q = A€, S, = ApS),. In conclusion

ch??By N Q C A4S, € ChY/?B,.

We define the ellipsoid E}, as

Ey = AN (RY?By),

hence
cEy, nQc Sy, C CEy,.
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Comparing the sections at levels h and h/2 we find
cEy;oNQ C CEy,
and we easily obtain the inclusion
AhA;;QBl C CB;.
If we denote
Apx =z — vpa,
then the inclusion above implies
[vh — vpya| < C,
which gives the desired bound
|vn| < Cllogh|

for all small A.
O

In order to prove Lemma 4.2 we introduce a new quantity b(h) which is propor-
tional to d,h~'/? and is appropriate when dealing with affine transformations.

Notation. Given a convex function u we define

bu(h) = h™ Y2 sup z,,.
s

h

Whenever there is no possibility of confusion we drop the subindex u and use the
notation b(h).

Below we list some basic properties of b(h).

1) If hy < hg then

2) A rescaling

given by a linear transformation A which leaves the x, coordinate invariant does
not change the value of b, i.e

3) If A is a linear transformation which leaves the plane {x,, = 0} invariant the
values of b get multiplied by a constant. However the quotients b(h1)/b(hz2) do not
change values i.e

bi(h1) _ bu(hn)

ba(ha)  by(h2)

4) If we multiply u by a constant, i.e.

a(x) = pu(x)

then
ba(Bh) = B~/ 2bu(h),



POINTWISE C%* ESTIMATES 15

and
ba(Bh1)  bu(h1)

ba(Bha)  bu(ha)
From (4.3) and property 2 above,
c(n)d, < b(R)h*? < C(n)d,,

hence Lemma 4.2 will follow if we show that b(h) is bounded below. We achieve
this by proving the following lemma.

Lemma 4.3. There exist cg, c(p) such that if h < ¢(p) and b(h) < ¢y then
b(th)

4.6 —>2

(16) > 2

for some t € [co, 1].

This lemma states that if the value of b(h) on a certain section is less than a
critical value ¢p, then we can find a lower section at height still comparable to h
where the value of b doubled. Clearly Lemma 4.3 and property 1 above imply that
b(h) remains bounded for all i small enough.

The quotient in (4.6) is the same for @ which is defined in Proposition 4.1. We

normalize the domain Sj and % by considering the rescaling
1
v(z) = E&(hl/ZAJ;)
where A is a multiple of Dy, (see (4.3)), A = vDy, such that

det A =1.

Then
ch™ 1% < v < Ch_1/2,

and the diagonal entries of A satisfy
a; > ¢, 1=1,2,--- ,;n—1,
cby(h) < a, < Cby(h).

The function v satisfies
X < det D%v < A,

v >0, v(0)=0,

is continuous and it is defined in Q,, with

Q,:={v <1} =h"1/24715,.
Then

x*—&—cBlCQUCC'Bf',

for some x*, and

a™/? < 1S, (v)| < CtV? vt <1,
where S¢(v) denotes the section of v. Since

i=h in S, N{z, > C(p)h},
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then
v=1 ondQ,N{x, >0}, o:=C(p)h'™>

Also, from Proposition 4.1 on the part G of the boundary of 92, where {v < 1}
we have

n—1 n—1
1
(4.7) Pl Z ae? <v<2u! Z a?x?.
i=1 i=1

In order to prove Lemma 4.3 we need to show that if o, a,, are sufficiently small
depending on n, u, A, A then the function v above satisfies

(4.8) bu(t) > 2b,(1)

for some 1 >t > .

Since o < 1, the smallness condition on o is satisfied by taking h < ¢(p) suf-
ficiently small. Also a,, being small is equivalent to one of the a;, 1 <i <n—1
being large since their product is 1 and a; are bounded below.

In the next section we prove property (4.8) above by compactness, by letting
o — 0, a; — oo for some i (see Proposition 5.1).

5. PROOF OF THEOREM 3.1 (II)

In this section we consider the class of solutions v that satisfy the properties
above. After relabeling the constants p and a;, and by abuse of notation writing u
instead of v, we may assume we are in the following situation.

Fix p small and A\, A. For an increasing sequence

a1 <ag <...<ap—
with
aq Z 1,
we consider the family of solutions
u € D¥(ay,ag,...,an-1)

of convex functions u : 2 — R that satisfy

(5.1) A<detD*u<A inQ, 0<u<1I1in
(5.2) 0€ 09, Byu(xo) CQC By, forsome zo;
(5.3) ph™'? < |Sp| < p~thm/2,

Moreover we assume that the boundary 02 has a closed subset G
(5.4) Gc{z, <o}noQ

which is a graph in the e,, direction with projection 7, (G) C R"~! along e,

n—1 n—1
(5.5) {n) ala? <1} Cma(G) c{pny ala? <1},
1 1

and (see Definition 2.5), the boundary values of u = ¢ on 9 satisfy
(5.6) p=1 ond\G,
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and
n—1 n—1
(5.7) I Z a?x? <@ <min{1, p* Z a?a?} on G.
1 1

In this section we prove

Proposition 5.1. For any M > 0 there exists C, depending on M, u, A\, A,n such
that if u € D¥(a1,az,...,an_1) with

an-1>C., o<C*

then

b(h) = (supx,)h~ Y2 > M
Sh

for some h with C;1 < h < 1.

