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Question 1: Let Ay,..., A, be iid uniform in Mat N (Z/pZ). What
does the distribution of
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Fact: corank(A--- A1) =~ log, 7, finite limit fluctuations.
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An intriguing random integer

Theorem (VP ‘23, special case)
For each N > 1 take AgN), AgN), ... iid uniform in Maty (Z/pZ).
Then as N — oo,

corank(Ag]\V[) oc -AEN)) — [log, 75 + (] — L1 p=1p-¢/(p-1)

(an explicit Z-valued random variable), for any sequence Ty, N > 1
st. 1< 7y < p" and — log,, Tn converges in R/Z to some

¢eo,1), )
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For each N > 1 take AgN), AgN), ... iid uniform in Maty (Z/pZ).
Then as N — oo,

corank(Ag\V[) ooc AEN)) — [log, 75 + (] — L1 p=1p-¢/(p-1)

(an explicit Z-valued random variable), for any sequence Ty, N > 1
st. 1< 7y < p" and — log,, Tn converges in R/Z to some
¢elo,1).

v,

Here for any x € Rxo,t € (0,1), L1, is the Z-valued r.v. defined
by

U SR vy C V0N
Prifiex =)= [[i (1= 1) ;e ' (1 -t

for any z € Z.
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Let X(7),7 € R>( be the Z>-valued process which jumps by 1,
and waits at state z € Z>q for an Exp(#®)-distributed time!.

X(7)

=N W ke Ot

12345678910

Question 2: What are the limiting fluctuations of X (7)7
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Let X (7),7 € R>o be the Z>(-valued process which jumps by 1,
and waits at state z € Z>q for an Exp(#®)-distributed time!.

X(7)

=N W ke Ot

12345678 910
Question 2: What are the limiting fluctuations of X (7)7
Theorem (VP ‘23, special case)

X(7) = (logg-1 7+ C) = Ly 4 4-¢+1/01-p)

in distribution as T — oo along the sequence T € t~NT¢,

1 . _ —t7 T
i.e. Pr((timespentatz)>T)=c¢ . 420



Question 3: Let M,, be a uniformly random strictly upper-triangular
matrix over ;. What are the limiting fluctuations of corank(M,,)?

0
0
0

oo -

C Mat,,(F,)
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Question 3: Let M,, be a uniformly random strictly upper-triangular
matrix over ;. What are the limiting fluctuations of corank(M,,)?

k* ok k

0 0 = *
Mye |0 0 0 s = Nag,(F,)

000 *

000 0

Theorem (VP 24+, special case)

Let nj,j =1,2,... be an increasing sequence with —log, Ty
converging in R/Z to some ¢ € [0,1). Then as j — oo,

corank(My,;) — [log,nj + (] = Ly ;-1 4—¢-
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p-adic random matrices
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Fix a prime p. Z,, := @Z/ka, concretely
Zy={ao+aip+ap*+...:a;€{0,...,p—1}}.

Have ring maps Z, — Z/pZ.
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Fix a prime p. Z,, := @Z/ka, concretely
Zy={ao+aip+ap*+...:a;€{0,...,p—1}}.

Have ring maps Z, — Z/pZ.

(Zp,+) has Haar probability measure u%faw, explicitly given by

taking a; € {0,...,p — 1} iid uniformly random, projects to
uniform on Z/p*Z for any k.
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Proposition (Smith normal form)

For nonsingular A € Maty(Qy), there are U,V € GLn(Z,,) for
which

UAV = diag(p)‘l, ... ,p)‘N)

for singular numbers \; € Z (unique).
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Proposition (Smith normal form)

For nonsingular A € Maty(Qy), there are U,V € GLn(Z,,) for
which

UAV = diag(p)‘l, ... ,p)‘N)

for singular numbers \; € Z (unique).

