Integer random matrices, fluctuations of random groups, and an interacting particle system

Roger Van Peski (Columbia)

Columbia Probability Seminar September 20, 2024

Based on joint work with Hoi Nguyen (https://arxiv.org/abs/2409.03099), with background from https://arxiv.org/abs/2310.12275, https://arxiv.org/abs/2312.11702

Random matrices and interacting particle systems

Random matrix theory over \mathbb{R}, \mathbb{C}

Discrete-space interacting particle systems (TASEP, ASEP, ...)

Many limit objects (e.g. Tracy-Widom) appear in both.

There is also discrete random matrix theory over $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$, etc.

Random matrices and interacting particle systems

Random matrix theory over \mathbb{R}, \mathbb{C}

Discrete-space interacting particle systems (TASEP, ASEP, ...)

Many limit objects (e.g. Tracy-Widom) appear in both.

There is also discrete random matrix theory over $\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}$, etc.

Today: Random matrix products over $\mathbb{Z} \rightsquigarrow$ discrete interacting particle system ('reflecting Poisson sea')

1. Products of random matrices over $\mathbb{Z}/p\mathbb{Z}$

2. A single random matrix over $\ensuremath{\mathbb{Z}}$

3. Matrix products over $\ensuremath{\mathbb{Z}}$ and an interacting particle system

4. The rescaled moment method

Products of random matrices over $\mathbb{Z}/p\mathbb{Z}$

Let A_1, A_2, \ldots be iid uniform in $\operatorname{Mat}_N(\mathbb{Z}/p\mathbb{Z})$. What does the distribution of $\operatorname{rank}(A_{\tau} \cdots A_2 A_1)$ look like for large N and τ ?

Let A_1, A_2, \ldots be iid uniform in $\operatorname{Mat}_N(\mathbb{Z}/p\mathbb{Z})$. What does the distribution of $\operatorname{rank}(A_{\tau} \cdots A_2 A_1)$ look like for large N and τ ?

Fact: $\operatorname{corank}(A_{\tau} \cdots A_1) \approx \log_p \tau$, finite limit fluctuations.

Let A_1, A_2, \ldots be iid uniform in $\operatorname{Mat}_N(\mathbb{Z}/p\mathbb{Z})$. What does the distribution of $\operatorname{rank}(A_{\tau} \cdots A_2 A_1)$ look like for large N and τ ?

Fact: $\operatorname{corank}(A_{\tau} \cdots A_1) \approx \log_p \tau$, finite limit fluctuations.

Question 1: What is the limit of

$$\operatorname{corank}(A_{\tau}\cdots A_{1}) - \log_{p} \tau$$

as $N, \tau \to \infty$?.

Definition

For any $\chi \in \mathbb{R}_{>0}, p \in \mathbb{R}_{>1}$, $\mathcal{L}_{p^{-1},\chi}^{(1)}$ is the \mathbb{Z} -valued random variable given by

$$\Pr(\mathcal{L}_{p^{-1},\chi}^{(1)} = x) = \frac{1}{\prod_{i \ge 1} (1 - p^{-i})} \sum_{j \ge 0} e^{-\chi p^{j-x}} \frac{(-1)^j p^{-\binom{j}{2}}}{\prod_{i=1}^j (1 - p^{-i})}$$

for any $x \in \mathbb{Z}$.

Want limit of $\operatorname{corank}(A_{\tau} \cdots A_1) - \log_p \tau$, but this isn't an integer.

Definition

For any $\chi \in \mathbb{R}_{>0}, p \in \mathbb{R}_{>1}$, $\mathcal{L}_{p^{-1},\chi}^{(1)}$ is the \mathbb{Z} -valued random variable given by

$$\Pr(\mathcal{L}_{p^{-1},\chi}^{(1)} = x) = \frac{1}{\prod_{i \ge 1} (1 - p^{-i})} \sum_{j \ge 0} e^{-\chi p^{j-x}} \frac{(-1)^j p^{-\binom{j}{2}}}{\prod_{i=1}^j (1 - p^{-i})}$$

for any $x \in \mathbb{Z}$.

Want limit of $\operatorname{corank}(A_{\tau} \cdots A_1) - \log_p \tau$, but this isn't an integer.