Property (4.8) (hence Theorem 3.1), easily follows from this proposition. Indeed,
by choosing
M =2~ > 2b(1)
in Proposition 5.1 we prove the existence of a section S}, with A > ¢ such that
b(h) > 2b(1).
Clearly the function v of the previous section satisfies the hypotheses above (after

renaming the constant p) provided that o, a,, are sufficiently small.
We prove Proposition 5.1 by compactness. We introduce the limiting solutions

from the class D¥(ay,...,a—1) when ag11 — 0o and o — 0.
If pu <a; <...<ag, we denote by
Df (a1, ..., ak,00,00,...,00), 0<k<n-—2
the class of functions u that satisfy properties (5.1)-(5.2)-(5.3) with,
(5.8) Gc{x;=0, i>k}nNoQ
and if we restrict to the space generated by the first £ coordinates then
k k
(5.9) {/flza?x?§1}CGC{pZa?x?§1}.
1 1
Also, u = ¢ on 02 with
(5.10) p=1 ond\G,
k k
(5.11) uZa?w? <@ <min{l, p! Za?m? on G.
1 1
The compactness theorem (Theorem 2.7) implies that if
Um € DY (at",...,a;" )

is a sequence with

om —0 and ap; — o0

for some fixed 0 < k < n — 2, then we can extract a convergent subsequence to a
function w (see Definition 2.3) with

u € Df(a, .., a;,00, ..,00),

forsome !l < kanda; <...<aqy.
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Proposition 5.1 follows easily from the next proposition.

Proposition 5.2. For any M >0 and 0 < k < n — 2 there exists ¢, depending on
M, p, N\, A, n, k such that if

(5.12) u € Df(ay,...,ax,00,...,00)

then
b(h) = (supx,)h /2 > M
Sh

for some h with ¢, < h < 1.

Indeed, if Proposition 5.1 fails for a sequence of constants C, — oo then we
obtain a limiting solution u as in (5.12) for which b(h) < M for all h > 0. This
contradicts Proposition 5.2 (with M replaced by 2M).

We prove Proposition 5.2 by induction on k. We start by introducing some
notation.
Denote

= (y,2,2n), y=(x1,...,2) €RY, 2= (2py1,..., 20 1) €RTITH

Definition 5.3. We say that a linear transformation 7" : R® — R™ is a sliding
along the y direction if

Tr.=x+wnz1+vezo+ ...+ VUn_p-12n—k—1+ Vn—kTn
with
V17U27 R 71/77,—k7 E Span{e]-,' A ,ek}

We see that T leaves the (z, x,,) components invariant together with the subspace
(y,0,0). Clearly, if T is a sliding along the y direction then so is 7! and

detT = 1.
The key step in the proof of Proposition 5.2 is the following lemma.
Lemma 5.4. Assume that
u > p(|z] — qzn),

for some p,q > 0 and assume that for each section Sy, of u, h € (0,1), there exists
Ty, a sliding along the y direction such that

TwSn € Coh*?Bf,
for some constant Cy. Then
u ¢ Di(1,...,1,00,...,00).

Proof. Assume by contradiction that v € Df and it satisfies the hypotheses with
q < qo for some gg. We show that

(5.13) u>p'(lz| —q'zn), ¢ =q-n,

for some 0 < p’ < p, where the constant 7 > 0 depends only on go and u, Co, A, n.
Then, since ¢’ < qg, we can apply this result a finite number of times and obtain

u > e(|z] + n),
for some small € > 0. This gives S; C {z,, < e 'h} hence
TS, C {.’ﬂn < 671h}
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and by the hypothesis above
|Sh| = |T1Sp| = O(R" /%) as h — 0,

and we contradict (5.3).
Now we prove (5.13). Since u € D} as above, there exists a closed set

Gy C 0Sp,N{z=0,z, =0}
such that on the subspace (y,0,0)
{™ Myl < b} € Gu C {uly® <},
and the boundary values ¢, of u on 05}, satisty (see Section 2)
pn=h on dSy\ Gyp;
plyl> < on <min{h,p " y[’}  on Gy,
Let w be a rescaling of wu,
w(x) = %u(hl/QTh_lx)
for some small h < p. Then
Si(w) = Qy = h™*T),8) € BY,
and our hypothesis becomes
(5.14) w > ﬁ(m — ).
Moreover the boundary values ¢, of w on 0€,, satisfy
ow =1 on 00y, \ Gy

plyl? < 0w <min{l,p7 'y} on Gy i=h7?Gy.
Next we show that ¢, > v on 02, where v is defined as

A
vi=0lz* + = (21 — qzn)? + N(21 — qzy) + 64,
and ¢ is small depending on p and Cp, and N is chosen large such that
2
syt + Nt

is increasing in the interval || < (1 + ¢o)Cb.
From the definition of v we see that

det D?v > A.
On the part of the boundary 0€),, where z; < gx,, we use that ,, C B¢, and

obtain
v < 5(|z + 2,) < Qo
On the part of the boundary 9, where z; > qx,, we use (5.14) and obtain
1=vw 2 C(‘Z| - qxn) > C(zl - qxn)
with C arbitrarily large provided that A is small enough. We choose C such that
the inequality above implies

A

F(zl —q,)? 4+ N(21 — qrp) <

DO =
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Then

1
fuw=1> 5+ (o +2,) 2 v.