We study SN(A) = (SN(A)1,...,SN(A)n) := (A1,...,An) above
(a random integer signature of length N).
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Two worlds: RMT over C and Q,

’ ‘ RMT over C ‘ RMT over Q,
Group GL,(C) GL,(Qp)
Maximal
compact U(n) GL,,(Zp)
subgroup
Structure SVD: UAV = Smith normal form: UAV =
theorem | diag(e™",...,e ™) diag(p*t,...,p™)
for U,V € U(n) for U,V € GL,(Z,)
We study | Singular values e™" Singular numbers \;
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Two worlds: RMT over C and Q,

’ ‘ RMT over C ‘ RMT over Q,
Group GL,(C) GL,(Qp)
Maximal
compact U(n) GL,,(Zp)
subgroup
Structure SVD: UAV = Smith normal form: UAV =
theorem | diag(e™",...,e ™) diag(p*t,...,p™)
for U,V € U(n) for U,V € GL,(Z,)
We study | Singular values e™" Singular numbers \;

A matrix A € Maty(Z,) yields a map Z)Y — Z1Y,
cok(A) := Z) JAZY .
For A = SN(A), get finite abelian p-group

N
cok(A) = P Z/pMZ.
=1
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Motivation: random groups
In many contexts such as

> Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),

» Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),

» (co)homology groups of random chain complexes—(Kahle,
Lutz, Meszaros, Newman, Parsons,...)

we want asymptotics of a (pseudo-)random finite abelian group G.
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In many contexts such as

> Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),

» Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),

» (co)homology groups of random chain complexes—(Kahle,
Lutz, Meszaros, Newman, Parsons,...)

we want asymptotics of a (pseudo-)random finite abelian group G.

=P G

P prime

(») .-
Gy = @Z/pkip Z ~ random partition .

)
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Random matrices produce random groups

The first such distribution (1983) was the Cohen-Lenstra
distribution on abelian p-groups G' = @, 7./pN 7 given by

Hi21(1 —1/p")

PO =@

observed empirically for p-parts of class groups of fields Q(+/—d).
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Random matrices produce random groups

The first such distribution (1983) was the Cohen-Lenstra
distribution on abelian p-groups G' = @, 7./pN 7 given by

Hi21(1 —1/p")

PO =@

observed empirically for p-parts of class groups of fields Q(+/—d).
Theorem (Friedman-Washington 1987)

Let AN) € Maty(Z,) have iid additive Haar entries. Then as
N — 00, cok(AN)) Jimits to the Cohen-Lenstra distribution

Pr(G) = [[ix1(1 —p~")/| Aut(G)|.

Theorem (Wood 2015)

Let AXN) € Maty(Z) have iid entries from any distribution which is
nonconstant modulo p. Then cok(AM)),, converges to the
Cohen-Lenstra distribution.
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At a probabilistic level things look quite different
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The real/complex product process

Can study singular values of A;A; _1--- A; for A; N x N random
real/complex matrices, 7 = 1,2, ... [Bellman 1954].
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The real/complex product process

Can study singular values of A;A; _1--- A; for A; N x N random
real/complex matrices, 7 = 1,2, ... [Bellman 1954].

For fixed N, the logarithms of singular values have Gaussian
fluctuations as 7 — oo ([Furstenberg-Kesten 1960],
[Akemann-Burda-Kieburg 2014], [Liu-Wang-Wang 2018]).

When N, 7 — 0o, N/7 — ¢ € (0,00), the bulk (resp. soft edge)

statistics are c-parametrized deformations of sine (resp. Airy) kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018]).

How do singular numbers of p-adic matrix products behave? |

[VP 2020]: For A; ‘nice’ N x N p-adic random matrices, each
SN(A; --- Aj); has Gaussian fluctuations as 7 — 0.

13/29



Dynamical local limits?

A

4"—0—0—

3 _ ('"7”-27“-17”07“17“27"')
=(..,3,1,1,1,0,...)