Theorem (VP '23, special case)

For each $N \ge 1$ take $A_1^{(N)}, A_2^{(N)}, \ldots$ iid uniform in $\operatorname{Mat}_N(\mathbb{Z}/p\mathbb{Z})$, and $(\tau_N)_{N\ge 1}$ such that $1 \ll \tau_N \ll p^N$ and the fractional part $\{-\log_p \tau_N\}$ converges to some $\zeta \in [0, 1]$. Then as $N \to \infty$,

$$\operatorname{corank}(A_{\tau_N}^{(N)}\cdots A_1^{(N)}) - \operatorname{Int}(\log_p \tau_N + \boldsymbol{\zeta}) \to \mathcal{L}_{p^{-1}, p^{-\boldsymbol{\zeta}}/(p-1)}^{(1)}.$$

Continuous-time model process

Let p > 1 and $X(\tau), \tau \in \mathbb{R}_{\geq 0}$ be the $\mathbb{Z}_{\geq 0}$ -valued process which jumps by 1, and waits at $x \in \mathbb{Z}_{\geq 0}$ for an $\operatorname{Exp}(p^{-x})$ -distributed time.

Continuous-time model process

Let p > 1 and $X(\tau), \tau \in \mathbb{R}_{\geq 0}$ be the $\mathbb{Z}_{\geq 0}$ -valued process which jumps by 1, and waits at $x \in \mathbb{Z}_{\geq 0}$ for an $\operatorname{Exp}(p^{-x})$ -distributed time.

Theorem (VP '23, special case)

$$X(\tau) - (\log_p \tau + \zeta) \to \mathcal{L}_{p^{-1}, p^{-\zeta}/(p-1)}^{(1)}$$

in distribution as $\tau \to \infty$ along the sequence $\tau \in p^{\mathbb{N}-\zeta}$.

A single random matrix over $\ensuremath{\mathbb{Z}}$

Why study random matrices over \mathbb{Z} ?

Why study random matrices over \mathbb{Z} ?

In many contexts, want asymptotic distribution of (pseudo-)random finite abelian groups G:

- Arithmetic statistics—distributions of class groups of number fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg, Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh, Westerland, Wood... '83-present),
- Sandpile groups of random graphs—(Clancy, Fulman, Kaplan, Koplewitz, Leake, Nguyen, Payne, Wood... '14-present),
- (co)homology groups of random chain complexes—(Kahle, Lutz, Meszaros, Newman, Parsons,...)

Why study random matrices over \mathbb{Z} ?

In many contexts, want asymptotic distribution of (pseudo-)random finite abelian groups G:

- Arithmetic statistics—distributions of class groups of number fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg, Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh, Westerland, Wood... '83-present),
- Sandpile groups of random graphs—(Clancy, Fulman, Kaplan, Koplewitz, Leake, Nguyen, Payne, Wood... '14-present),
- (co)homology groups of random chain complexes—(Kahle, Lutz, Meszaros, Newman, Parsons,...)

 $A \in \operatorname{Mat}_N(\mathbb{Z})$ gives linear map $A : \mathbb{Z}^N \to \mathbb{Z}^N$, has cokernel

$$\operatorname{cok}(A) := \mathbb{Z}^N / A \mathbb{Z}^N,$$

an abelian group.

Singular numbers and random groups

For $A \in \operatorname{Mat}_N(\mathbb{Z})$,

$$A = U \operatorname{diag}(a_1, \ldots, a_N) V$$

for some $U, V \in GL_N(\mathbb{Z})$ and 'discrete singular values' $a_1 \geq \ldots \geq a_N \in \mathbb{Z}_{\geq 0}$.

Singular numbers and random groups

For $A \in \operatorname{Mat}_N(\mathbb{Z})$,

$$A = U \operatorname{diag}(a_1, \ldots, a_N) V$$

for some $U, V \in GL_N(\mathbb{Z})$ and 'discrete singular values' $a_1 \geq \ldots \geq a_N \in \mathbb{Z}_{\geq 0}$.

$$\operatorname{cok}(A) := \mathbb{Z}^N / A \mathbb{Z}^N \cong \bigoplus_{i=1}^N \mathbb{Z} / \frac{a_i}{a_i} \mathbb{Z},$$

parametrized by the same a_1, \ldots, a_N .