In conclusion ¢,, > v on 9€),, hence the function v is a lower barrier for w in

Q. Then
w > N(z1 — qx,) + 0z,
and, since this inequality holds for all directions in the z-plane, we obtain
w2 Nzl = (g=n)zn), 0= .
Scaling back we get
u>p'(lz[ = (g=m)zn)  in S
Since u is convex and «(0) = 0, this inequality holds globally, and (5.13) is proved.
O

Lemma 5.5. Proposition 5.2 holds for k = 0.
Proof. By compactness we need to show that there does not exist u € DY (oo, ..., 00)
with b(h) < M for all h. If such u exists then G = {0}. Let
A
671,—1
with ¢ small depending on u, and IV large so that
A
(5n—1

2
z, — Nz,

1
0= bl + 5l +

xifongo

in BY, . Then
1/p
v<¢ ondQ, detD?v>A,

hence
v<wu in .

This gives

u > 8la’| — Ny,
and we obtain

Sp C {la'| < Oz, + h)}.

Since b(h) < M we conclude

S, c Ch'?B,

and we contradict Lemma 5.4 for &£ = 0.

Now we prove Proposition 5.2 by induction on k.

Proof of Proposition 5.2. In this proof we denote by ¢, C positive constants that
depend on M, p, A, A, n and k.

We assume that the proposition holds for all nonnegative integers up to k — 1,
1 <k <n-—2,and we prove it for k. Let

u € Df(ay,...,a,00,...,00).
By the induction hypotheses and compactness we see that there exists a constant

Ck(/”’? M7 >\7A? n)
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such that if a;, > Cy then b(h) > M for some h > C’k_l. Thus, it suffices to consider
only the case when ap < Cj.

If no ¢y exists then we can find a limiting solution that, by abuse of notation,
we still denote by u such that

(5.15) weDY(1,1,...,1,00,...,00)
with
(5.16) b(h) < MRY2?, Yh >0

where ji depends on p and Cy.
We show that such a function u does not exist.
Denote as before

=y, zan), y=(21,...,2%) € RF, 2= (Thg1s vy Tn1) € RP1F,

On 02 we have

22 — Nz,

p(x) = o' | + dlz| + o=

where ¢ is small depending on fi, and N is large so that

A
on—1
in Bf'/ﬁ. As before we obtain that the inequality above holds in €2, hence

xi—NxRSO

(5.17) u(z) > 6|z| — Nay,.
From (5.16)-(5.17) we see that the section S}, of u satisfies
(5.18) Sy C{lz| < 67 (Nzp 4+ h)} 0 {x, < MAY?Y.

From John’s lemma we know that S}, is equivalent to an ellipsoid E}, of the same
volume i.e

(5.19) c(n)En, C Sy —xj, C C(n)Ey, |En| =Sk,

with zj the center of mass of Sj,.
For any ellipsoid Fj, in R™ of positive volume we can find T}, a sliding along the
y direction (see Definition 5.3), such that

(5.20) ThE, = |Ep|Y/"ABy,

with a matrix A that leaves the (y,0,0) and (0, z,,) subspaces invariant, and
det A = 1. By choosing an appropriate system of coordinates in the y and z
variables we may assume in fact that

A(y, z,2n) = (Ary, Az(2, 7))

with
B 0 - 0
0 B - 0
Av=1| . . . )
0 0 - By

with 0 < 8y < --- < g, and
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Y+1 O 0 Okt
0 Yk+2 0 9k+2
Ay = :
0 O TYn—1 en—l
0 0 0 0,

with Vi 0, > 0.
The h section Sy, = T}, S}, of the rescaling

i(r) = u(T, 'x)

satisfies (5.18) and since u € DY, there exists Gp = G,

G, C {z=0,z, = 0}08§h
such that on the subspace (y,0,0)

{w Myl < h} € Gi C {plyl* < h},
and the boundary values @;, of 4 on dS), satisfy
Ppn=h on aS), \ Gh:
plyl* < @p <min{h,p'y*}  on Gy.

Moreover, using that

|Sh‘ ~ hn/2
in (5.19), (5.20) and that 0 € 05, we obtain
(5.21) ii+ch'?AB, C S, C Ch'/2AB;, detA=1,

for the matrix A as above and with Z; the center of mass of S),.
Next we use the induction hypothesis and show that S}, is equivalent to a ball.