2

1 —o—o

0 — oo oo

\J coo Pe2fim1f0 f1 M2 M3 M4

For1 < ry < N, does joint evolution of bulk singular numbers
SN(A;---Ai)pytii € {...,—1,0,1,...} converge as matrix size
N — oo to some Markov process on

Sigay, o= {tt = (..., o1, po, i1, - - -) € Z5¢ + pri1 < pi}?
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The reflecting Poisson sea and limit theorems
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Extending X (7) to a growth process on integer partitions
S (1) = (8 (1)1, 80 (1)a,...), T € Rxo.

Starts at S(>)(0) = (0,0,...).
Indep. exp. clocks at 1,2, ... of rates ,t2, ... control jumps.

S (T —¢) =(4,4,3,1,1,1,0,...) SC(r) = (4,4,3,2,1,1,0,...)

-

O = N W
S = N W s
L

ring!
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Extending X (7) to a growth process on integer partitions
S (1) = (8 (1)1, 80 (1)a,...), T € Rxo.

Starts at S(>)(0) = (0,0,...).

Indep. exp. clocks at 1,2, ... of rates ,t2, ... control jumps.

SN (1 —€) = (4,4,3,1,1,1,0,...) S™)(r) = (4,4,3,2,1,1,0,...)

O = N W
= N I
L

When particle is blocked, donates jump:

SN (1 —€) = (4,4,3,1,1,1,0,...) S®)(r) = (4,4,3,2,1,1,0,...)

! MM 0 .



Have Z?-valued random variables Ly p¢/(p-1) such that:

Theorem (VP '23)

Let v = p™N=¢. Then

(S (rn)] — log,,(7n) — ()1<i<d Aoos, Lip—</(p—1)-
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The reflecting Poisson sea

A
4 " ———a—
3 ('">/’L—27/~L—17/J“07,u’17/~£27"')
- =(...,3,1,1,1,0,...)
2
1 o o o
0 — oo+
\/ ceo Heofio1flo [l f2 [3 fa

Definition (VP 2023)

The reflecting Poisson sea pi(T') = (..., u—1(T), po(T), 1 (T),...),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-t' exponential clock (independent
of each other), donating move if blocked.
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The reflecting Poisson sea

A
4 - ——e—
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Definition (VP 2023)

The reflecting Poisson sea pi(T') = (..., u—1(T), po(T), 1 (T),...),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-t' exponential clock (independent
of each other), donating move if blocked.
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The reflecting Poisson sea

A
4 - ——e—
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Definition (VP 2023)

The reflecting Poisson sea pi(T') = (..., u—1(T), po(T), 1 (T),...),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-t' exponential clock (independent
of each other), donating move if blocked.
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Local limit picture

Theorem (VP '23)

For each N > 1 let AEN) € Maty(Zy),i > 1 be iid additive Haar
matrices and TIN) (1) := SN(A;N) e AEN)).
Let (ry)n>1 be such that (1) ry — oo and (2) N—ry — oo. Then

(' T o ( LpTNTJ )TN—17 ) ( \_pTNTJ )TN’ H(N)([pTNTJ )TN+17 00 )
converges to ji(T') (witht =1/p).

v,
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Comparison to dynamical local limits over C
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Fixed-time limits: analogues of deformed sine/Airy process

Let 1(T) = max({j : j5(T) > i}).
Here (1, ph, i, ptly, . ..) = (1, -2, -2, -3,...).

A

4 QR ———

3 _ ('"7“-27“-17“07”17“27"')
=(...,3,1,1,1,0,...)

2

1 ——o

0 — oo

\J coo Pe2fim1fo 1 M2 (3 M4
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Fixed-time limits: analogues of deformed sine/Airy process

Let 1(T) = max({j : j5(T) > i}).
Here (1, ph, i, ptly, . ..) = (1, -2, -2, -3,...).

A

4"—0—0—

3 _ ('"7”-27“-17”07”17“27"')
=(...,3,1,1,1,0,...)

