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MINIMIZERS OF CONVEX FUNCTIONALS ARISING IN
RANDOM SURFACES

D. DE SILVA AND O. SAVIN

Abstract. We investigate C1 regularity of minimizers to
´
F (∇u)dx in two

dimensions for certain classes of non-smooth convex functionals F . In partic-
ular our results apply to the surface tensions that appear in recent works on
random surfaces and random tilings of Kenyon, Okounkov and others.

1. Introduction

The classical problem in the calculus of variations consists in minimizing the
functional

min
A

ˆ

Ω

F (∇u)dx, Ω ⊂ Rn

where F : Rn → R is a given convex function and A is a family of admissible
functions u : Ω → R (typically the elements of a functional space satisfying a
boundary condition u = ϕ on ∂Ω). In general it is not hard to show the existence
and uniqueness for this problem, but the main difficulty arises when trying to prove
further smoothness properties of the minimizers. For example, one would like to
show that a minimizer has continuous second derivatives. Then it satisfies the
Euler-Lagrange equation

(1.1) div(∇F (∇u)) = Fij(∇u)uij = 0.

Hilbert’s 19th problem posed at the beginning of the last century refers precisely
to this question of regularity: Are the solutions of regular problems in the calculus
of variations always necessarily analytic?

In two dimensions the problem was solved in 1943 by C.B. Morrey [M] who
showed analyticity of solutions by the use of complex analysis and quasiconformal
mappings. A partial answer to Hilbert’s problem in the general case was given in
the 1930s by the use of Schauder’s estimates for linear equations [Sc1],[Sc2], which
guarantee that minimizers are smooth once they have Hölder continuous derivatives.
On the other hand it follows from the comparison principle that minimizers are
Lipschitz continuous under quite general conditions on the domain and boundary
data. One piece of the puzzle remained to be proved: that Lipschitz minimizers
are in fact C1,α.

The breakthrough came in the 1950s from the work of E. De Giorgi [D] on the
minimal surface equation and independently from J. Nash [N]. Differentiating the
equation (1.1) with respect to xk we see that the derivative uk satisfies the nonlinear
elliptic PDE

(1.2) ∂i(Fij(∇u)ukj) = 0.

1The second author was supported by N.S.F. Grant DMS-07-01037 and a Sloan Fellowship.
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Ignoring the dependence on∇u we can write that v = uk satisfies the linear equation

∂i(aij(x)vj) = 0.

De Giorgi observed that the uniform ellipticity condition

λI ≤ [aij(x)]i,j ≤ ΛI

on the coefficients is sufficient to obtain continuity for v (in fact Hölder continuity
due to scaling). The proof is based on an iteration scheme for various Caccioppoli
type inequalities of the form

(1.3)
ˆ

Ω

|∇v|2η2dx ≤ C(Λ, λ)
ˆ

Ω

v2|∇η|2dx, ∀η ∈ C∞0 (Ω).

This result led to extensive study of the theory of linear second order elliptic equa-
tions with measurable coefficients (see for example [CFMS], [LSW], [GT]).

With the question of regularity being understood in the case when F is smooth
and strictly uniformly convex, it is natural to further investigate what happens when
the uniform ellipticity condition on D2F fails on a certain set. In the particular
case of the p-Laplace equation, i.e F (ξ) = |ξ|p, 1 < p <∞, when the degeneracy set
consists of only one point (the origin) the regularity of minimizers is well-understood
(see fore example [E]).

In this paper we direct our attention to the case when the degeneracy set of F
can possibly be very large. The first step towards proving regularity of minimizers
would be obtaining C1 continuity. Then the Euler Lagrange equation becomes less
ambiguous and the classical theory can be applied near the points whose gradients
lie outside the degeneracy set of F .

If F ∗ denotes the Legendre transform of F then

Fij(∇F ∗)F ∗ij = tr((D2F ∗)−1D2F ∗) = n,

thus F ∗ is a particular solution of the nonlinear PDE (1.2). Without further ev-
idence we can ask wether or not minimizers have the same regularity as F ∗. In
particular: Is it true that if F is strictly convex then Lipschitz minimizers are of
class C1? This seems to be a difficult question but there is some evidence that
suggests that the result might be true at least in two dimensions.

In the first part of the paper we prove a priori estimates that answer the question
above in two dimensions for two large classes of strictly convex functionals. Our
first theorem shows that if R2 can be covered by two open sets Oλ, VΛ,

Oλ ⊂ {p ∈ R2, D2F (p) > λI},
VΛ ⊂ {p ∈ R2, D2F (p) < ΛI},

then ∇u has a uniform modulus of continuity in the interior of Ω.

Theorem 1.1. Let u be a minimizer with ‖∇u‖L∞(B1) ≤M. Assume that

BM ⊂ Oλ ∪ VΛ.

Then in B1/2, ∇u has a uniform modulus of continuity depending on the modulus
of convexity ωF of F , Oλ, VΛ,M and ‖∇F‖L∞(BM ).

In the second theorem we show that if D2F > 0 except at a finite number of
points then the same result holds.
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Figure 1.

Theorem 1.2. Let u be a minimizer with ‖∇u‖L∞(B1) ≤ M. Assume that BM \⋃
O1/n is a finite set. Then in B1/2, ∇u has a uniform modulus of continuity

depending on O1/n,M and ‖∇F‖L∞(BM ).

Our interest in this two dimensional regularity problem is motivated by a series
of recent papers in combinatorics and statistical mechanics about random tilings
and random surfaces by Cohn, Kenyon, Okounkov, Propp, Sheffield and others.
Let us briefly explain the connection between our problem and these results.

We present the simplest model of a random surface. For small ε consider the
points εZ3 ⊂ R3, and call the (1, 1, 1) direction vertical and the plane P = {x +
y + z = 0} horizontal. An ε-stepped surface is a polygonal surface whose faces are
squares in the 2-skeleton of εZ3 and which is a graph in the vertical direction. In
other words, the subgraph of an ε-stepped surface is a collection of ε-cubes of εZ3.

Obviously, stepped surfaces can approximate only Lipschitz graphs with gradi-
ents lying in the equilateral triangle N with vertices given by the slopes of the three
planes {x = 0}, {y = 0}, {z = 0}.

Consider the “random surfaces” given by all ε- stepped surfaces above a domain
Ω ⊂ P which stay O(ε) away from a given function ϕ defined on ∂Ω. In connection
with problems that arise in statistical mechanics, it is interesting to investigate the
limiting behavior as ε→ 0. Cohn, Kenyon and Propp [CKP] proved that as ε→ 0
the random surfaces almost surely converge uniformly to a nonrandom function u
which solves the variational problem

(1.4) min
u

ˆ

Ω

F (∇u)dx, ∇u ∈ N, u = ϕ on ∂Ω.

The surface tension F : N → R can be computed from combinatorial considerations
and is strictly convex in the interior of N and constant on ∂N .

The picture of such a random surface is shown in Figure 1 and it appeared on
the cover of the Notices of the AMS, March 2005, Volume 52.
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Other types of random surfaces can be obtained from random tiling of the plane
with various geometric figures. For example there is a one to one correspondence
between the tilings with 60o rhombi of an ε- honeycomb lattice and the

√
3ε- stepped

surfaces: the tilings are the projections of the faces (squares) along the vertical
direction onto the plane P .

More generally, one can construct random surfaces corresponding to random per-
fect matchings (also called dimer configurations) on a weighted, bipartite, periodic,
planar graph G. Kenyon, Okounkov and Sheffield [KOS] showed that these random
surfaces converge a.s. to a solution of (1.4) with F and the polygon N (called
the Newton polygon) depending on G. The function F is piecewise linear on ∂N ,
strictly convex in the interior, smooth except at a finite number of points where it
can have singularities.

In the second part of this paper we investigate precisely the C1 regularity of min-
imizers of (1.4) in which the functional F is, in the interior of a polygon N , strictly
convex and smooth except at a finite number of points, but without any further
assumptions about the behavior of F on ∂N . In this case the set of degeneracy of
D2F is the union of a finite set with ∂N .

The variational problem (1.4) is equivalent to an obstacle problem. Indeed, let
ϕ (ϕ) be the minimum (maximum) of all admissible functions u and define F to be
∞ outside N , then problem (1.4) is equivalent to

min
ϕ≤u≤ϕ

ˆ

Ω

F (∇u)dx.

The obstacle problem has been extensively studied for the Laplace equation i.e
F (ξ) = |ξ|2 (see for example [C]).

The regularity of minimizers in our case is quite delicate. Near the points where
the solution separates from the obstacle the equation becomes degenerate. More-
over, even in the set where ϕ < u < ϕ it cannot be concluded (as in Laplace
equation case) that ∇u is in the interior of N . Thus the results from the first part
of the paper cannot be directly applied in any reasonable set.

Our main regularity result says that the minimizers are C1 in Ω except on a
number of segments which have an end point on ∂Ω and have directions perpen-
dicular to the sides of N . On these segments the minimizer coincides with either
the lower or the upper obstacle.

Theorem 1.3. If ∇u is discontinuous at x0 ∈ Ω, then there exists a direction νi
perpendicular to one of the sides [pi, pi+1] of N such that u is linear on a segment
of direction νi connecting x0 and ∂Ω. Precisely, there exists x1 = x0 + t1νi ∈ ∂Ω
such that

u(x) = u(x0) + pi · (x− x0), for all x ∈ [x0, x1] ⊂ Ω.

In particular, u ∈ C1 away from the obstacles.

We also prove a type of continuity result at the points where the minimizer is
not differentiable. We show that if a sequence of points converges to a point of
non-differentiability then their corresponding gradients approach ∂N (see Theorem
4.1).