Lemma 5.6. There exists Cy such that
TiSh = S, € Coh™/? By
Proof. We need to show that
|A] < C.
Since S, satisfies (5.18) we see that
S € {l(z,20)| < CR2Y,
which together with the inclusion (5.21) gives |As| < C hence
v 0 < C, 10, < C.
Also, since 3 3
Gp C Sy,
we find from (5.21)
Bi>e>0, i=1,---,k.
We define the rescaling
w(z) = %ﬂ(hl/QAx)
defined in a domain §2,, = S7(w). Then (5.21) gives
B.(z0) C Q, C BZ,
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and w = ¢, on 082, with
Pw = 1 on 8Qu} \Gwa

k k
[LZ 222 < @, < min{l, g Zﬂfzf on Gy :=h" 247G,
1 1

This implies that
w € DY (B, B2y, Bry00,. .., 00)

for some small & depending on p, M, A\, A, n, k.
We claim that

First we notice that

Since

0. ][ 8 ][] =detA=1

we see that if b, (h) (and therefore 6,,) becomes smaller than a critical value ¢, then

Bk > Ck(ﬂ,M,)\,A,ﬂ),

and

with M := 27!, and by the induction hypothesis
bu(h) > M > 2b,(1)

for some h > C’k_l. This gives

by (hh) _ bw(h) >S9
by (h) by (1)
which implies b, (hh) > 2b,(h) and our claim follows.
Next we claim that v; are bounded below by the same argument. Indeed, from
the claim above 6,, is bounded below and if some +; is smaller than a small value
¢4 then

Bk Z Ck(/jﬂMh)\aAvn)

with
_ 2M
M1 = = .
HCx
By the induction hypothesis
~ _ 2M
bw(h) Z 1 Z bw(l)a
Cx
hence ~
by (hh) S 2M
bu(h) — ¢

which gives bu(hﬁ) > 2M, contradiction. In conclusion 6,,, v; are bounded below
which implies that §; are bounded above. This shows that |A| is bounded and the
lemma is proved.

O
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End of the proof of Proposition 5.2.
The proof is finished since Lemma 5.6, (5.15), (5.17) contradict Lemma 5.4.
O

6. POGORELOV ESTIMATE IN HALF-DOMAIN

In this section we obtain a version of Pogorelov estimate at the boundary (The-
orem 6.4 below). A similar estimate was proved also in [TW]. We start with the
following a priori estimate.

Proposition 6.1. Let u: Q — R, u € C*(Q) satisfy the Monge-Ampere equation
det D*u=1 in Q.
Assume that for some constant k > 0,
Bf cQcBl,,

and

u=1z'|*> on 0QN{z, =0}
u=1 on 00N {x, > 0}.

Then

[ull s (fu< Li2y) < Clk, ).

Proof. We divide the proof into four steps.
Step 1: We show that

|Vu| < C(k,n) intheset D :={u < k?*/2}.
For each
zo € {|2'| <k, =z, =0},
we consider the barrier

1
Wy (T) 1= §|az0|2 + a0 (x—x0) + 0|2’ — o)+ 6" (22 — kM),

where ¢ is small so that
wey <1 in Bl,.

Then
Weo (o) = u(xp), Wz <u on 9NN {x, =0},
Wy <1=u on 90N {z, >0},
and
det D*w,, > 1,
thus in

U > Wy > u(z) + 20 - (T —10) — 6"k Ly,
This gives a lower bound for w,(xg). Moreover, writing the inequality for all z
with |zo| = k we obtain
D C {z, > c(|2'| — k)}.
From the values of v on {z,, = 0} and the inclusion above we obtain a lower bound
on u, on dD in a neighborhood of {x,, = 0}. Since  contains the cone generated
by ke, and {|]2'| < 1,2, = 0} and v < 1 in £, we can use the convexity of u

and obtain also an upper bound for u, and all |u;|, 1 < i <n—1,on dD in a
neighborhood of {x,, = 0}. We find

[Vu| <C on dDN{z, <co},
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where ¢y > 0 is a small constant depending on k& and n. We obtain a similar bound
on 0D N{z, > ¢o} by bounding below

dist(0D N{x, > co}, 0N)
by a small positive constant. Indeed, if

y € 00N {x, > co/2},
then there exists a linear function [/, with bounded gradient so that
u(ly) =1,(y), w>1, on OQ.
Then, using Alexandrov estimate for (v —{,)” we obtain
u(x) > ly(x) — Cd(z)*/™, d(x) := dist(z,0Q)
hence D stays outside a fixed neighborhood of .

Step 2: We show that
|D?ul| < C(k,n) on E:={x,=0}n{]2'] <k/2}.
It suffices to prove that |u;,| are bounded in E with i =1,..,n — 1. Let
Ly:= uijcpl-j
denote the linearized Monge-Ampere operator for u. Then
Lu; =0, u; =x; on {z, =0},
Lu=mn,
and if we define P(z) = d|2'|* + 6122 then
LP=Tr((D*uw) 'D?P)
> n (det(D?u)~" det D*P) g
>n.
Fix zo € E. We compare u; and
Vi (2) i= @i 1 [0 — wol® + 812, — awn) = (u = )] s

where [,, denotes the supporting linear function for u at xg, 6 = 1/4, and ~,
v > 0. Clearly,
Lvg, >0,

and, since u is Lipschitz in D we can choose 71, 75 large, depending only on k and
n such that
gy <u; on 0D.

This shows that the inequality above holds also in D and we obtain a lower bound
on Ui (o). Similarly we obtain an upper bound.
Step 3: We show that
|D?*ul| < C on {u< k*/8}.
We apply the classical Pogorelov estimate in the set
F = {u<k?/4}.
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Precisely if the maximal value of
1 1
log <4k2 - u) + logu;; + §uf

occurs in the interior of F' then this value is bounded by a constant depending only
on n and maxp |Vu| (see [C2]). From step 2, the expression is bounded above on
OF and the estimate follows.