Universality and decoupling of primes

Easier to look at *p*-Sylow subgroups:

$$\operatorname{cok}(A) \cong \bigoplus_{p \text{ prime}} \operatorname{cok}(A)_p.$$

Theorem (Wood 2015)

Fix p and integer random variable ξ with $\xi \pmod{p}$ nonconstant. For each $N \ge 1$ let $A^{(N)} \in \operatorname{Mat}_N(\mathbb{Z})$ have iid ξ entries. Then as $N \to \infty$, $\operatorname{cok}(A^{(N)})_p$ converges in law to the Cohen-Lenstra distribution on abelian p-groups,

$$\Pr(G) = \frac{\prod_{i=1}^{\infty} (1 - p^{-i})}{\#\operatorname{Aut}(G)}$$

Universality and decoupling of primes

Easier to look at *p*-Sylow subgroups:

$$\operatorname{cok}(A) \cong \bigoplus_{p \text{ prime}} \operatorname{cok}(A)_p.$$

Theorem (Wood 2015)

Fix p and integer random variable ξ with $\xi \pmod{p}$ nonconstant. For each $N \ge 1$ let $A^{(N)} \in \operatorname{Mat}_N(\mathbb{Z})$ have iid ξ entries. Then as $N \to \infty$, $\operatorname{cok}(A^{(N)})_p$ converges in law to the Cohen-Lenstra distribution on abelian p-groups,

$$\Pr(G) = \frac{\prod_{i=1}^{\infty} (1 - p^{-i})}{\#\operatorname{Aut}(G)}$$

Furthermore, $cok(A^{(N)})_p$, p = 2, 3, 5, ... are asymptotically independent (as $N \to \infty$) for different p.

Universality and decoupling of primes

Easier to look at *p*-Sylow subgroups:

$$\operatorname{cok}(A) \cong \bigoplus_{p \text{ prime}} \operatorname{cok}(A)_p.$$

Theorem (Wood 2015)

Fix p and integer random variable ξ with $\xi \pmod{p}$ nonconstant. For each $N \ge 1$ let $A^{(N)} \in \operatorname{Mat}_N(\mathbb{Z})$ have iid ξ entries. Then as $N \to \infty$, $\operatorname{cok}(A^{(N)})_p$ converges in law to the Cohen-Lenstra distribution on abelian p-groups,

$$\Pr(G) = \frac{\prod_{i=1}^{\infty} (1 - p^{-i})}{\#\operatorname{Aut}(G)}$$

Furthermore, $cok(A^{(N)})_p$, p = 2, 3, 5, ... are asymptotically independent (as $N \to \infty$) for different p.

Note: $\operatorname{cok}(A)_p \cong \bigoplus_i \mathbb{Z}/p^{\lambda_i^{(p)}}\mathbb{Z}$ for some *p*-singular numbers $(\lambda_1^{(p)}, \ldots, \lambda_N^{(p)})$ (random partition); also $a_i = 2^{\lambda_i^{(2)}} \cdot 3^{\lambda_i^{(3)}} \cdots$

Backstory

- 1983: Cohen and Lenstra observe in statistics of class groups
- 1987: Friedman and Washington prove in exactly solvable p-adic random matrix model
- 2015: Wood's universality result

Backstory

- 1983: Cohen and Lenstra observe in statistics of class groups
- 1987: Friedman and Washington prove in exactly solvable p-adic random matrix model
- 2015: Wood's universality result

Other matrices' cokernels (e.g. symmetric, alternating, rectangular) give different universal limit laws governing sandpile groups of random graphs, Tate-Shafarevich groups,...

Question

How do p-singular numbers/cokernels of integer matrix products behave?

Backstory

- 1983: Cohen and Lenstra observe in statistics of class groups
- 1987: Friedman and Washington prove in exactly solvable p-adic random matrix model
- 2015: Wood's universality result

Other matrices' cokernels (e.g. symmetric, alternating, rectangular) give different universal limit laws governing sandpile groups of random graphs, Tate-Shafarevich groups,...

Question

How do p-singular numbers/cokernels of integer matrix products behave?