As seen in Figure 1, minimizers of (1.4) may have “flat” regions where they are
linear and their gradient belongs to the set of vertices of N . We show that these
regions must lie between a convex and a concave graph (see Theorem 4.2).
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The proof of our results relies on two dimensional techniques. For the results in
the first part we prove weak versions of Caccioppoli inequalities in which the right
hand side of (1.3) is replaced by a constant. This is done using the precise form of
the nonlinearity in equation (1.2). As it turns out, such inequalities are sufficient
for proving C1 continuity. The second part of the paper is more involved. We use
the ideas of the first part and an approximation technique together with the fact
that any tangent plane splits the graph of a smooth minimizer into at least four
connected components. These methods could be exploited further to include other
examples of functionals, however most examples would satisfy our assumptions.

As in the work of De Giorgi the key step in proving C1 continuity consists
in obtaining “localization” lemmas (see Lemmas 2.1, 2.2, 3.1, and Theorem 6.1).
Roughly speaking, they say that when we restrict to smaller and smaller domains
the image of the gradient restricts itself to either one of two known sets (that
decompose the plane).

The paper is organized as follows. In Section 2 and Section 3 we prove re-
spectively Theorem 1.1 and Theorem 1.2. In Section 4 we present the degenerate
obstacle problem and state the main results. In Section 5 we introduce the ap-
proximation problem. In Section 6 we prove Theorem 1.3. In Section 7 we prove
Theorem 4.1. Finally in the last section we prove two flatness theorems Theorems
4.3 and 4.4 that are used in the course of the proof of Theorem 1.3.

2. The proof of Theorem 1.1.

Let F : R2 → R be a smooth strictly convex function, with modulus of convexity
ωF : (0,+∞)→ (0,+∞), i.e.

F (q)− F (p)−∇F (p) · (q − p) ≥ ωF (|q − p|), q 6= p.

Let 0 < λ ≤ Λ, and denote by Oλ, VΛ two open sets such that

Oλ ⊂ {p ∈ R2, D2F (p) > λI},(2.1)

VΛ ⊂ {p ∈ R2, D2F (p) < ΛI}.(2.2)

Throughout this paper balls (of radius r) in the x-variable space are denoted by
Br, while balls in the p-variable space (the gradient space), are denoted by Br.

Consider the integral functional

I(u) =
ˆ

B1

F (∇u)dx.

We prove the following a priori estimate.

Theorem 1.1. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤M. Assume that

BM ⊂ Oλ ∪ VΛ.

Then in B1/2, ∇u has a uniform modulus of continuity depending on ωF , Oλ, VΛ,M
and ‖∇F‖L∞(BM ).
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2.1. Statement of the localization Lemmas. The proof of Theorem 1.1 relies
on the next two Lemmas. Let e be an arbitrary unit vector (direction) in R2 and
denote by

H+
e (c) := {p ∈ R2|p · e > c},

H−e (c) := {p ∈ R2|p · e < c},
Se(c0, c1) := {p ∈ R2|c0 < p · e < c1},

for some constants c, c0, c1 ∈ R, with c0 < c1.

Lemma 2.1. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤ M. Assume that
there exist a direction e and constants c0, c1 such that

(2.3) Se(c0, c1) ∩∇u(B1) ⊂ Oλ.
Then, there exists δ > 0 depending on c1 − c0, λ,M, ‖∇F‖L∞(BM ), such that either

(2.4) ∇u(Bδ) ⊂ H+
e (c0)

or

(2.5) ∇u(Bδ) ⊂ H−e (c1).

Lemma 2.2. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤ M. Assume that
there exist a direction e and constants c̃, ε such that

(2.6) H+
e (c̃− ε) ∩∇u(B1) ⊂ VΛ.

Then, there exists δ > 0 depending on ε,Λ, ωF ,M , such that either

(2.7) ∇u(Bδ) ⊂ H+
e (c̃− ε)

or

(2.8) ∇u(Bδ) ⊂ H−e (c̃+ ε).

As observed in the introduction, these Lemmas say that as we restrict to smaller
and smaller domains in the x-space the image of the gradient restricts itself to either
one of two half-planes. The Caccioppoli-type inequalities in the next subsection will
be the key tool towards the proof of these Lemmas.

2.2. Caccioppoli-type inequalities. Let u be a smooth minimizer to I(u), then
u satisfies the Euler-Lagrange equation

(2.9) div(∇F (∇u)) = 0 in B1.

Differentiating the equation in the direction e we obtain

(2.10)
ˆ

B1

Fij(∇u)uejφidx = 0, ∀φ ∈ C∞0 (B1).

Let c0, c1 ∈ R with c0 < c1 and denote by

(2.11) G(t) :=

{
0 t ≤ c0,
1 t ≥ c1

a smooth function with bounded slope |G′(t)| < C.
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Proposition 2.3. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤ M. Assume
that there exist a direction e and constants c0, c1 such that

(2.12) Se(c0, c1) ∩∇u(B1) ⊂ Oλ.
Then,

(2.13)
ˆ

B1/2

|∇(G(ue))|2dx ≤ C

for some constant C depending on c0, c1, λ,M, ‖∇F‖L∞(BM ).

Proof. In formula (2.10), let us choose as test function φ = ξ2G(ue), with ξ ∈
C∞0 (B1), 0 ≤ ξ ≤ 1 and ξ ≡ 1 on B1/2. We obtain

(2.14)
ˆ

B1

Fij(∇u)uejξ
2(G(ue))idx = −2

ˆ

B1

Fij(∇u)uejξξiG(ue)dx.

Now we analyze the left-hand side of (2.14).

LHS =
ˆ

B1

Fij(∇u)uejueiξ
2G′(ue)dx(2.15)

≥ λ
ˆ

B1

|∇ue|2ξ2G′(ue)dx ≥ cλ
ˆ

B1

|∇(G(ue))|2ξ2dx,(2.16)

where in the first inequality in (2.16) we used the assumption (2.12) and the defi-
nition of Oλ, while in the second one we used that G′ is bounded. Thus,

(2.17) LHS ≥ cλ
ˆ

B1

|∇(G(ue))|2ξ2dx.

On the other hand, using integration by parts we have that the right-hand side of
(2.14) is given by

RHS = −2
ˆ

B1

∂e(Fi(∇u))ξξiG(ue)dx

= 2
ˆ

B1

Fi(∇u)∂e(ξξi)G(ue)dx+
ˆ

B1

Fi(∇u)ξξi∂e(G(ue))dx.

Thus, for any γ ≤ 1,

(2.18) |RHS| ≤ γ
ˆ

B1

|∇(G(ue))|2ξ2dx+ C/γ

with C depending on ‖∇F‖L∞(BM ). Combining (2.17) with (2.18) and choosing γ
sufficiently small we obtain the desired claim.

�

Proposition 2.4. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤ M. Assume
that there exist a direction e and constants c̃, ε such that

(2.19) H+
e (c̃− ε) ∩∇u(B1) ⊂ VΛ.

Then, set w = ∇F (∇u) and U = (∇u)−1(H+
e (c̃)),

(2.20)
ˆ

B1/2∩U
|∇w|2dx ≤ C

for some constant C depending on c̃, ε,Λ,M .
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Proof. In formula (2.10) choose as test function φ = ξ2(ue − (c̃ − ε))+ with ξ ∈
C∞0 (B1), 0 ≤ ξ ≤ 1 and ξ ≡ 1 on B1/2. Set Uε := (∇u)−1(H+

e (c̃− ε)) ⊃ U.
Then,

(2.21)
ˆ

Uε
Fij(∇u)uejueiξ

2dx = −2
ˆ

B1

Fij(∇u)uejξξi(ue − (c̃− ε))+dx.

According to assumption (2.19) and the definition of VΛ, on the set Uε we have
that

Fij(∇u)uejuei = (∇ue)T ·D2F (∇u) · ∇ue ≥ 1
Λ
|D2F (∇u) · ∇ue|2.(2.22)

Hence, after bounding the right-hand side of (2.21) using Young’s inequality we
obtain

(2.23)
ˆ

Uε
|D2F (∇u) · ∇ue|2ξ2dx ≤ γ

ˆ

Uε
|D2F (∇u) · ∇ue|2ξ2dx+ C/γ

for some constant C depending on Λ,M, c̃, ε and any γ > 0. Hence for γ small
enough we obtain

(2.24)
ˆ

B1/2∩Uε
|D2F (∇u) · ∇ue|2dx ≤ C.

Now, let f be a direction close to e, f 6= e, such that for some constant k ∈ R,
{p · f = k} ∩ BM ⊂ Se(c̃− ε, c̃).

Then,
H+

f (k) ∩∇u(B1) ⊂ VΛ,

and we can repeat the same argument as above with Uk := (∇u)−1(H+
f (k)) ⊃ U

to conclude that

(2.25)
ˆ

B1/2∩Uk
|D2F (∇u) · ∇uf|2dx ≤ C.

Combining (2.24) with (2.25) we obtainˆ

B1/2∩U
|D2F (∇u)D2u|2dx ≤ C,

which gives the desired inequality.
�

2.3. The proof of the localization Lemmas. We are now ready to prove the
localization Lemmas, using the Caccioppoli-type inequalities above and the fact
that our problem is two dimensional.

Proof of Lemma 2.1. Let δ > 0 and assume that there exist x0, x1 ∈ Bδ such
that

∇u(x0) · e ≤ c0, ∇u(x1) · e ≥ c1.
Then, by the maximum principle

{∇u · e ≤ c0} ∩ ∂Br 6= ∅,
{∇u · e ≥ c1} ∩ ∂Br 6= ∅,

for all r, with δ ≤ r ≤ 1/2. Let

xr0 ∈ {∇u · e ≤ c0} ∩ ∂Br, xr1 ∈ {∇u · e ≥ c1} ∩ ∂Br
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for all δ ≤ r ≤ 1/2. Then, if G is the function defined in (2.11), we have

(2.26) 1 = G(ue(xr1))−G(ue(xr0)) ≤
ˆ

∂Br(xr0,x
r
1)

|∇(G(ue))|ds.