Step 4: The Monge-Ampere equation is uniformly elliptic in {u < k?/8} and by
Evans-Krylov theorem and Schauder estimates we obtain the desired C3! bound.
|

Remark 6.2. Assume the boundary values of u are given by

u=p(@) on IN{z, =0}
u=1 ondQ N {z, > 0},

with p(z') a quadratic polynomial that satisfies
pla’|* < pa’) < p~ o',
for some p > 0. Then
lullgs (fuc tr2y) < Clo, K, n).

Indeed, after an affine transformation we can reduce the problem to the case
p(a) = ['[*/2.

Remark 6.3. Proposition 6.1 holds as well if we replace the half-space {z,, > 0}
with a large ball of radius !
B.i={|r—cte,| <t}

Precisely, if

By NB. CQC Bp-1NB;,
and the boundary values of u satisfy
u=%[z'|* on B;NIB. CIN
u € [1,2] on 0N\ (B;NIB.),
then for all small ¢,
[ullesa (fu<nz 6y < C,
with C depending only on k and n.

The proof is essentially the same except that in the barrier functions wy,, vg,
we need to replace x, by (v — xg) - Vg, Where v, denotes the inner normal to 052
at xo, and in step 2 we work (as in [CNS]) with the tangential derivative

T, = (1 —exy)0y, + 20, ,
instead of 0y, .
As a consequence of the Proposition 6.1 and the remarks above we obtain

Theorem 6.4. Let u:  — R satisfy the Monge-Ampere equation
det D>u=1 in Q.
Assume that for some constants p,k > 0,

Bf cQc B,
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and (see Definition 2.5) the boundary values of u are given by

u=p(a) on {pla)<1}n{z, =0} CIN
u=1 on the rest of 0€2,

where p is a quadratic polynomial that satisfies
pla’|? < pla’) < p~ o'
Then
(6.1) lullgsn(msy < '
with cg > 0 small, depending only on k, p and n.

Proof. We approximate v on 92 by a sequence of smooth functions u,, on 9%,,,
with €, smooth, uniformly convex, so that wu,,, {2, satisfy the conditions of Remark
6.3 above. Notice that u,, is smooth up to the boundary by the results in [CNS],
thus we can use Proposition 6.1 for u,,. We let m — oo and obtain (6.1) since

2
B ¢ {u < k?/16},

by convexity.

7. POINTWISE CQ’O‘ ESTIMATES AT THE BOUNDARY
Let  be a bounded convex set with

(7.1) B,(pen) C Q C {xz, >0} N B%,

for some small p > 0, that is @ C (R™)" and €2 contains an interior ball tangent to
0 at 0.
Let u : Q — R be convex, continuous, satisfying

(7.2) detD*u=f  0<A<f<A inQ
and
(7.3) Zp+1 = 0 is a tangent plane to v at 0,

in the following sense:
u>0, u(0)=0,
and any hyperplane x,+1 = ex,, € > 0 is not a supporting plane for .
We also assume that on 02, in a neighborhood of {x,, = 0}, u separates quadrat-
ically from the tangent plane {x,; = 0},

(7.4) plz|? <wu(x) < p~Yz|> on QN {zx, < p}.
Our main theorem is the following.
Theorem 7.1. Let Q, u satisfy (7.1)-(7.4) above with f € C* at the origin, i.e
()~ JO)| < Mz]* i 9N B,

for some M >0, and o € (0,1). Suppose that O and u|spq are C*% at the origin,
i.e we assume that on 02N B, we satisfy

|z, — q(2)] < M|2'|*Te,
lu—p(a’)| < Ma/|**,

where p(z'), q(z’) are quadratic polynomials.
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Then u € C*% at the origin, that is there exists a quadratic polynomial Py with
det D*Py = f(0), [ D*Po < C(M),
such that
lu —Po| < C(M)|z|*t™ in QN B,,
where C(M) depends on M, p, A, A, n, a.

From (7.1) and (7.4) we see that p, ¢ are homogenous of degree 2 and
1D?pll, | D?q]| < p~.

A consequence of the proof of Theorem 7.1 is that if f € C'® near the origin,

then u € C*% in any cone Cy of opening 6 < 7/2 around the z,-axis i.e
Co:={zecR")T| |2/|<x,tanb}.
Corollary 7.2. Assume u satisfies the hypotheses of Theorem 7.1 and
[ fllce @) < M.
Given any 0 < /2 there exists (M, 0) small, such that
lullc2.econps) < C(M,0).
We also mention the global version of Theorem 7.1.

Theorem 7.3. Let Q be a bounded, convex domain and let u : Q — R be convez,
Lipschitz continuous, satisfying

det D%*u = f, 0<A<f<A nQ.
Assume that ~
09, u|aQ S CQ’Q, fe CQ(Q),
for some ac € (0,1) and there exists a constant p > 0 such that
u(y) — u(z) — Vu(z) - (y — x) > ply — 2| Vz,y € 09,
where Vu(x) is understood in the sense of (7.3). Then u € C%*(2) and
[ull g2.e () < C,
with C depending on |09 c2.«, [lulaallc2.e, [ullcor@y, I fllca@ys s A A, n, a.

In general, the Lipschitz bound is easily obtained from the boundary data u|ggq.
We can always do this if for example 2 is uniformly convex.