2

1 ——o

0 — oo

\J coo Pe2fim1fo 1 M2 (3 M4

Theorem (VP '23)

The joint distribution of (p}(T), uy(T), ..., . (T)) is an explicit
random variable Ly, ; y1/(1—y)-
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What is L7

Example
When k = 2 (taking t = 1/p), x € Rso, (L + 2, L) € Sigy,
t(g) —tL=m
Pr(Loy, = (L+,L)) = Dot
’ (t:t)o0 2
> (_1)mtm2+(x 1)m (— [ . :|
; (t§t)x—i 2 ¢
y (tL—mX)i-i-m (tL—mX)z‘+m—11(Z~ +m > 1)
(t+m)! (t+m—1)!
where
(a;t)y = (1—a)(1—ta)--- (1—t”_1a) and [a] = —(t;t)a
s bl, " (&)t t)ab
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A word on proofs

Given convergence of fixed-time marginals, explicit linear-algebraic
arguments show multi-time convergence to pu(7T') (robust, universal
for generic GLx (Zy)-invariant distributions).
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A word on proofs

Given convergence of fixed-time marginals, explicit linear-algebraic
arguments show multi-time convergence to pu(7T') (robust, universal
for generic GLx (Zy)-invariant distributions).

Convergence of fixed-time marginals to p(7") uses symmetric
function theory.
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Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials Py(x1,...,xn;q,t) indexed by integer
partitions A\ = (A1 > ... > A, > 0) are symmetric polynomials in
x1,...,T, With two parameters ¢, t.
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Macdonald processes [Borodin-Corwin ‘11]

Macdonald polynomials Py(x1,...,xn;q,t) indexed by integer
partitions A\ = (A1 > ... > A, > 0) are symmetric polynomials in
x1,...,T, With two parameters ¢, t.

Macdonald processes q,Jc efo, 1)

Ruijsenaars-Macdonald system
Representations of Double Affine Hecke Algebras

q-Whittaker processes
q-TASEP, 2d dynamics t- o
q-deformed. quantum Toda lattice

Representations of 71,\,, U, ()

Hall-Littlewood processes

Random matrices over finite fields

1=0

Spherical functions for p-adic groups

1- Br2

General RMT t9 =14
Random watrices over R €,
Calogero-Sutherland, Jack polynomials

¥ Spherical functions for Riew. symmm. sp. v

. -0 Kingman partition structures
Whittaker Processes 41 Cycles of random permutations =0
Directed polymers and their hierarchies

£=4

Poisson-Dirichlet distributions

Quantum Toda lattice, vepr. of GL(n, R

Schur processes ”Vt
Plane partitions, tilings/shuffling, TASEP, PNG, last passage percolation, GUE
Characters of symmetric, unitary groups

(Figure credits: A. Borodin, ICM 2014 slides)
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The Z, <+ C analogy is actually extremely close

Macdonald measure
[Borodin-Corwin ’11]
B g AP g )
- Hq t(l ..... ¢n—1. tmfnJrl7 o thn)

Pr(\)

B € {1,2,4}
t:qﬁ/Y

q—1
A rescaled

eckman-Opdam measure:

singular values of n X m corners
of Haar O(D),U(D), Sp*(D)

matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n x m
corners of Haar GLp(Z,) matrices,
[VP °20]
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The Z, <+ C analogy is actually extremely close

Macdonald measure
[Borodin-Corwin ’11]
_ P/\(17 ) tn_l; q, t)QAU:m_TH—IT ) tD_n; q, t)
- Hz] t(l ..... ¢n—1. tmfnJrl7 o thn)

Pr(\)

B € {1,2,4}
t:qﬁ/?

q—1
A rescaled

eckman-Opdam measure:

singular values of n X m corners
of Haar O(D),U(D), Sp*(D)

matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n x m
corners of Haar GLp(Z,) matrices,
[VP °20]

Macdonald processes used for real/complex matrix products (Ahn,
Borodin, Gorin, Strahov, Sun 2015+), are also a key tool for us.

20 /29



	p-adic random matrices
	The reflecting Poisson sea and limit theorems