Applying Cauchy-Schwartz we obtain

(2.27)
ˆ

∂Br(xr0,x
r
1)

|∇(G(ue))|2ds ≥ 1
2πr

.

Thus,

(2.28)
ˆ 1/2

δ

ˆ

∂Br(xr0,x
r
1)

|∇(G(ue))|2dsdr ≥ 1
2π

ˆ 1/2

δ

1
r
dr =

1
2π

ln
1
2δ
.

Hence,

(2.29)
ˆ

B1/2

|∇(G(ue))|2dx ≥ 1
2π

ln
1
2δ
,

which for δ sufficiently small depending on c0, c1, λ,M, ‖∇F‖L∞(BM ), contradicts
the inequality (2.13).

�

Proof of Lemma 2.2. Let δ > 0 and assume that there exist x0, x1 ∈ Bδ such
that

∇u(x0) · e ≤ c̃, ∇u(x1) · e ≥ c̃+ ε.

Then, as in the previous lemma, for all r with δ ≤ r ≤ 1/2 there are points
xr0, x

r
1 ∈ ∂Br such that

xr0 ∈ {∇u · e ≤ c̃}, xr1 ∈ {∇u · e ≥ c̃+ ε}.
Denote by

H := ∇F ({p · e ≤ c̃})
H := ∇F ({p · e ≥ c̃+ ε}).

Set w = ∇F (∇u), then w maps xr0 and xr1 respectively in H and H.
Now, since F is strictly convex, there exists η = η(ε) > 0 depending on ωF such

that
|p1 − p2| ≥ ε⇒ |∇F (p1)−∇F (p2)| ≥ 2η.

Let G be a smooth function on R2 with |∇G| ≤ 1 such that

G(p) =

{
0 p ∈ H,
η p ∈ H.

Notice that G can be obtained by a mollification of min{η, (dist(p,H)− γ)+}, with
γ small.

Then, we have

(2.30) η = G(w(xr1))− G(w(xr0)) ≤
ˆ

∂Br(xr0,x
r
1)

|∇(G(w))|ds.

Arguing as in the proof of the previous Proposition (see computations following
(2.26)), we get

(2.31)
ˆ

B1/2

|∇(G(w))|2dx ≥ η

2π
ln

1
2δ
.
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However,

ˆ

B1/2

|∇(G(w))|2dx ≤
ˆ

B1/2

|∇G|2|∇w|2dx ≤
ˆ

B1/2∩(∇u)−1(Se(c̃,c̃+ε))

|∇w|2dx.
(2.32)

Therefore, combining (2.31) with (2.32), we obtain a contradiction to (2.20) as long
as δ is sufficiently small.

�

2.4. The proof of Theorem 1.1. We wish to prove the following claim:

∀ε > 0, ∃δ > 0, δ = δ(ε, ωF , Oλ, VΛ,M, ‖∇F‖L∞(BM )) such that diam{∇u(Bδ)} ≤ ε
for any minimizer u to I(u).

Since Oλ, VΛ are open sets covering BM , there exists ε∗ > 0 such that any ball
Bε∗(p) ⊂ B2M is either contained in Oλ or in VΛ.
Now, let ε < ε∗ and let PN be an N -th regular polygon with sides of length ε/2,
such that

BM ⊂ PN ⊂ B2M .

Thus N = N(ε,M). Denote by pi the vertices of PN , and let Ti be the triangle with
vertices pi, pi+1 and pi+2, i = 1, . . . N(pN+1 = p1, pN+2 = p2). Since the length of
the sides of PN is ε/2, clearly Ti is included in a ball Bε∗(p) ⊂ B2M . Thus,

either Ti ⊂ Oλ or Ti ⊂ VΛ.

Without loss of generality we can assume that for some i = 1, . . . , N,

(2.33) Ti ∩∇u(B1) 6= ∅,
otherwise we can work with the polygon PN \

⋃
i Ti. Let [p, q] be the closed segment

joining two points p and q. Denote by mi the middle point of the segments [pi, pi+1].
Also let ei be the direction such that

[pi, pi+2] ⊂ {p · ei = li}, [mi,mi+1] ⊂ {p · ei = li + γ},
for some li, γ, with 0 < γ < ε/2. Then according to either Lemma 2.1 or Lemma
2.2 we have that either

(2.34) ∇u(Bδ) ⊂ H−(ei, li + γ),

or

(2.35) ∇u(Bδ) ⊂ H+(ei, li),

for some δ = δ(ε, λ,Λ, ωF ,M, ‖∇F‖L∞(BM )).
If the latter holds then immediately diam{∇u(Bδ)} ≤ ε as desired.

Assume that (2.35) does not hold for any choice of i. Then, according to (2.34)
we have that

∇u(BδN ) ⊂ P̃N
where P̃N is the polygon with vertices the middle points mi, i = 1, . . . , N. Now,
we repeat this argument with P̃N instead of PN and iterate this a finite number of
times till we obtain a polygon of diameter smaller than ε.

�
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3. The proof of Theorem 1.2

As in the previous Section, let F : R2 → R be a smooth strictly convex function,
and denote by O1/n an increasing sequence of open sets such that

O1/n ⊂ {p ∈ R2, D2F (p) >
1
n
I}.

Recall that,

I(u) =
ˆ

B1

F (∇u)dx.

In this Section we prove the following a priori estimate.

Theorem 1.2. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤M. Assume that
BM \

⋃
O1/n is a finite set. Then in B1/2, ∇u has a uniform modulus of continuity

depending on the sets O1/n, M and ‖∇F‖L∞(BM ).

The proof of Theorem 1.2 follows the same strategy as the proof of Theorem 1.1.
Precisely, we determine a localization Lemma which allows us to apply an iteration
argument and obtain the desired modulus of continuity.

Here is the statement of the localization Lemma.

Lemma 3.1. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤M. Assume that

(3.1) ∇u(B1) ∩ Bρ(p0) = ∅, B4ρ(p0) ∩ BM ⊂ O1/n.

Then, there exists δ > 0 depending on n,M, ρ, ‖∇F‖L∞(BM ), such that either

(3.2) ∇u(Bδ) ⊂ B4ρ(p0)

or

(3.3) ∇u(Bδ) ∩ B3ρ(p0) = ∅.
In order to prove Lemma 3.1, we use the following preliminary Lemma.

Lemma 3.2. Let u be a minimizer to I(u) in B2 such that

(3.4) ∇u(B1) ∩ Bε(p0) = ∅, ∇u(∂B1) ∩ Bδ(p0) = ∅,
with 0 < ε < δ. Then,

∇u(B1) ∩ Bδ(p0) = ∅.
Proof. For simplicity, we take p0 = 0.

In formula (2.10), let us choose e = ek and as test function φ = ηk(∇u), with η
being 0 outside the ball Bδ. Notice that φ is an admissible test function in view of
our hypothesis. We obtain,

ˆ

B1

Fij(∇u)ukj(ηk(∇u))idx = 0.

Hence differentiating and then summing over all k’s, we get

(3.5)
ˆ

B1

Tr(D2FD2uD2ηD2u)dx = 0.
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To estimate the integrand above, we use the characteristic polynomial equation
for a 2× 2 matrix,

(3.6) A2 − (TrA)A+ (detA)I = 0.

In particular,

(3.7) TrA = 0⇒ A2 = −(detA)I.

Thus, since u solves (2.9), we can apply this identity to A = D2FD2u to obtain,

Tr(D2FD2uD2ηD2u) = Tr((D2FD2u)2D2η(D2F )−1)(3.8)

= detD2F |detD2u|Tr((D2F )−1D2η)

where in the first equality we used that

Tr(AB) = Tr(BA).

We choose η so that

Tr((D2F )−1D2η) > 0 in Bδ \ Bε/2.
For example, for δ = 1

η(p) =

{
e−k|p| − ke−k|p|+ (k − 1)e−k |p| ≤ 1,
0 |p| > 1,

with k a large enough constant depending on the ellipticity constants for D2F on
Bδ. Combining (3.5) with (3.8), we get that

(3.9) detD2u = 0, on (∇u)−1(Bδ \ Bε/2) ∩B1.

Since u solves the Euler-Lagrange equation we obtain that D2u = 0 and ∇u is
constant on the set above. Hence this set is both open and closed in B1, therefore
it is either empty (and we are done) or it coincides with B1. In the latter case, we
conclude by continuity that also ∇u(∂B1) ∩ Bδ 6= ∅ and we reach a contradiction.

�
Next we obtain a Caccioppoli-type inequality.

Proposition 3.3. Let u be a minimizer to I(u) with ‖∇u‖L∞(B1) ≤M. Then,

(3.10)
ˆ

B1/2∩(∇u)−1(O1/n)

|D2u|2dx ≤ C

for some constant C depending on n,M, ‖∇F‖L∞(BM ).

Proof. In formula (2.10), let us choose e = ek and as test function φ = ξ2Fk(∇u),
with ξ ∈ C∞0 (B1), 0 ≤ ξ ≤ 1 and ξ ≡ 1 on B1/2. We obtain, after summing over all
k’s,

(3.11)
ˆ

B1

Fij(∇u)ukjξ2(Fk(∇u))idx = −2
ˆ

B1

Fij(∇u)ukjξξiFk(∇u)dx.