The proof of Theorem 7.1 is similar to the proof of the interior C%® estimate
from [C2], and it has three steps. First we use the localization theorem to show
that after a rescaling it suffices to prove the theorem only in the case when M is
arbitrarily small (see Lemma 7.4). Then we use Pogorelov estimate in half-domain
(Theorem 6.4) and reduce further the problem to the case when u is arbitrarily
close to a quadratic polynomial (see Lemma 7.5). In the last step we use a standard
iteration argument to show that u is well-approximated by quadratic polynomials
at all scales.

We assume for simplicity that

f(0)=1,
otherwise we divide u by f(0).

Constants depending on p, A, A, n and « are called universal. We denote them
by C, ¢ and they may change from line to line whenever there is no possibility of
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confusion. Constants depending on universal constants and other parameters i.e
M, o, 0, etc. are denoted as C(M, o, 4).

We denote linear functions by [(x) and quadratic polynomials which are homoge-
nous and convex we denote by p(2’), ¢(2’), P(x).

The localization theorem says that the section .Sj is comparable to an ellipsoid
E}, which is obtained from B2 by a sliding along {z, = 0}. Using an affine
transformation we can normalize Sy so that it is comparable to By. In the next
lemma we show that, if A is sufficiently small, the corresponding rescaling uy, satisfies
the hypotheses of u in which the constant M is replaced by an arbitrary small
constant o.

Lemma 7.4. Given any o > 0, there exist small constants h = ho(M,0), k > 0
depending only on p, A\, A, n, and a rescaling of u

ht/2 At
un(z) = w

where Ay, is a linear transformation with

det Ap =1, [|A;"], lAR]l < k™ [log

so that
a)
BN Qh C Sl(uh) C B]:r,l, Sl(uh) = {uh < 1},
b)
det D?uy, = fp, [fr(x) =1 <olz|® in QpN By,

¢) On 9Qp, N By-1 we have
|20 — an(a)| < ola’PTe, an(a’)] < o,
Jun — p(a")] < ofa’ [,
where qn, 1 a quadratic polynomial.

Proof. By the localization theorem Theorem 3.1, for all h < ¢,
Sp={u<h}nNQ,
satisfies
kE,NQ C Sp C k™ By,
with
Eh = A}_LlBhuz, Ahl‘ = T — VpTnp
vnen =0, A [[Anl < k7 log .
Then we define u;, as above and obtain

Sy(up) = h=Y2A,S,

hence
BNy C Si(w) C By,
where
Qp, :=h~Y24,0.
Then

det D%uy, = fr(z) = f(hl/zA,jlx),
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and
[fu(w) =1 < M| 245 )
< M2 log l)? 2]
< olx|®
if ho(M, o) is sufficiently small.
Next we estimate |z, — h'/2q(z’)| and |uy, — p(z')| on 0Q, N B,-1. We have
r€edQ, < y:i=h?A e,
or
hY 2, =y, 22 = — vy,
If |#| < k~! then
lyl < k7112 log hllz| < hY/*,

if hg is small hence, since {2 has an interior tangent ball of radius p, we have

lynl < oY/
Then
whyn| <k~ loghlly'|* < |y'[/2,
thus
Sy < W2 < 2y
We obtain

@ — 1M 2q()] < BTV lyn —a(y))| + B a(h™Py) — g(a)]
< Mh71/2|y/|2+a +Ch1/2 (|x,||Vh17n| + |Vh1'n|2)

< 2Mh(a+1)/2‘x/|2+a + Ch1/2 (h1/2| logh||x’|3 + h| 10gh|2|$l|4)

S U|$/|2+a7
if hg is chosen small. Hence on 9, N By-1,
|2 — qn(a')] S ola’PT, g =0 2q(a),

lgn| < o,

and also

lup — p(a)| < R u(y) — p(y)| + [p(h=2y') — p(a')]
< Mh7Hy' PP+ C (|2 |vaan| + [vhan )

< MR [P+ + C (h1/2| log hl|2’[® + | log h|2|x’|4>

S O'|.’17l|2+a.

O

In the next lemma we show that if ¢ is sufficiently small, then w; can be well-

approximated by a quadratic polynomial near the origin.
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Lemma 7.5. For any 0o, €o there exist 0o(do,€0), to(€o) such that for any function
uy, satisfying properties a), b), c) of Lemma 7.4 with o < o¢ we can find a rescaling

’EL(:L’) — (uh - lh)(Mox)

I ’
with
() = Yhan, |vn] < Co, Cy universal,
that satisfies
a) in QN By,
det D*u = f, |f(x) — 1] < dogolz|® in QN By,
and

i — Py| <eo in QN B,
for some Py, quadratic polynomial,
det D*Py =1, |D*Ry| < Co;
b) On QN By there exist po, Go such that

|20 — Go(a)] < doola’ [T, |do(a")] < oco,
and
| — po(a")] < Soeola’[**,
Pola’) = Po(a’),  Ela'? < pole) < 200’

Proof. We prove the lemma by compactness. Assume by contradiction that the
statement is false for a sequence u,, satisfying a), b), ¢) of Lemma 7.4 with o,,, — 0.
Then, we may assume after passing to a subsequence if necessary that

Pm — Doos  ¢m — 0 uniformly on Bj-1,
and
U 2 S1(Um) = R
converges to (see Definition 2.3)
Uoo : oo — R.
Then, by Theorem 2.6, u, satisfies
Bf c Q. C B, det D?uqe =1,

Uso = Poo(T’) on {pso(x’) <1} N{z, =0} C 000
Uoo = 1 on the rest of 0.

