Macdonald processes and universal limits in discrete random matrix theory

Roger Van Peski (KTH)

Leipzig integrable probability seminar April 24, 2023 Based on https://arxiv.org/abs/2310.12275, https://arxiv.org/abs/2312.11702, and work in preparation Question 1: Let A_1, \ldots, A_τ be iid uniform in $Mat_N(\mathbb{Z}/p\mathbb{Z})$. What does the distribution of

 $\operatorname{rank}(A_{\tau}\cdots A_2A_1)$

look like for large N and τ ?

Question 1: Let A_1, \ldots, A_τ be iid uniform in $Mat_N(\mathbb{Z}/p\mathbb{Z})$. What does the distribution of

$$\operatorname{rank}(A_{\tau}\cdots A_2A_1)$$

look like for large N and τ ?

Question 1: Let A_1, \ldots, A_τ be iid uniform in $Mat_N(\mathbb{Z}/p\mathbb{Z})$. What does the distribution of

$$\operatorname{rank}(A_{\tau}\cdots A_2A_1)$$

look like for large N and τ ?

Fact: $\operatorname{corank}(A_{\tau} \cdots A_1) \approx \log_p \tau$, finite limit fluctuations.

An intriguing random integer

Theorem (VP '23, special case)

For each $N \ge 1$ take $A_1^{(N)}, A_2^{(N)}, \dots$ iid uniform in $Mat_N(\mathbb{Z}/p\mathbb{Z})$. Then as $N \to \infty$,

$$\operatorname{corank}(A_{\tau_N}^{(N)}\cdots A_1^{(N)}) - [\log_p \tau_N + \zeta] \to \mathcal{L}_{1,p^{-1},p^{-\zeta}/(p-1)}$$

(an explicit \mathbb{Z} -valued random variable), for any sequence $\tau_N, N \ge 1$ s.t. $1 \ll \tau_N \ll p^N$ and $-\log_p \tau_N$ converges in \mathbb{R}/\mathbb{Z} to some $\zeta \in [0, 1)$.

An intriguing random integer

Theorem (VP '23, special case)

For each $N \ge 1$ take $A_1^{(N)}, A_2^{(N)}, \dots$ iid uniform in $Mat_N(\mathbb{Z}/p\mathbb{Z})$. Then as $N \to \infty$,

$$\operatorname{corank}(A_{\tau_N}^{(N)}\cdots A_1^{(N)}) - [\log_p \tau_N + \zeta] \to \mathcal{L}_{1,p^{-1},p^{-\zeta}/(p-1)}$$

(an explicit \mathbb{Z} -valued random variable), for any sequence $\tau_N, N \ge 1$ s.t. $1 \ll \tau_N \ll p^N$ and $-\log_p \tau_N$ converges in \mathbb{R}/\mathbb{Z} to some $\zeta \in [0, 1)$.

Here for any $\chi \in \mathbb{R}_{>0}, t \in (0, 1)$, $\mathcal{L}_{1,t,\chi}$ is the \mathbb{Z} -valued r.v. defined by

$$\Pr(\mathcal{L}_{1,t,\chi} = x) = \frac{1}{\prod_{i \ge 1} (1 - t^i)} \sum_{j \ge 0} e^{-\chi t^{x-j}} \frac{(-1)^j t^{\binom{j}{2}}}{\prod_{i=1}^j (1 - t^i)}$$

for any $x \in \mathbb{Z}$.

Let $X(\tau), \tau \in \mathbb{R}_{\geq 0}$ be the $\mathbb{Z}_{\geq 0}$ -valued process which jumps by 1, and waits at state $x \in \mathbb{Z}_{>0}$ for an $\operatorname{Exp}(t^x)$ -distributed time¹.

Question 2: What are the limiting fluctuations of $X(\tau)$?

¹i.e.
$$\Pr((\text{time spent at } x) > T) = e^{-t^{-x}T}$$

Let $X(\tau), \tau \in \mathbb{R}_{\geq 0}$ be the $\mathbb{Z}_{\geq 0}$ -valued process which jumps by 1, and waits at state $x \in \mathbb{Z}_{\geq 0}$ for an $\operatorname{Exp}(t^x)$ -distributed time¹.

Question 2: What are the limiting fluctuations of $X(\tau)$?

Theorem (VP '23, special case)

$$X(\tau) - (\log_{t^{-1}} \tau + \zeta) \to \mathcal{L}_{1,t,t^{-\zeta+1}/(1-t)}$$

in distribution as $\tau \to \infty$ along the sequence $\tau \in t^{-\mathbb{N}+\zeta}$.