Now we analyze the left-hand side of (3.11). We use again (3.7) for A = D2FD2u
and we obtain

LHS =
ˆ

B1

Fij(∇u)ukjξ2Fkl(∇u)ulidx =
ˆ

B1

ξ2Tr((D2FD2u)2)dx

= 2
ˆ

B1

ξ2(detD2F )|detD2u|dx.
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Moreover, again using (3.7) we have that

|D2u|2 ≤ |(D2F )−1|2|D2FD2u|2 = |(D2F )−1|2|det(D2FD2u)|
and hence,

detD2F |detD2u| ≥ c|D2u|2 on (∇u)−1(O1/n),
for some constant c depending on n. Thus,

(3.12) LHS ≥ c
ˆ

B1/2∩(∇u)−1(O1/n)

|D2u|2dx

with c depending on n.
On the other hand, using integration by parts together with the Euler-Lagrange

equation ∂k(Fk(∇u)) = 0, we have that the right-hand side of (3.11) is given by

RHS = −2
ˆ

B1

∂k(Fj(∇u))ξξiFk(∇u)dx

= 2
ˆ

B1

Fj(∇u)∂k(ξξi)Fk(∇u)dx,

and hence

(3.13) |RHS| ≤ C
with C depending on ‖∇F‖L∞(BM ). Combining (3.11),(3.12) and (3.13) we obtain
the desired claim.

�

Finally, we are ready to exhibit the proof of the localization Lemma 3.1.

Proof of Lemma 3.1. Let δ > 0 and assume that there exist x0, x1 ∈ Bδ such
that

|∇u(x0)− p0| ≥ 4ρ, |∇u(x1)− p0| < 3ρ.
Then, by the maximum principle for each δ ≤ r ≤ 1/2 there exists a point xr0 ∈ ∂Br
such that

|∇u(xr0)− p0| ≥ 4ρ.
Also, from Lemma 3.2, for each δ ≤ r ≤ 1/2 there exists a point xr1 ∈ ∂Br such
that

|∇u(xr1)− p0| < 3ρ.
Let G be a smooth function on R2 with |∇G| ≤ 1/ρ such that

G(p) =

{
0 |p− p0| ≥ 4ρ,
1 |p− p0| ≤ 3ρ.

We proceed as in Lemma 2.2 to obtain,

(3.14)
ˆ

B1/2

|∇(G(∇u))|2dx ≥ 1
2π

ln
1
2δ
.

However, since B4ρ(p0) ∩ BM ⊂ O1/n, by the definition of G we get

ˆ

B1/2

|∇(G(∇u))|2dx ≤
ˆ

B1/2

|∇G|2|D2u|2dx ≤ 1
ρ2

ˆ

B1/2∩(∇u)−1(O1/n)

|D2u|2dx.
(3.15)
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Therefore, combining (3.14) with (3.15), we obtain a contradiction to the Cacciop-
poli inequality (3.10) as long as δ is sufficiently small.

�

We now combine all the ingredients above and provide the proof of Theorem 1.2.

Proof of Theorem 1.2. We wish to prove the following claim:

∀ε > 0, ∃δ > 0, δ = δ(ε,O1/n,M, ‖∇F‖L∞(BM )) such that diam{∇u(Bδ)} ≤ ε
for any minimizer u to I(u).

Fix ε > 0. Let BM \
⋃
O1/n = {q1, . . . , qm}. We cover the set B2M \

⋃m
i=1 B5ρ(qi)

with a finite number of balls Bkρ of radius ρ, with ρ small, say ρ = ε/5. Notice that
Bk4ρ ∩ BM ⊂ O1/n, for a large n.

Clearly, since ∇u(B1) ⊂ BM , then ∇u(B1) ∩ Bkρ = ∅, for some Bkρ ⊂ B2M \ BM .
Then, according to Lemma 3.1 we have that either

(3.16) ∇u(Bδ) ⊂ Bk4ρ
or

(3.17) ∇u(Bδ) ∩ Bk3ρ = ∅,
for some δ > 0. If (3.16) occurs, then we reached our conclusion. Otherwise, if
(3.17) occurs, we conclude that ∇u(Bδ)∩Bjρ = ∅, for all Bjρ such that Bjρ ∩Bkρ 6= ∅.
Hence we can apply again Lemma 3.1 to the balls Bjρ. We iterate this argument. If
at some step we reach the conclusion (3.16), then we are done. If at each step we
reach the conclusion (3.17), then after a finite number of steps (because our balls
cover a connected domain) we obtain that for some small δ̃, ∇u(Bδ̃) ∩ Bkρ = ∅ for
all k. Since ∇u(Bδ̃) is connected, we conclude that ∇u(Bδ̃) ⊂ B5ρ(qi) for some i.
Again we reach the desired conclusion.

�

4. A degenerate obstacle problem

4.1. The statement of the problem and preliminaries. Let N be a convex
(open) polygon in R2 with n vertices {p1, . . . , pn} = P (also, set pn+1 = p1.)
Let [p, q] be the closed segment joining two points p and q and let (p, q) be the
open segment joining them. Denote by νi the direction perpendicular to the side
[pi, pi+1], i = 1, . . . , n. Finally, let Q = {q1, . . . , qm} be a finite subset of N .

Let F : N → R be a convex function such that
(i) F ∈ C2(N \ Q), D2F > 0 on N \ Q;

(ii) F is bounded.
Let Ω ⊂ R2 be a bounded Lipschitz domain, and let ϕ : ∂Ω → R be a function

that admits an extension ϕ̃ with ∇ϕ̃ ∈ N.
We consider the following problem (P ): minimize the functional

I(u) =
ˆ

Ω

F (∇u)dx,

among all Lipschitz competitors u, with u = ϕ on ∂Ω,∇u ∈ N (we think of F to
be equal to +∞ outside N .)
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Denote by,

ϕ = inf{v : v = ϕ on ∂Ω,∇v ∈ N};

ϕ = sup{v : v = ϕ on ∂Ω,∇v ∈ N}.
We refer to ϕ,ϕ as to respectively, the lower obstacle and upper obstacle.

Also, in what follows we want to distinguish when gradients are close or not to
∂N . One way of doing this is to consider the compactification of N with one point.
We adopt a slightly different approach by introducing the following function

(4.1) H : N → S2

such that, H is continuous, ∂N is mapped to a point, and H is a homeomorphism
between N and H(N). DEFINE H OUTSIDE N.

Remark. Notice that our minimization problem is equivalent to the following
obstacle problem: minimizing

Ĩ(u) =
ˆ

Ω

F̃ (∇u)dx,

among all competitors v such that ϕ ≤ v ≤ ϕ, with F̃ a convex extension of F
outside N .

�

4.2. The main results. We state now our main results. Let u be the unique
minimizer to the problem (P ).

Our first main result says that the minimizers are C1 in Ω except on a number
of segments which have an end point on ∂Ω and have directions perpendicular to
the sides of N . On these segments the minimizer coincides with one of the lower
or upper obstacle.

Theorem 1.3. If ∇u is discontinuous at x0 ∈ Ω, then there exists a direction
νi perpendicular to one of the sides [pi, pi+1] such that u is linear on a segment of
direction νi connecting x0 and ∂Ω. Precisely, there exists x1 = x0 + t1νi ∈ ∂Ω such
that

u(x) = u(x0) + pi · (x− x0), for all x ∈ [x0, x1] ⊂ Ω.

In particular, u ∈ C1 away from the obstacles.

Our second main result says that if a sequence of points converges to a point of
non-differentiability of u then their corresponding gradients approach ∂N . Let H
be as in (4.1); the precise statement of our result reads as follows.

Theorem 4.1. H(∇u) is continuous in Ω.

Minimizers of (P ) may develop “flat” regions where they are linear and their
gradient belongs to the set of vertices of N . The next theorem describes the shape
of these regions.

Theorem 4.2. Let pi be a vertex of N and let ωi be a direction so that

ωi · (p− pi) > 0 ∀p ∈ N \ {pi}.
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Let S be the interior of the set {u(x) = c + pi · x} and assume that S 6= ∅. Then,
∂S ∩Ω consists of a convex graph (by above) and a concave graph (by below)in the
ωi direction.

Finally, the next two results deal with the case when u is a perturbation of a
linear function. They will be used in the proof of our main Theorem 1.3.

Theorem 4.3. Assume B1 ⊂ Ω and

Bδ(p0) ⊂ N.
Then, there exists ε depending on δ, p0, F, such that if

|u− p0 · x| ≤ ε, x ∈ B1

then u ∈ C1(B1/2) and
∇u(B1/2) ⊂ Bδ(p0).

Theorem 4.4. Assume B1 ⊂ Ω and let p0 ∈ ∂N. Then, there exists ε depending
on δ, F , such that if

|u− p0 · x| ≤ ε, x ∈ B1

then
[∇u(x), p0] is in a δ-neighborhood of ∂N , for a.e x ∈ B1/2.

We finish this Section by showing that minimizers to the problem (P ) are unique.
We use the abbreviation L.P. for Lebesgue point.

Proposition 4.5. The minimization problem (P ) admits a unique solution.

Proof. Let u1, u2 be two distinct solutions. By the convexity of F , we have that
(u1 + u2)/2 is also a solution and

F (∇u1) + F (∇u2)
2

= F (
∇u1 +∇u2

2
), a.e. in Ω.

Hence, since F is strictly convex in N , we have that if x is a L.P. for ∇u1 and ∇u2

then either

(4.2) ∇u1(x) = ∇u2(x)

or

(4.3) ∇u1(x),∇u2(x) ∈ [pi, pi+1], for some i = 1, . . . , n.

Now, let us assume by contradiction that u1(0) > u2(0), 0 ∈ Ω, say u1(0) −
u2(0) = ε. Then, since u1, u2 are Lipschitz and they coincide on the boundary,
there exists ρ = cε such that if |τ | < ρ, then

Bρ ⊂ {u2(x+ τ) + ε/2 < u1} ⊂⊂ Ω.

The minimality of u2(x+ τ) together with the inclusion above imply that

vτ (x) = min{u1(x), u2(x+ τ) + ε/2}
is also a minimizer of the problem (P ).