From Pogorelov estimate in half-domain (Theorem 6.4) there exists ¢y universal

such that
[ttoo — loo — Poo| < (:0_1|:U|3 in Bjo,
where
Zoo = Yooln, |'700| < calv

and P, is a quadratic polynomial such that

Poo(2') = poo(z’), det D*Py, =1, ||D?*Py]| < c5t.
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Choose iy small such that

cglyo =£0/32,
hence .
[ttoo — loo — Poo| < isopg in Bij—uo’

which together with p,, — po implies that for all large m
1 .
[t — loo — Poo| < §€0u(2) in Sy(um)N B:O.

Then, for all large m,

Ty, 1= (U — ZO;)(NOx)
Ho

satisfies in Q,, N By
|ﬁm - POO‘ < 50/2,
and
det Dty = fn(2) = fin (o),
| (@) = 1] < o (ol])* < Goeolz|™.
We define
Gm = f0qm,  Pm ‘= Pm — Yoolm,
and clearly
Pm = Poos  Gm — 0 uniformly in  Bj.
On 99, N B; we have
|20 = Gm(2")] = g [Ho%n — Gim (1102")]
< pg oo’ [T
< Boeolz' [P,
and
[t — B (2')] = 11 * | (m — loo) (H02) = P (Ho") + Yoo m (Hoa")]
< 11 2 (|(m = pim) (02| + oo llHozn — g (p02")])
< ompg (1 + [yeo]) |2 #F
< Sogol2’|? T
Finally, we let P,, be a perturbation of P, such that
Pn(2") = pu(2'), detD?*P, =1, P, — Py uniformly in B.
Then %, Py, Pm, Gm satisfy the conclusion of the lemma for all large m, and

we reached a contradiction. O

From Lemma 7.4 and Lemma 7.5 we see that given any &g, €9 there exist a linear
transformation
T:= uohé/zAggl
and a linear function
l(x) :=yay,
with
LT HL T < C(M, 8o, €0),
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such that the rescaling ( (7o)
5 u—1)(Tx
Ue) = gy
defined in Q C R” satisfies
1)in QN By

det D*a = f, |f —1] < doeolz|*,

and
|t — Po| < o,
for some P, with
det D?Py =1, || D*Py|| < Cy;

2) on QN By we have p, § so that
| — @(a")] < dosol2’ 7T, |q(a")| < doeo,

[ = ()| < docola’ P, Fla'” <) = Pola’) < 20/,
By choosing do, €9 appropriately small, universal, we show in Lemma 7.6 that
there exist [, P such that
li—1—P|<Clz/** in QNB;, and |VI|, |D?*P| <C,
with C a universal constant. Rescaling back, we obtain that u is well approximated
by a quadratic polynomial at the origin i.e
lu—1—P|<C(M)|z*™ in QNB,, and |VI|, |D?*P|| < C(M)
which, by (7.3), proves Theorem 7.1.
Since a € (0,1), in order to prove that @ € C%%(0) it suffices to show that @
is approximated of order 2 + a by quadratic polynomials I, + Py, in each ball of

radius r§* for some small 75 > 0, and then [ + P is obtained in the limit as m — oo
(see [C2], [CC]). Thus Theorem 7.1 follows from the next lemma.

Lemma 7.6. Assume U satisfies the properties 1), 2) above. There exist €y, 0o, To
small, universal, such that for all m > 0 we can find l,,, P, so that

|@ — 1y — Pl <eor?tY in QQBT, with r=r(".
Proof. We prove by induction on m that the inequality above is satisfied with
Im = Ym@Tn, || <1,
P(2") = p(2') — ymi(2’), det D*P,, =1, |D?P,.|| < 2Cy.

From properties 1),2) above we see that this holds for m = 0 with vy = 0.
Assume the conclusion holds for m and we prove it for m + 1. Let

v(x) = w, with 7 :=r{,

r2
and define
e :=egor™.
Then
(7.5) lv—P,|<e in Q,NB;, Q:=r"1Q,

|det D?v — 1| = | f(rz) — 1] < doe.
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On 09, N By we have
=gl

: =y — ()

S 60€|I/|2+a7

S 6057

which also gives

(7.6) |z, <250 on 9Q, N Bj.

From the definition of v and the properties of P, we see that in B
[0 = Po| < 77%(@ = §)(r2)| + yml|zn/r — @l + 2nColaal,

and the inequalities above and property 2) imply

(7.7) |v — Pp| < Ciéoe in 99, N By,

with C; universal constant (depending only on n and Cp).
We want to compare v with the solution

w: Bj/s - R, det D?w = 1,

which has the boundary conditions

w=v on 8BT/SHQU
w= P, on 831"/8\91,.