¹i.e. $Pr((\text{time spent at } x) > T) = e^{-t^{-x}T}$

Question 3: Let M_n be a uniformly random strictly upper-triangular matrix over \mathbb{F}_q . What are the limiting fluctuations of corank (M_n) ?

$$M_n \in \begin{pmatrix} 0 & * & * & \cdots & * \\ 0 & 0 & * & \ddots & * \\ 0 & 0 & 0 & \ddots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & * \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \subset \operatorname{Mat}_n(\mathbb{F}_q)$$

Question 3: Let M_n be a uniformly random strictly upper-triangular matrix over \mathbb{F}_q . What are the limiting fluctuations of corank (M_n) ?

$$M_n \in \begin{pmatrix} 0 & * & * & \cdots & * \\ 0 & 0 & * & \ddots & * \\ 0 & 0 & 0 & \ddots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & * \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \subset \operatorname{Mat}_n(\mathbb{F}_q)$$

Theorem (VP '24+, special case)

Let $n_j, j = 1, 2, ...$ be an increasing sequence with $-\log_q \tau_N$ converging in \mathbb{R}/\mathbb{Z} to some $\zeta \in [0, 1)$. Then as $j \to \infty$,

$$\operatorname{corank}(M_{n_j}) - [\log_q n_j + \zeta] \to \mathcal{L}_{1,q^{-1},q^{-\zeta}}.$$

$\ensuremath{\textit{p}}\xspace$ -adic random matrices

Fix a prime $p. \ \mathbb{Z}_p := \varprojlim \mathbb{Z}/p^k \mathbb{Z}$, concretely

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \ldots : a_i \in \{0, \ldots, p-1\}\}.$$

Have ring maps $\mathbb{Z}_p \twoheadrightarrow \mathbb{Z}/p^d\mathbb{Z}$.

Fix a prime p. $\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^k \mathbb{Z}$, concretely

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \ldots : a_i \in \{0, \ldots, p-1\}\}.$$

Have ring maps $\mathbb{Z}_p \twoheadrightarrow \mathbb{Z}/p^d\mathbb{Z}$.

 $(\mathbb{Z}_p, +)$ has Haar probability measure $\mu_{Haar}^{\mathbb{Z}_p}$, explicitly given by taking $a_i \in \{0, \ldots, p-1\}$ iid uniformly random, projects to uniform on $\mathbb{Z}/p^k\mathbb{Z}$ for any k.

Proposition (Smith normal form)

For nonsingular $A \in Mat_N(\mathbb{Q}_p)$, there are $U, V \in GL_N(\mathbb{Z}_p)$ for which

$$UAV = \operatorname{diag}(p^{\lambda_1}, \dots, p^{\lambda_N})$$

for singular numbers $\lambda_i \in \mathbb{Z}$ (unique).

Proposition (Smith normal form)

For nonsingular $A \in Mat_N(\mathbb{Q}_p)$, there are $U, V \in GL_N(\mathbb{Z}_p)$ for which

$$UAV = \operatorname{diag}(p^{\lambda_1}, \ldots, p^{\lambda_N})$$

for singular numbers $\lambda_i \in \mathbb{Z}$ (unique).

We study $SN(A) = (SN(A)_1, \dots, SN(A)_N) := (\lambda_1, \dots, \lambda_N)$ above (a random integer signature of length N).

Two worlds: RMT over $\mathbb C$ and $\mathbb Q_p$

	RMT over $\mathbb C$	$RMT over \mathbb{Q}_p$
Group	$\operatorname{GL}_n(\mathbb{C})$	$\operatorname{GL}_n(\mathbb{Q}_p)$
Maximal		
compact	U(n)	$\operatorname{GL}_n(\mathbb{Z}_p)$
subgroup		
Structure	SVD: $UAV =$	Smith normal form: $UAV =$
theorem	$\operatorname{diag}(e^{-r_1},\ldots,e^{-r_n})$	$\operatorname{diag}(p^{\lambda_1},\ldots,p^{\lambda_n})$
	for $U, V \in U(n)$	for $U, V \in \operatorname{GL}_n(\mathbb{Z}_p)$
We study	Singular values e^{-r_i}	Singular numbers λ_i