Thus, if x1 ∈ Bρ/2 is a L.P. for ∇u1 and x2 ∈ Bρ/2 is a L.P. for ∇u2, we can
translate x2 by τ to coincide with x1, so that x1 is a L.P. for vτ and according to
(4.2)-(4.3) we have either

(4.4) ∇u1(x1) = ∇u2(x2)
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or

(4.5) ∇u1(x1),∇u2(x2) ∈ [pi, pi+1], for some i = 1, . . . , n.

Similarly, by appropriate translations we obtain that if x1 ∈ Bρ/2 is a L.P. for
∇u1 and x2, x3, x4 ∈ Bρ/2 are L.P. for ∇u2 then

F (
1
4

(∇u1(x1) +∇u2(x2) +∇u2(x3) +∇u2(x4)))

=
1
4

(F (∇u1(x1)) + F (∇u2(x2)) + F (∇u2(x3)) + F (∇u2(x4))).

Hence

(4.6) ∇u1(x1),∇u2(x2),∇u2(x3),∇u2(x4) are collinear.

We distinguish two cases.

Case 1. There exists at least one L.P. x ∈ Bρ/2 for either ∇u1 or ∇u2 such
that p = ∇ui(x) ∈ N . Then, we conclude that ∇u1 = ∇u2 = p in Bρ/2. Hence
u1 − u2 = ε on Bρ/2. Now we can proceed as above with 0 replaced by any point
in Bρ/2. By iterating this argument a finite number of times we conclude that
{u1 − u2 = ε} must coincide with Ω. This contradicts that u1 = u2 on ∂Ω.

Case 2. All Lebesgue points x ∈ Bρ/2 for ∇ui, i = 1, 2 are mapped on ∂N .
First we claim that all Lebesgue points x ∈ Bρ/2 for ∇ui, i = 1, 2 are mapped

on the same side. Indeed, according to (4.6) any three such points for ∇u2 are
collinear. The claim follows by interchanging u2 and u1.

Thus all Lebesgue points of ∇u1,∇u2 in Bρ/2 must lie on the same side, say
[p1, p2]. Therefore u1 − u2 is constant ε in Bρ/2 on the segment with middle point
at zero, in the direction perpendicular to [p1, p2]. This implies that the function
ν · x cannot achieve a maximum (minimum) on the set {u1 − u2 = ε}, where ν
is a direction which differs from any of the perpendicular directions to the sides
[pi, pi+1]. This contradicts that Ω is bounded.

�

5. The approximation.

Let F be a convex function on R2, F = 0 on N , F (p) = |p|3 for |p| large,
F ∈ C∞(R2 \N) with D2F > 0 on R2 \N .

Let Fm ∈ C∞(R2) with D2Fm > 0, be such that

(i) Fm → F uniformly on N ;
(ii) D2Fm → D2F uniformly on compacts on N \ Q;
(iii) Fm(p) = CmF in Dm := {p ∈ R2|F (p) > 1/m}, with Cm → +∞.

Let um be the minimizer to ˆ

Ω

Fm(∇v)dx

among all competitors v = ϕ on ∂Ω. Here ϕ is the boundary data for the minimizer
u of the problem (P ).
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We will show that the um’s are a smooth approximation u. Using the lower
obstacle ϕ as competitor, we see that

´
Ω
Fm(∇um)dx is bounded above by a fixed

constant. Hence, since Cm > 1 we concludeˆ

Ω

|∇um|3dx ≤ C.

By Sobolev embedding theorem we have that um is uniformly Holder continuous
in Ω. Thus, by Ascoli-Arzela (a subsequence of) um converges uniformly on Ω to a
function u. First we show the following Proposition (recall the definition (4.1) of
H from the previous Section).

Proposition 5.1. u is the minimizer to the problem (P ). Also

∇um → ∇u in measure on A := {x|x is a L.P. for ∇u and ∇u(x) ∈ N},
and

H(∇um)→ H(∇u) in measure on Ω.

Proof. Let v be a function on Ω, v = ϕ on ∂Ω and ∇v ∈ N. Let F̃ be a convex
function on R2 with bounded gradient, which approximates F in N . Then

ˆ

Ω

F (∇v)dx ≥
ˆ

Ω

Fm(∇v)dx− ε ≥
ˆ

Ω

Fm(∇um)dx− ε ≥
ˆ

Ω

F̃ (∇um)dx− 2ε

≥
ˆ

Ω

(F̃ (∇u) +∇F̃ (∇u)(∇um −∇u) + ω eF (∇u,∇um −∇u))dx− 2ε,

with ω eF ≥ 0 the modulus of convexity of F̃ . Using that ∇um → ∇u weakly in L3,
we conclude that ˆ

Ω

F (∇v)dx ≥
ˆ

Ω

F̃ (∇u)dx− 2ε.

Since F̃ is arbitrary outside N , we deduce that ∇u ∈ N and u is the minimizer of
the problem (P ).

Since F is strictly convex in N andˆ

Ω

ω eF (∇u,∇um −∇u)dx→ 0, m→∞

we also obtain that ∇um converges in measure to ∇u in A, and H(∇um) converges
in measure to H(∇u).

�
We continue with the following Proposition.

Proposition 5.2. um ∈ C∞(Ω). Also, for any compact K ⊂ Ω and δ > 0,
∇um(K) is in a δ-neighborhood of N for m large enough.

Proof. Using the lower (or upper) obstacle ϕ as competitor, we see that
´

Ω
Fm(∇um)dx

is bounded above by a fixed constant. Hence,

(5.1)
ˆ

Ω

F (∇um)dx→ 0, as m→ +∞.

For notational simplicity we denote Fm = F̃ and um = ũ. We have
ˆ

Ω

F̃ij(∇ũ)ũkjφidx = 0, ∀φ ∈ C∞0 (Ω).
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In this formula, let us choose φ = ξ2η(∇ũ)ηk(∇ũ), with η a convex function, η = 0
outside Dm0 for some fixed m0, η(p) = |p| for large |p|, and ξ ∈ C∞0 (Ω).

If m > m0 we have, (for notational simplicity we drop the dependence on ∇ũ)

(5.2)
ˆ

Ω

F̃ij ũkjξ
2(ηηk)idx = −2

ˆ

Ω

F̃ij ũkjξξiηηkdx.

Since η is convex,
F̃ij ũkjηklũli ≥ 0.

Also, in Dm0 we have

λm0(1 + η)I ≤ D2F̃ ≤ Λm0(1 + η)I.

Combining these facts with (5.2) we deduce that the function ψ = η3/2 + η satisfies
the following Caccioppoli-type inequality,

(5.3)
ˆ

Ω

|∇ψ|2ξ2 ≤ C(m0)
ˆ

Ω

ψ2|∇ξ|2.

By the classical theory we get that for any compact K ⊂ Ω,

‖ψ(∇um)‖L∞(K) ≤ C(m0,K)‖ψ(∇um)‖L2(Ω) ≤ C(m0,K)(
ˆ

Ω

F (∇um)dx)1/2.

In the set where∇um is bounded above we obtain that um ∈ C∞ by the standard
theory. The second part follows from (5.1) (recall that ψ ≡ 0 on Dm0).

�

Remark. The smoothness of um follows also from the fact that um solves a
uniformly elliptic equation in 2D, therefore um is C1,α in the interior and hence it
is C∞.

�
Our analysis will rely on the following classical theorem that was also used in

other two dimensional results (see for example [GT], [H], [S]).

Theorem 5.3. Let v be a solution to

aij(x)vij(x) = 0 in D ⊂ R2,

with A(x) = aij(x) > 0, A(x) ∈ C∞, and D simply connected. Assume v is not
linear. Then in each neighborhood U there exists a point xU such that each set

{v > lU}, {v < lU}
with

lU (x) := v(xU ) +∇v(xU ) · (x− xU )
has at least two connected components in D that intersect U . Moreover these com-
ponents are not compactly supported in D.

Proof. Let xU ∈ U be such that detD2v(xU ) < 0. Such a point exists otherwise if
detD2v = 0 in U , then D2v = 0 in U and by unique continuation v is linear in D.

Clearly, the sets {v > lU}, {v < lU} intersect a small ball around xU precisely in
four disjoint connected components.

On the other hand, it follows from the maximum principle that any connected
component of the sets {v > lU}, {v < lU} cannot be compactly supported in D.
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Hence, since D ⊂ R2 and D is simply connected, the components in the small ball
belong to four disjoint connected components in D.

�

6. The proof of Theorem 1.3.

In this Section we exhibit the proof of Theorem 1.3. We start by obtaining a
result to which we refer as to the localization Theorem. From now on we tacitly
assume that our statements hold for all m sufficiently large.

Theorem 6.1. Assume B1 ⊂ Ω and

(6.1) ∇um(B1) ∩ Bρ(p0) = ∅, p0 ∈ N.
Then for any ε > 0, there exists δ = δ(ε, F,Bρ(p0)) such that either

∇um(Bδ) ⊂ Bε(p), for some p ∈ N,
or

∇um(Bδ) ⊂ Nε
with Nε the ε neighborhood of ∂N.

Remark. Another way of stating the conclusion of this theorem is to say that
H(∇um) is continuous with a uniform modulus of continuity.

Also recall that ∇um → ∇u in measure, thus if the hypothesis of Theorem 6.1
holds for all large m’s, then u satisfies the same conclusion of the theorem.

�

Proof. Assume
∇um(B1) ∩ Br(p) = ∅, B4r(p) ⊂ N \ Q.

We wish to prove that there exists δ > 0 depending on F,Br(p), such that either

(6.2) ∇um(Bδ) ⊂ B4r(p),

or

(6.3) ∇um(Bδ) ∩ B3r(p) = ∅.
We argue similarly as for Lemma 3.1. It suffices to prove the following Caccioppoli-

type inequality,

(6.4)
ˆ

B1/2∩(∇um)−1(B4r(p))

|D2um|2dx ≤ C,

for some constant C depending on F,Br(p).
For notational simplicity, let Fm = F̃ and um = ũ. We have

(6.5)
ˆ

B1

F̃ij(∇ũ)ũkjφidx = 0, ∀φ ∈ C∞0 (B1).