In order to estimate |u — w| we introduce a barrier ¢ defined as

o Bl/Q \Bl/4 — R, d(x) = c(B) (45 - |3U|_’6) )

where ¢(f3) is chosen such that ¢ =1 on 9B;/; and ¢ = 0 on 9B 4.
We choose the exponent 8 > 0 depending only on Cjy and n such that for any
symmetric matrix A with

(2Co)' "I < A < (2Cy)" 7,
we have
Tr A(D*¢) < —no <0,

for some 7y small, depending only on Cj and n.
For each y with v, = —1/4, |y'| < 1/8 the function

Py () := P+ £(C16 + $(z — y))
satisfies .
0 :
det ngby <1- 55 in Bys(y)\ Bia(y),
if € < g¢ is sufficiently small. From (7.5), (7.7) we see that
v<¢, on O NByay)),

and if dg < 19/2,
det D*v > det D*¢,,.
This gives
v< ¢, in Q,NBysy),
and using the definition of w we obtain

w< ¢, on 8Bf/8.
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The maximum principle yields
w< ¢y in Bfr/87

and by varying y we obtain

w(z) < Py, +¢(Cido+ Cxyp) in Bf/g.
Recalling (7.6), this implies

w— P, <2C16pe on B;F/S \ Q.
The opposite inequality holds similarly, hence

(7.8) w— Pl <2C16e on Bfg\ Q.

From the definition of w and (7.7) we also obtain
(7.9) v —w| <3C160e on QN Bf/8).
Now we claim that

(7.10) |v —w| < Cadpe in Q,N BT

178" C5 universal.

For this, we use the following inequality. If A > 0 is a symmetric matrix with
1/2 < det A < 2,
and a > 0, then
det(A + al) = det Adet(I +aA™!)
> det A(1+ Tr(ad™1))
> det A(1 4 a/2)
>det A+ a/4.

This and (7.9) give that in 2, N Bf/s

w4 200e(|z]? — 2C1) < v,
v+ 260e(|zf* — 2C1) < w,
and the claim (7.10) is proved.

Next we approximate w by a quadratic polynomial near 0. From (7.5),(7.8),
(7.10) we can conclude that

lw—Pp| <2 in Bf,
if dg is sufficiently small. Since w = P,, on {x, = 0}, and
£|x/|2 < Po(2)) <4dpla’|?, det D2P,, =1, ||D*Py| < 2Cq,
we conclude from Pogorelov estimate (Theorem 6.4) that
”DQU’“CU(BJO) <et,

for some small universal constant ¢g. Thus in B;;, w — Py, solves a uniformly elliptic
equation

Tr A(z)D?*(w — P,,) = 0,
with the C1'! norm of the coefficients A(x) bounded by a universal constant. Since

w—Pp,=0 on {z,=0},
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we obtain
||w — PmHCZ,l(B:;)/Q) S C3HU) — Pm”Loo(BZ[)) S 2036,

with C3 a universal constant. Then
(7.11) |w — Py, — Iy — Pp| < 2Cse|z|® if |z| < ¢o/2,
with
Pm(xl) =0, I = FmTn, [¥m s ”szm” < 2C3¢.
Since l~m + P, + ]5m is the quadratic expansion for w at 0 we also have
det D*(P,, + P,,) = 1.
We define

Pi1(x) := Pp(x) + Pp(x) — rim(a’) + oma?
with o, so that
det DZPm+1 = 17

and let
lm+1(x) = Ym+1Tn, Ym+1 = Tm + T’?m.
Notice that
(7.12) Ymt1 = Ymls | D*Pry1 — D* Pyl < Cye = Caeorg™®,

and
|D?Pyy1 — D* (P + Pyy)|| < Caboe,
for some Cy universal. From the last inequality and (7.10), (7.11) we find

[v =l — Pt < (20375 4 C2dg + Cado)e in Q, N B

This gives

[ m+1|§5r8+0‘ in QUQB;B,

if we first choose ro small (depending on C3) and then §y depending on rg, Cs, Cy,
hence

ot =eo(rre)® in QN B,

|t — b1 — P < er’r, o

Finally we choose £q small such that (7.12) and
7 =0, [[D*R] < Co,
guarantee that
| <1, [ID*P| < 2Co

for all m. This shows that the induction hypotheses hold for m + 1 and the lemma
is proved.
O

Remark 7.7. The proof of Lemma 7.6 applies also at interior points. More precisely,
if @ satisfies the hypotheses in By(zo) C Q2 instead of By N then the conclusion
holds in By (zp). The proof is in fact simpler since, in this case we take w so that

w=wv on JB(xg),

and then (7.9) is automatically satisfied, so there is no need for the barrier ¢.
Also, at the end we apply the classical interior estimate of Pogorelov instead of the
estimate in half-domain.
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Now we can sketch a proof of Corollary 7.2 and Theorem 7.3.

If u satisfies the conclusion of Theorem 7.1 then, after an appropriate dilation,
any point in Cyp N Bs becomes an interior point z as in Remark 7.7 above for the
rescaled function @. Moreover, the hypotheses of Lemma 7.6 hold in Bj(zg) for
some appropriate € < 9. Then Corollary 7.2 follows easily from Remark 7.7.

If u satisfies the hypotheses of Theorem 7.3 then we obtain as above that

|ullczapyy <C, Ds:={r€Q| dist(x,dQ) <},

for some § and C depending on the data. We combine this with the interior C%®
estimate of Caffarelli in [C2] and obtain the desired bound.
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