Two worlds: RMT over \mathbb{C} and \mathbb{Q}_p

	RMT over $\mathbb C$	$RMT over \mathbb{Q}_p$
Group	$\operatorname{GL}_n(\mathbb{C})$	$\operatorname{GL}_n(\mathbb{Q}_p)$
Maximal		
compact	U(n)	$\operatorname{GL}_n(\mathbb{Z}_p)$
subgroup		
Structure	SVD: $UAV =$	Smith normal form: $UAV =$
theorem	$\operatorname{diag}(e^{-r_1},\ldots,e^{-r_n})$	$\operatorname{diag}(p^{\lambda_1},\ldots,p^{\lambda_n})$
	for $U, V \in U(n)$	for $U, V \in \operatorname{GL}_n(\mathbb{Z}_p)$
We study	Singular values e^{-r_i}	Singular numbers λ_i

A matrix $A \in \operatorname{Mat}_N(\mathbb{Z}_p)$ yields a map $\mathbb{Z}_p^N \to \mathbb{Z}_p^N$, $\operatorname{cok}(A) := \mathbb{Z}_p^N / A \mathbb{Z}_p^N.$

Two worlds: RMT over \mathbb{C} and \mathbb{Q}_p

	RMT over $\mathbb C$	$RMT over \mathbb{Q}_p$
Group	$\operatorname{GL}_n(\mathbb{C})$	$\operatorname{GL}_n(\mathbb{Q}_p)$
Maximal		
compact	U(n)	$\operatorname{GL}_n(\mathbb{Z}_p)$
subgroup		
Structure	SVD: $UAV =$	Smith normal form: $UAV =$
theorem	$\operatorname{diag}(e^{-r_1},\ldots,e^{-r_n})$	$\operatorname{diag}(p^{\lambda_1},\ldots,p^{\lambda_n})$
	for $U, V \in U(n)$	for $U, V \in \operatorname{GL}_n(\mathbb{Z}_p)$
We study	Singular values e^{-r_i}	Singular numbers λ_i

A matrix $A \in \operatorname{Mat}_N(\mathbb{Z}_p)$ yields a map $\mathbb{Z}_p^N \to \mathbb{Z}_p^N$, $\operatorname{cok}(A) := \mathbb{Z}_p^N / A \mathbb{Z}_p^N$.

For $\lambda = SN(A)$, get finite abelian *p*-group

$$\operatorname{cok}(A) \cong \bigoplus_{i=1}^{N} \mathbb{Z}/p^{\lambda_i} \mathbb{Z}.$$

Motivation: random groups

In many contexts such as

- Arithmetic statistics—distributions of class groups of number fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg, Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh, Westerland, Wood… '83-present),
- Sandpile groups of random graphs—(Clancy, Fulman, Kaplan, Koplewitz, Leake, Nguyen, Payne, Wood... '14-present),
- (co)homology groups of random chain complexes—(Kahle, Lutz, Meszaros, Newman, Parsons,...)

we want asymptotics of a (pseudo-)random finite abelian group G.

Motivation: random groups

In many contexts such as

- Arithmetic statistics—distributions of class groups of number fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg, Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh, Westerland, Wood… '83-present),
- Sandpile groups of random graphs—(Clancy, Fulman, Kaplan, Koplewitz, Leake, Nguyen, Payne, Wood... '14-present),
- (co)homology groups of random chain complexes—(Kahle, Lutz, Meszaros, Newman, Parsons,...)

we want asymptotics of a (pseudo-)random finite abelian group G.

$$\begin{split} G &= \bigoplus_{p \text{ prime}} G_p \\ G_p &= \bigoplus_i \mathbb{Z}/p^{\lambda_i^{(p)}} \mathbb{Z} \rightsquigarrow \text{ random partition } \lambda. \end{split}$$

Random matrices produce random groups

The first such distribution (1983) was the Cohen-Lenstra distribution on abelian p-groups $G = \bigoplus_i \mathbb{Z}/p^{\lambda_i}\mathbb{Z}$ given by

$$\Pr(G) = \frac{\prod_{i \ge 1} (1 - 1/p^i)}{|\operatorname{Aut}(G)|},$$

observed empirically for *p*-parts of class groups of fields $\mathbb{Q}(\sqrt{-d})$.

Random matrices produce random groups

The first such distribution (1983) was the Cohen-Lenstra distribution on abelian p-groups $G = \bigoplus_i \mathbb{Z}/p^{\lambda_i}\mathbb{Z}$ given by

$$\Pr(G) = \frac{\prod_{i \ge 1} (1 - 1/p^i)}{|\operatorname{Aut}(G)|},$$

observed empirically for *p*-parts of class groups of fields $\mathbb{Q}(\sqrt{-d})$.