Let us choose φ = ξ2ηk(∇ũ), with η compactly supported on B4r(p) and ξ ∈
C∞0 (B1), 0 ≤ ξ ≤ 1, ξ ≡ 1 on B1/2. We obtain, after summing over all k’s (when
clear, we drop the dependence on ∇ũ),

(6.6)
ˆ

B1

F̃ij ũkjξ
2(ηk(∇ũ))idx = −2

ˆ

B1

F̃ijukjξξiηkdx.
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Now we analyze the left-hand side of (6.6). We proceed as in Lemma 3.2 and we
obtain

LHS =
ˆ

B1

F̃ij ũkjξ
2ηklũlidx

=
ˆ

B1

ξ2(detD2F̃ )|detD2ũ|Tr((D2F̃ )−1D2η)dx.

Choose η such that

Tr((D2F̃ )−1D2η) ≥ c, on B4r(p) \ Br(p),
for a small constant c depending on the ellipticity constants of D2F on B4r(p), say
λ,Λ. We conclude

(6.7) LHS ≥ c
ˆ

B1∩(∇ũ)−1(B4r(p))

|D2ũ|2ξ2dx

with c depending on λ,Λ.
On the other hand, the right-hand side of (6.6) is bounded by

|RHS| ≤ γC
ˆ

B1∩(∇ũ)−1(B4r(p))

|D2ũ|2ξ2dx+ C̃(6.8)

with C depending on Λ. Combining (6.6),(6.7) and (6.8) we obtain the desired
inequality.

We now proceed similarly as in the proof of Theorem 1.2. We cover the set
N \ (Nε ∪Bε(qi)) as a finite union of balls Bkr of radius r = ε/5 (with centers in the
set). From our assumption, there exists k such that

∇um(B1) ∩ Bkr = ∅,
provided that ε is small enough depending on ρ, F . Now the conclusion follows
from the same iteration argument as in Theorem 1.2 (notice that by Proposition
5.2, ∇um(Bδ) is in an ε neighborhood of N for large m.)

�

6.1. The proof of Theorem 1.3. We now present a series of Propositions which
will all be combined towards the proof of Theorem 1.3. We start by stating two
Propositions for the approximation um which correspond to the flatness Theorems
4.3-4.4 for the minimizer u. We present their proofs in the last Section.

Proposition 6.2. Assume B1 ⊂ Ω and

Bδ(p0) ⊂ N.
Then, there exists ε depending on δ, p0, F, such that if

|um − p0 · x| ≤ ε, x ∈ B1

then
∇um(B1/2) ⊂ Bδ(p0).

Proposition 6.3. Let p0 ∈ ∂N. Then, there exists ε depending on δ, F , such that
if

|um − p0 · x| ≤ ε, x ∈ B1

then
[∇um(x), p0] is in a δ-neighborhood of ∂N , for all x ∈ B1/2.
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Next, we present another Proposition which will be used to prove Theorem 1.3,
and relies on the previous flatness results.

Proposition 6.4. Assume 0 ∈ (p1, p2) and e2 is normal to (p1, p2) and points
inside N . Let 0 ∈ [a1, a2] ⊂ (p1, p2) and assume that for each r > 0 and p ∈ [a1, a2],
there exists a sequence of m→∞ such that

∇um(Br) ∩ Br(p) 6= ∅.
Then u is constant on a segment of direction e2 connecting 0 and ∂Ω. Precisely,
there exists x̃ = se2 ∈ ∂Ω such that

u(x) = u(0), for all x ∈ [0, x̃] ⊂ Ω.

In order to prove Proposition 6.4 we will need the following Lemma.

Lemma 6.5. Assume 0 ∈ ∂N, e2 points inside N ,

R := {|x1| < δ, |x2| < 1} b Ω,

and

u(x) > 0, x ∈ R ∩ {x2 = 1}, u(x) < 0, x ∈ R ∩ {x2 = −1}, u(0) = 0.

Assume that for each r > 0, there exists a sequence of m→∞ such that

∇um(Br) ∩ Br(0) 6= ∅.
Then either the set

{u = 0} ∩ {x1 > 0}
or the set

{u = 0} ∩ {x1 < 0}
is given by the region between a convex graph (from above) and a concave graph
(from below) in the e2 direction.

Proof. The lemma holds trivially if u is linear. Assume u is not linear. Then, for
m large enough, also um is not linear. Then, by the assumptions together with
Theorem 5.3, we have that there exists xm → 0 with ∇um(xm)→ 0 such that the
set

{um < lm := um(xm) +∇um(xm) · (x− xm)}
has at least two distinct components in R. One of the components that does not
contain the segment R ∩ {x2 = −1} must intersect one of the lateral sides, say
x1 = δ (for infinitely many m’s.) Then we can find a polygonal line connecting any
neighborhood of xm with x1 = δ that is included in this component.

Now, for each t ∈ (0, δ] we define h(t), h(t) to be the points in R2 on the line
x1 = t such that

[h(t), h(t)] = {u = 0} ∩ {x1 = t},
(notice that u is increasing in the e2 direction.) Let c ∈ (a, b) ⊂ (0, δ].

Claim. The segment [h(a), h(b)] is above h(c) in the e2 direction.

Indeed, assume by contradiction that our claim does not hold. Then, there exists
a linear function l increasing in the e2 direction, such that

[h(a), h(b)] ⊂ {l < −1}, h(c) ∈ {l > 1}.
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Let Rab := {a < t < b, |x2| < 1}. Denote by Um the connected component of
{um < lm} in Rab that contains the segment Rab∩{x2 = −1}. We compare um and
lm + εl in the set Rab \ Um, with ε small enough depending on u and l. We have

u− εl > 0 on Rab ∩ {x2 = 1}
and

u− εl > 0 on {u ≥ −ε/2} ∩ ({x1 = a} ∪ {x1 = b}).
Notice that, since um → u, lm → 0 uniformly, we have that

{u < −ε/2} ∩Rab ⊂ Um
for all m large enough, thus

um − lm − εl > 0 on ∂Rab \ Um.

On the other hand, u is strictly negative on the segment {x1 = c} ∩ {l < 0} ∩Rab.
Thus this segment is included in Um, which implies that

um − lm − εl < 0 on ∂U ∩ {x1 = c} ∩Rab.
Hence the minimum of um− lm−εl in Rab \Um is negative and by the maximum

principle it occurs at some point x0 ∈ ∂Um ∩Rab. Thus,

(6.9) um − lm ≥ ε(l − l(x0)) in Rab \ Um.

Recall that there exists a polygonal line included in (Rab \Um)∩{um < lm} that
connects the lines x1 = a and x2 = b. Now the right-hand side of (6.9) is increasing
in the e2 direction and we obtain a contradiction at a point where x0 + se2, s ≥ 0
intersects this polygonal line. Thus the claim is proved.

Next we prove that h(t) is a convex curve and h(t) is a concave curve, if t > 0.
Indeed, let 0 < t1 < t2 ≤ δ, and let Q be the convex set generated by h(ti), h(ti), i =
1, 2. From the claim above we see that

Q ∩ [h(t), h(t)] 6= ∅, t1 ≤ t ≤ t2.
Thus,

u ≤ 0 on [h(t1), h(t2)].
Let l′ be the linear function that is 0 on the line passing through h(ti)−γe2, i = 1, 2
and has slope ε in the e2 direction. Clearly, if ε is small depending on u and γ,
then u ≤ l′ on the boundary of {t1 < x1 < t2, x2 ≥ −1} ∩ {l′ ≤ 0}. Hence the same
inequality is true in the interior. Thus

u < 0, below [h(t1), h(t2)]− γe2.

By letting γ tend to 0 and repeating the same argument from above, we find that
[h(t), h(t)] ⊂ Q.

�

Let [a1, a2] ⊂ (p1, p2) with e2 normal to (p1, p2) and pointing inside N .For all
p ∈ [a1, a2] with the property that for each r > 0 there exists a sequence of m→∞
such that

∇um(Br) ∩ Br(p) 6= ∅,
we define

(6.10) Cp := {u = p · x}.
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Assume that R := {|x1| < δ, |x2| < 1} ⊂ Ω with

u > 0 on R ∩ {x2 = 1}, u < 0, on R ∩ {x2 = −1}, u(0) = 0.

Then for each p ∈ [a1, a2], possibly by taking δ smaller, we also have

u(x) > p · x, on R ∩ {x2 = 1}, u(x) < p · x, on R ∩ {x2 = −1}.
Thus applying Lemma 6.5 (with the origin replaced by p) for each slope p as above,
either the set

C+
p := Cp ∩ {0 < x1 < δ}

or the set
C−p := Cp ∩ {0 < x1 < δ}

is given by the region between a convex function and a concave function. Let A+

(resp. A−) be the set of p ∈ [a1, a2] such C+
p (resp. C−p ) is given by such region.

With this notation, we state and prove the following Lemma which will be used
for the proof of Proposition 6.4.

Lemma 6.6. Let p ∈ A+ and α ∈ (0, δ). Then, for any neighborhoods V of
C+
p ∩ {x1 = α} and W of p, there exist a point x̃ ∈ V and m large such that
∇um(x̃) ∈W.
Proof. Without loss of generality we assume p = 0 ∈ A+. We refer to the proof of
the previous lemma. We can assume that um is not linear, otherwise the statement
is trivial. Let α ∈ (a, b) ⊂ (0, δ), and let us focus on the connected component Ũm
of {um < lm} which contains the polygonal line connecting x1 = a with x1 = b.
Since um → u, lm → 0 uniformly, we obtain that Ũm is in any neighborhood of Cp,
if m is large enough. Now, consider the function um − lm + 1

2 (x1 − α)2. Then the
minimum of this function in Ũm is negative and is achieved at an interior point x̃ .
The desired conclusion follows by taking the interval (a, b) sufficiently small.