Theorem (Friedman-Washington 1987)

Let $A^{(N)} \in \operatorname{Mat}_N(\mathbb{Z}_p)$ have iid additive Haar entries. Then as $N \to \infty$, $\operatorname{cok}(A^{(N)})$ limits to the Cohen-Lenstra distribution $\Pr(G) = \prod_{i \ge 1} (1 - p^{-i}) / |\operatorname{Aut}(G)|.$

Theorem (Wood 2015)

Let $A^{(N)} \in \operatorname{Mat}_N(\mathbb{Z})$ have iid entries from any distribution which is nonconstant modulo p. Then $\operatorname{cok}(A^{(N)})_p$ converges to the Cohen-Lenstra distribution.

At a probabilistic level things look quite different

Can study singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for $A_i N \times N$ random real/complex matrices, $\tau = 1, 2, \ldots$ [Bellman 1954].

Can study singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for $A_i N \times N$ random real/complex matrices, $\tau = 1, 2, \ldots$ [Bellman 1954].

For fixed N, the logarithms of singular values have Gaussian fluctuations as $\tau \to \infty$ ([Furstenberg-Kesten 1960], [Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

Can study singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for $A_i N \times N$ random real/complex matrices, $\tau = 1, 2, \ldots$ [Bellman 1954].

For fixed N, the logarithms of singular values have Gaussian fluctuations as $\tau \to \infty$ ([Furstenberg-Kesten 1960], [Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

When $N, \tau \to \infty, N/\tau \to c \in (0, \infty)$, the bulk (resp. soft edge) statistics are *c*-parametrized deformations of sine (resp. Airy) kernel ([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018]).

Can study singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for $A_i N \times N$ random real/complex matrices, $\tau = 1, 2, \ldots$ [Bellman 1954].

For fixed N, the logarithms of singular values have Gaussian fluctuations as $\tau \to \infty$ ([Furstenberg-Kesten 1960], [Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

When $N, \tau \to \infty, N/\tau \to c \in (0, \infty)$, the bulk (resp. soft edge) statistics are c-parametrized deformations of sine (resp. Airy) kernel ([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018]).

Question

How do singular numbers of *p*-adic matrix products behave?

Can study singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for $A_i N \times N$ random real/complex matrices, $\tau = 1, 2, \ldots$ [Bellman 1954].

For fixed N, the logarithms of singular values have Gaussian fluctuations as $\tau \to \infty$ ([Furstenberg-Kesten 1960], [Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

When $N, \tau \to \infty, N/\tau \to c \in (0, \infty)$, the bulk (resp. soft edge) statistics are c-parametrized deformations of sine (resp. Airy) kernel ([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018]).

Question

How do singular numbers of *p*-adic matrix products behave?

[VP 2020]: For A_i 'nice' $N \times N$ *p*-adic random matrices, each $SN(A_{\tau} \cdots A_1)_i$ has Gaussian fluctuations as $\tau \to \infty$.

Dynamical local limits?

Question

For $1 \ll r_N \ll N$, does joint evolution of bulk singular numbers $SN(A_{\tau} \cdots A_1)_{r_N+i}, i \in \{\dots, -1, 0, 1, \dots\}$ converge as matrix size $N \to \infty$ to some Markov process on

$$\operatorname{Sig}_{2\infty}^{\geq 0} := \{ \mu = (\dots, \mu_{-1}, \mu_0, \mu_1, \dots) \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}} : \mu_{i+1} \leq \mu_i \}?$$

The reflecting Poisson sea and limit theorems

Extending $X(\tau)$ to a growth process on integer partitions $\mathcal{S}^{(\infty)}(\tau) = (\mathcal{S}^{(\infty)}(\tau)_1, \mathcal{S}^{(\infty)}(\tau)_2, \ldots), \tau \in \mathbb{R}_{\geq 0}.$

Starts at $S^{(\infty)}(0) = (0, 0, ...).$

Indep. exp. clocks at $1, 2, \ldots$ of rates t, t^2, \ldots control jumps.

Extending $X(\tau)$ to a growth process on integer partitions $\mathcal{S}^{(\infty)}(\tau) = (\mathcal{S}^{(\infty)}(\tau)_1, \mathcal{S}^{(\infty)}(\tau)_2, \ldots), \tau \in \mathbb{R}_{\geq 0}.$

Starts at $\mathcal{S}^{(\infty)}(0) = (0, 0, \ldots).$

Indep. exp. clocks at $1, 2, \ldots$ of rates t, t^2, \ldots control jumps.