�

We are now ready to exhibit the proof of Proposition 6.4.

Proof of Proposition 6.4. We take u(0) = 0 and use the notation of the previous
Lemmas. Assume by contradiction that {u = 0} does not contain either of the
segments in the direction e2 connecting 0 with ∂Ω. Then there exists δ small such
that R b Ω, u > 0 on R ∩ {x2 = 1} and u < 0 on R ∩ {x2 = −1}. Therefore, given
[a1, a2] ⊂ (p1, p2), we can define A+ and A− as above (see discussion before Lemma
6.6.)

Since A+ ∪ A− = [a1, a2], then there exists an open interval contained in either
A+ or A−, say (−ρe1, ρe1) ⊂ A+.

Now set
Dt := {u = te1 · x} ∩ {0 < x1 < δ}, −ρ < t < ρ.

Notice that if te1 ∈ A+ then Dt is exactly C+
te1 .

We claim that Dt is precisely the region between two segments with one end-
point on {x1 = 0} and the other on {x1 = δ}.

Indeed, let tne1 ∈ A+, tn ↑ t ∈ (−ρ, ρ), tn strictly increasing. Notice that, if
x1 > 0

(6.11) {u < tx1} =
⋃
n

{u < tnx1} =
⋃
n

{u ≤ tnx1}.
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Using that C+
tne1 is the region between a convex and a concave graph, we obtain

from (6.11)that ∂{u < tx1} ∩ {0 < x1 < δ} is both a concave and a convex graph.
This implies the claim.

Next, choose a point of differentiability x∗ for u in the open set

{−ρe1 · x < u < ρe1 · x} ∩ {0 < x1 < δ},
such that

(6.12) ∇u(x∗) · e2 > γ > 0.

Set p∗ = ∇u(x∗). Without loss of generality we can assume u(x∗) = 0 and
thus the set D0 consists of just one segment. Therefore, if tn ↑ 0, tn increasing,
tne1 ∈ A+, then

(6.13) C+
tne1 ∩ {e1 · (x− x∗) = 0} → x∗.

Since x∗ is a point of differentiability of u and um → u uniformly, we obtain that
for any ε > 0 we can find ρ,m such that

|um − p∗ · (x− x∗)| ≤ ερ in Bρ(x∗).

On the other hand from (6.13) together with Lemma 6.6, we can find a point
xm ∈ Bρ/2 such that

|∇um(xm)| ≤ γ/2.
Then, using (6.12) we see that the middle point of [∇um(xm), p∗] is outside a

γ/4 neighborhood of ∂N ∪{p∗} (provided that γ is chosen small enough depending
on N). This contradicts either Proposition 6.2 (if p∗ ∈ N) or Proposition 6.3 (if
p∗ ∈ ∂N), by choosing ε = ε(γ, p∗, N) sufficiently small.

�
Now, we are finally ready to present the proof of Theorem 1.3.

Proof of Theorem 1.3. For simplicity take x0 = 0. Assume that there are
no segments connecting 0 with ∂Ω as in the statement of the Theorem. We wish
to prove that given ρ > 0 there exists δ (depending also on u) small such that
diam(∇u(Bδ)) ≤ ρ.

By Proposition 6.4 for each side [pi, pi+1] and each subinterval (ai, ai+1) ⊂
[pi, pi+1] there exist a point a ∈ (ai, ai+1) and r > 0 such that

∇um(Br) ∩ Br(a) = ∅.
Clearly we can find ε > 0 and points ak ∈ ∂N such that any ball Bρ/2(p) centered

at p ∈ ∂N contains one of the balls Bε(ak) and

∇um(Bε) ∩ Bε(ak) = ∅.
We cover the open set

O = {x ∈ N |dist(x, ∂N) > ε/2}
with a finite number of balls of radius ε/10 centered in the set. According to the
localization Theorem 6.1, if δ is small enough depending only on F, ε and say Bε(a1)
we find that either

(6.14) diam(∇um(Bδ)) ≤ ε/5
or

(6.15) ∇um(Bδ) ∩O = ∅.
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In the latter case we know from Proposition 5.2 that for m large enough

(6.16) ∇um(Bδ) is included in a ε/2-neighborhood of N.

Since ∇um(Bδ) is connected, we conclude from the choice of ε, (6.15) and (6.16)
that

diam(∇um(Bδ)) ≤ ρ.
The conclusion follows by letting m→∞.

�
We conclude this Section with the proof of Theorem 4.2.

Proof of Theorem 4.2. For simplicity assume pi = 0, c = 0 and ω = e2. Since
u is increasing in a cone of directions around e2 we conclude that S is between
two Lipschitz graphs in the e2 direction. Assume by contradiction that the lower
graph is not concave. Then we can find two points z1, z2 such that u(zi) < 0 and
the segment [z1, z2] is tangent from below to S. Let l be the linear function which
vanishes at the points zi + εe2 with ∇l · e2 = ε. We compare u and l in the set
{x ·z1 < x1 < x ·z2}∩{l < 0}∩Ω. If ε is small enough then u ≤ l on the boundary,
hence u ≤ l in this set. This implies that S is above the segment [z1, z2] + εe2 and
we contradict the fact that [z1, z2] was tangent to S.

�

7. The proof of Theorem 4.1

We distinguish two cases, when the polygon N has n ≥ 4 vertices and when it
has only n = 3 vertices. The latter is more involved and we only present a sketch
of the proof.

Lemma 7.1. Assume N has more that 3 vertices. Then H(∇u) is continuous.

Proof. If H(∇u) is not continuous at the origin, then for each side [pi, pi+1] there
exists a segment of direction νi perpendicular to that side, starting from the origin
and ending at xi ∈ ∂Ω such that u(x) = u(0) + pi · x,∈ [0, xi]. This follows from
the localization Theorem and from Proposition 6.4.

For simplicity of exposition, assume that

p1 = |p1|(− cos θ, sin θ), p2 = 0, p3 = |p3|(cos θ, sin θ), θ ∈ (0, π/2).

Recall that in our notation νi is either of the two directions perpendicular to
[pi, pi+1]. Let us choose ν1, ν2 pointing inside N , that is

ν1 = (sin θ, cos θ), ν2 = (− sin θ, cos θ).

Assume u(0) = 0, then u = 0 on two segments starting at 0 of directions ±ν1

and ±ν2 respectively. Denote by ϑ2 the closed angle (smaller than π) generated by
these two directions. We wish to prove that

(7.1) lim
x→0,x∈ϑ2

H(∇u) = H(0),

and moreover that no segment of direction νj , j 6= 1, 2 along which u = pj · x can
intersect the angle ϑ2.

We distinguish two cases.
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Case 1. u = 0 along segments of directions νi, i = 1, 2 (or analogously −νi,
i = 1, 2.)

Since ∇u ∈ N , then u is increasing in the cone of directions in ϑ2, thus u ≥ 0 in
ϑ2. We also have that u− p1 ·x is increasing in the direction (sin(θ+ δ), cos(θ+ δ))
with δ > 0 small depending on N . This implies that near the origin in ϑ2 we have
that u ≤ p1 · x, and analogously u ≤ p3 · x. Thus, in Bρ ∩ ϑ2 we have

0 ≤ u ≤ min{p1 · x, p3 · x}.
We use the hypothesis n ≥ 4 to prove that no segment of direction νj , j 6= 1, 2 in

which u = pj ·x can intersect the angle ϑ2. Indeed, in this angle near the origin we
have u ≤ p ·x for all p ∈ [p1, p3] and also p ·x > 0 when p ∈ (p1, p3). If u = pj ·x on
a segment in the interior of the angle ϑ2 then we reach a contradiction since there
exists 0 < λ < 1 such that λpj ∈ (p1, p3) and on this segment u > λpj · x ≥ u.

In Bρ we consider the function ũ such that ũ = u in the angle ϑ2 and ũ = 0
outside this angle. Then, ũ is a minimizer for I in Bρ. This follows from the fact
that the gradient of the minimizer with boundary data ũ on ∂Bρ belongs to N and
therefore the minimizer must be bounded by 0 from below and by max{pi ·x, 0}, i =
1, 3 from above.

Clearly if j ≥ 3, then pj · νj 6= 0 while ũ = 0 outside the angle ϑ2. This implies
that ũ 6= pj ·x, on a segment of direction νj . Thus we conclude from the localization
Theorem and from Proposition 6.4 that H(∇ũ) is continuous and

lim
x→0,x∈ϑ2

H(∇u) = lim
x→0

H(∇ũ) = H(0).

Case 2. u = 0 along segments of directions ν1, and −ν2 (or analogously −ν1, ν2.)
Then u = 0 in Bρ ∩ ϑ2 and (7.1) clearly holds. Also, as in the conclusion of the

previous case no segment of direction νj , j ≥ 3 in which u = pj ·x can intersect ϑ2.

Since the angles generated by consecutive directions cannot overlap, they must
cover a neighborhood of the origin and the lemma is proved.

�

Lemma 7.2. If N has three sides, H(∇u) is continuous.

Sketch of the proof. We use the same notation as in the previous proof. The only
case that does not follow from a similar analysis as before, is when u is linear
on segments of directions ν1, ν2 and −ν3 (νi points inside N). More precisely,
u = min{p1 ·x, p3 ·x} in B1 ∩ϑ2, and u ≤ 0 outside ϑ2. We can also assume that u
is not linear in the direction of ν3. We can assume further that u is not linear on
the segments of direction −ν1 (or −ν2). Otherwise, as in the proof of the previous
Lemma, we can construct another minimizer ũ = min{u, p1 · x} which coincides
with u on {p1 · x ≤ 0}. The continuity of H(∇ũ) (and hence of H(∇u)) follows as
in the case n ≥ 4.