When particle is blocked, donates jump:

Have \mathbb{Z}^d -valued random variables $\mathcal{L}_{d,p^{-\zeta}/(p-1)}$ such that:

Theorem (VP '23)
Let
$$\tau_N = p^{N-\zeta}$$
. Then
 $(\mathcal{S}^{(\infty)}(\tau_N)'_i - \log_p(\tau_N) - \zeta)_{1 \le i \le d} \xrightarrow{N \to \infty} \mathcal{L}_{d,p^{-\zeta}/(p-1)}.$

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- t^i exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- t^i exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- t^i exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots),$ $T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- t^i exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots),$ $T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- t^i exponential clock (independent of each other), donating move if blocked.

Local limit picture

Theorem (VP '23)

For each
$$N \geq 1$$
 let $A_i^{(N)} \in \operatorname{Mat}_N(\mathbb{Z}_p), i \geq 1$ be iid additive Haar
matrices and $\Pi^{(N)}(\tau) := \operatorname{SN}(A_{\tau}^{(N)} \cdots A_1^{(N)}).$
Let $(r_N)_{N\geq 1}$ be such that (1) $r_N \to \infty$ and (2) $N - r_N \to \infty$. Then
 $(\dots, \Pi^{(N)}(\lfloor p^{r_N}T \rfloor)_{r_N-1}, \Pi^{(N)}(\lfloor p^{r_N}T \rfloor)_{r_N}, \Pi^{(N)}(\lfloor p^{r_N}T \rfloor)_{r_N+1}, \dots)$
converges to $\mu(T)$ (with $t = 1/p$).

Comparison to dynamical local limits over $\ensuremath{\mathbb{C}}$

Fixed-time limits: analogues of deformed sine/Airy process

Fixed-time limits: analogues of deformed sine/Airy process

Theorem (VP '23)

The joint distribution of $(\mu'_1(T), \mu'_2(T), \dots, \mu'_k(T))$ is an explicit random variable $\mathcal{L}_{k,t,tT/(1-t)}$.

What is $\mathcal{L}_{k,t,\chi}$?

Example

When k = 2 (taking t = 1/p), $\chi \in \mathbb{R}_{>0}$, $(L + x, L) \in \text{Sig}_2$,

$$\Pr(\mathcal{L}_{2,t,\chi} = (L+x,L)) = \frac{t^{\binom{x}{2}}}{(t;t)_{\infty}} \sum_{m \ge 0} e^{-t^{L-m}\chi} \times (-1)^m t^{m^2 + (x-1)m} \sum_{i=0}^x \frac{(-1)^{x-i}}{(t;t)_{x-i}} {m+i \brack i}_t \times \left(\frac{(t^{L-m}\chi)^{i+m}}{(i+m)!} + \frac{(t^{L-m}\chi)^{i+m-1}\mathbb{1}(i+m \ge 1)}{(i+m-1)!}\right)$$

where

$$(a;t)_n := (1-a)(1-ta)\cdots(1-t^{n-1}a) \text{ and } \begin{bmatrix} a \\ b \end{bmatrix}_t := \frac{(t;t)_a}{(t;t)_b(t;t)_{a-b}}.$$

Given convergence of fixed-time marginals, explicit linear-algebraic arguments show multi-time convergence to $\mu(T)$ (robust, universal for generic $\operatorname{GL}_N(\mathbb{Z}_p)$ -invariant distributions).

Given convergence of fixed-time marginals, explicit linear-algebraic arguments show multi-time convergence to $\mu(T)$ (robust, universal for generic $\operatorname{GL}_N(\mathbb{Z}_p)$ -invariant distributions).

Convergence of fixed-time marginals to $\mu(T)$ uses symmetric function theory.

Macdonald processes [Borodin-Corwin '11]

Macdonald polynomials $P_{\lambda}(x_1, \ldots, x_n; q, t)$ indexed by integer partitions $\lambda = (\lambda_1 \ge \ldots \ge \lambda_n \ge 0)$ are symmetric polynomials in x_1, \ldots, x_n with two parameters q, t.

Macdonald processes [Borodin-Corwin '11]

Macdonald polynomials $P_{\lambda}(x_1, \ldots, x_n; q, t)$ indexed by integer partitions $\lambda = (\lambda_1 \ge \ldots \ge \lambda_n \ge 0)$ are symmetric polynomials in x_1, \ldots, x_n with two parameters q, t.

(Figure credits: A. Borodin, ICM 2014 slides)

The $\mathbb{Z}_p \leftrightarrow \mathbb{C}$ analogy is actually extremely close

The $\mathbb{Z}_p \leftrightarrow \mathbb{C}$ analogy is actually extremely close

Macdonald processes used for real/complex matrix products (Ahn, Borodin, Gorin, Strahov, Sun 2015+), are also a key tool for us.