In the remaining case we wish to prove that the assumption (6.1) of the local-
ization Theorem holds, hence the Lemma follows.

First, suppose that there exists a direction p ∈ (p1, p3) and a rectangle

(7.2) Rab = {a < x1 < b, |x2| < 1/2}, 0 ∈ (a, b) ⊂ [−1/2, 1/2]

such that

(7.3) u < 0 on ∂Rab ∩ {p · x ≤ 0}.
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Then, for small ε (depending on u) any linear function l with

∇l ∈ Bε2(εp), |l(0)| ≤ ε2

has the property that {u < l} ∩ ∂Rab consists of one connected component. This
implies that if we approximate u in Rab by functions um (um = u on ∂Rab), then

∇um(Bε3) ∩ Bε2(εp) = ∅,
otherwise we contradict Theorem .... Hence the Lemma follows from the localization
Theorem.

The only case when we cannot find one pair p, (a, b) satisfying (7.2)-(7.3), is when
u = 0 in Bρ (ρ small depending on u) above a line passing through the origin and
below the angle ϑ2 (recall that u is increasing in the e2 direction). After a dilation,
assume ρ = 1. Therefore, we can assume that

0 ≥ u ≥ p̃ · x, in B− := B1 ∩ {p̃ · x ≤ 0},
for some p̃ ∈ (p1, p3).

Now one can obtain a localization Theorem in B− around the origin, even tough
0 is a boundary point. Indeed, let um be the approximation for u in B− (um = u
on ∂B−). Then ∇um(x) ∈ [0, p̃] for all x ∈ ∂B− ∩{p̃ · x = 0}. Thus, we can obtain
a Caccioppoli-type inequality at the boundary as in the proof of the localization
Theorem, as long as the function η in formula (6.6) (the domain of integration
is now B−) is 0 on the segment [0, p̃] and ξ ∈ C∞0 (B1). This implies that the
iteration argument in the proof of the localization Theorem is valid provided that
Bk4r ∩ [0, p̃] = ∅.

Also, a boundary version of Proposition 6.4 holds because the “thin” connected
components of {um < lm} cannot intersect p̃ · x = 0. More precisely, given ai ∈
∂N \ {p̃}, one can show that there exists r depending on u and ai such that

∇um(Br ∩B−) ∩ Br(ai) = ∅.
Thus for any δ, there exists ε depending on δ and u such that ∇um(Bε ∩ B−)

is in a δ neighborhood of the segment [0, p̃]. Letting m → ∞ we obtain the same
result for u.

Consider now a sequence of blow-up minimizers

1
rk
u(rkx), x ∈ B1,

that converges to u. Clearly, u is still a minimizer for I and by the conclusion above
∇u(B−) ⊂ [0, p̃]. This implies that u(x) = p ·x in B− with p ∈ [0, p̃]. If p 6= 0, then
we reach a contradiction since u is not a minimizer in a neighborhood of points x
such that p̃ · x = 0, x 6= 0.

In conclusion for any ε > 0 there exists rε depending on u and ε such that

|1
r
u(rx)| ≤ ε, x ∈ B−

for all r ≤ rε. Now the result follows applying the flatness Theorem 4.4 in balls
Bc|x|(x), for c small enough and x ∈ B−.

�
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8. The proof of the flatness Theorems

We finally present the proofs of Theorem 4.3 and Theorem 4.4. Since um → u
uniformly, it suffices to prove Proposition 6.2 and Proposition 6.3.

Proposition 6.2. Assume B1 ⊂ Ω and

Bδ(p0) ⊂ N.
Then, there exists ε depending on δ, p0, F, such that if

|um − p0 · x| ≤ ε, x ∈ B1

then
∇um(B1/2) ⊂ Bδ(p0).

Proof. We can assume that um is not linear, otherwise the result is obvious. Also,
it suffices to show that the conclusion of our statement holds at 0, i.e.

∇um(0) ∈ Bδ(p0), for large m.

First notice that

(8.1) ∇um(B2
√
ε(0)) ∩ B2

√
ε(p0) 6= ∅

by considering min{1
2 |x|2 + um − p0 · x}.

Let B2ρ(p1) ⊂ N such that F ∈ C2(B2ρ(p1)), p0 not in B2ρ(p1). We claim that

(8.2) ∇um(B1/2) ∩ Bρ(p1) = ∅, for small ε.

Clearly, the proposition follows from the claim, together with (8.1) and the local-
ization Theorem. We are left with the proof of the claim.

Assume by contradiction that there exists x0 ∈ B1/2 such that

p2 := ∇um(x0) ∈ Bρ(p1).

We know that the set

{um(x) < lm := um(x0) + p2 · (x− x0)}
has in B1 at least two distinct connected components that intersect any neighbor-
hood of x0.

Notice that by the flatness assumption

{(x− x0) · (p0 − p2) < −2ε} ⊂ {um < lm}
and

{(x− x0) · (p0 − p2) > 2ε} ⊂ {um > lm}.
This implies that one of the connected components of {um < lm} is included in

the strip {|(x− x0) · (p0 − p2)| ≤ 2ε}.
By changing the system of coordinates in the x and p spaces, we can assume

that we have the following situation:

p2 = 0, p0 = αe2, x0 = ±e1/4, um(x0) = 0

|um − αe2 · x| ≤ 2ε in R := {|x1| ≤ 1/8, |x2| ≤ 1/8}, α > ρ.

Moreover, the set {um < 0} has one connected component in R included in the
strip {|x · αe2| ≤ 2ε}, that intersects both {x1 = ±1/8}.
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Let U be the connected component that contains R∩ {x2 = −1/8}. In R \U we
compare um with the function w defined by

w = δ′g(v), v(x) = x2 − 20x2
1

g(v) = ekv − constant, g(−1/8) = 0,
for some δ′, k to be chosen later.

Now notice that D2Fm is uniformly elliptic in Bρ with ellipticity constants λ,Λ
depending only on F. Since

D2w = δ′ekv(D2v + k∇v ⊗∇v)

we see that if the constant δ′ is chosen small enough so that ∇w ∈ Bρ, and k is
sufficiently large depending only on λ,Λ we have that

Tr(D2FmD
2w) ≥ λ|(D2w)+| − Λ|(D2w)−| > 0.

Therefore, w is a subsolution and the minimum of um−w must occur on ∂(R \U).
Notice that by choosing δ′ possibly smaller depending on ρ and k, we get that

αe2 · x > w on {x2 = 1/8, |x1| ≤ 1/8} ∪ {x1 = ±1/8, x2 ≥ −δ′′},
and therefore

um − w > 0 on {x2 = 1/8, |x1| ≤ 1/8} ∪ {x1 = ±1/8, x2 ≥ −2ε/ρ},
for small ε. However, um − w < 0 on ∂U ∩ {x1 = 0}. Hence the minimum must
occur at some point z0 ∈ ∂U ∩R. Then,

um(x) ≥ w(x)− w(z0), x ∈ R \ U.
As in Proposition 6.4, this is a contradiction since the line z0 + te2, t ≥ 0 intersects
the other connected component of {um < 0}, while on this line the function w is
increasing.

�

Proposition 6.3. Let p0 ∈ ∂N. Then, there exists ε depending on δ, F , such that
if

|um − p0 · x| ≤ ε, x ∈ B1

then
[∇um(x), p0] is in a δ-neighborhood of ∂N , for all x ∈ B1/2.

Proof. We can argue as in the previous proof. Notice that in the proof of (8.1)
and (8.2), we do not use that p0 ∈ N , thus they hold also for p0 ∈ ∂N . Then,
when applying the localization Theorem, using also Proposition 5.2, we conclude
that ∇um(B3/4) is included in a δ-neighborhood Nδ of ∂N if ε is small depending
only on δ, F .

Again, it suffices to prove our conclusion at 0, that is [∇um(0), p0] ⊂ N4δ. By
changing the system of coordinates in the x and p spaces, we can assume that we
have the following situation:

∇um(x0) = 0, um(x0) = 0, x0 = ±e1/4, p0 = αe2

|um − αe2 · x| ≤ 2ε in R := {|x1| ≤ 1/8, |x2| ≤ 1/8},
and ∇um(R) ⊂ Nδ. We need to show that [0, p0] ⊂ N4δ. We can assume that
α > δ, otherwise the conclusion clearly holds since p0 ∈ ∂N . Moreover, the set
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{um < 0} has one connected component in R included in the strip {|x · αe2| ≤ 2ε}
that intersects both sides {x1 = ±1/8}.

In the set R \ U (U as in the previous proof) we compare um with the function
w given by

w(x) =
α

2
(x2 − 20x2

1) + 2ε.

For small ε we get

um − w > 0 on {x2 = 1/8, |x1| ≤ 1/8} ∪ ({x1 = ±1/8} ∩ (R \ U)).

However, um−w < 0 on ∂U ∩{x1 = 0}. Hence the minimum of um−w is negative
and must occur at some point z0 ∈ R \U. On the other hand, since w is increasing
in the x2 direction, we obtain as in the previous proof that the minimum cannot
occur on R ∩ ∂U . Thus z0 is an interior point and

∇um(z0) = ∇w(z0).

Moreover |z0| ≤
√
ε/α. Indeed, it is straightforward to check that if

x ∈ {αx2 ≥ −2ε, |x| ≥
√
ε/α} ⊃ (R \ U) \B√

ε/α
(0),

then
um − w ≥ αx2 − w − 2ε ≥ ε,

and the claim follows. Therefore, as ε→ 0, ∇um(z0)→ αe2/2. If ε is small enough
(depending on δ and F ), ∇um(z0) ∈ Bδ(p0/2) and ∇um(z0) ∈ Nδ since z0 ∈ R.
Hence p0/2 ∈ N2δ which implies [0, p0] ⊂ N4δ, and the proposition is proved.

�
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