Remark

For singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for $A_i N \times N$ random complex matrices, local limits are deformations of sine/Airy kernel ([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018], ...).

$$\begin{split} &\mathsf{i}^{th} \operatorname{column} = \lambda_i^{(p)}(\tau). \\ &\mathsf{i}^{th} \operatorname{row} = \#\{j : \lambda_j^{(p)}(\tau) \ge i\} = p\operatorname{-rank}(p^{i-1}\operatorname{cok}(A_\tau \cdots A_1)). \\ & (\operatorname{Recall} p\operatorname{-rank}(G) := \dim_{\mathbb{F}_p}(G/pG), \text{ an } \mathbb{F}_p\operatorname{-vector space}). \end{split}$$

$$\begin{split} &\mathsf{i}^{th} \operatorname{column} = \lambda_i^{(p)}(\tau). \\ &\mathsf{i}^{th} \operatorname{row} = \#\{j : \lambda_j^{(p)}(\tau) \ge i\} = p\operatorname{-rank}(p^{i-1}\operatorname{cok}(A_\tau \cdots A_1)). \\ & (\operatorname{Recall} p\operatorname{-rank}(G) := \dim_{\mathbb{F}_p}(G/pG), \text{ an } \mathbb{F}_p\operatorname{-vector space}). \end{split}$$

First row = corank $(A_{\tau} \cdots A_1 \pmod{p})$.

Theorem (Nguyen-VP '24)

Fix p prime, let ξ be a \mathbb{Z} -valued random variable such that $\xi \pmod{p}$ is nonconstant. For each $N \geq 1$ let $A_1^{(N)}, A_2^{(N)}, \ldots$ be iid $N \times N$ matrices over \mathbb{Z} with iid ξ entries. Let

$$G_N := \operatorname{cok}(A_{\tau(N)}^{(N)} \cdots A_1^{(N)})_p,$$

where the number of matrices $\tau(N)$ satisfies

$$\begin{array}{l} \tau(N) \rightarrow \infty \text{ as } N \rightarrow \infty, \\ \tau(N) = O(e^{(\log N)^{1-\epsilon}}) \text{ for some } 0 < \epsilon < 1, \text{ and} \\ \text{ the fractional part } \{-\log_p \tau(N)\} \text{ converges to some } \boldsymbol{\zeta} \in [0,1]. \end{array}$$

$$\underbrace{p\operatorname{-rank}(p^{i-1}G_N)}_{(i^{th} \text{ row of blue wave})} - \operatorname{Int}(\log_p(\tau(N)) + \zeta) \to \mathcal{L}_{p^{-1}, p^{-\zeta}/(p-1)}^{(i)}$$

in joint distribution for i = 1, 2, ..., where the $\mathcal{L}_{p^{-1}, p^{-\zeta}/(p-1)}^{(i)}$ are explicit (correlated) integer random variables.

Particle positions $S^{(\infty)}(\tau) = (S^{(\infty)}(\tau)_1, S^{(\infty)}(\tau)_2, \ldots), \tau \in \mathbb{R}_{\geq 0}.$ Starts at $S^{(\infty)}(0) = (0, 0, \ldots).$

Indep. exp. clocks at $1, 2, \ldots$ of rates p^{-1}, p^{-2}, \ldots control jumps.

Particle positions $S^{(\infty)}(\tau) = (S^{(\infty)}(\tau)_1, S^{(\infty)}(\tau)_2, \ldots), \tau \in \mathbb{R}_{\geq 0}.$ Starts at $S^{(\infty)}(0) = (0, 0, \ldots).$

Indep. exp. clocks at $1, 2, \ldots$ of rates p^{-1}, p^{-2}, \ldots control jumps.

When particle is blocked, donates jump:

Particle positions $S^{(\infty)}(\tau) = (S^{(\infty)}(\tau)_1, S^{(\infty)}(\tau)_2, \ldots), \tau \in \mathbb{R}_{\geq 0}.$ Starts at $S^{(\infty)}(0) = (0, 0, \ldots).$

Indep. exp. clocks at $1, 2, \ldots$ of rates p^{-1}, p^{-2}, \ldots control jumps.

When particle is blocked, donates jump:

Theorem (VP '23)

Let $\tau_N = p^{N-\zeta}$. Then we have (joint) convergence in distribution $\underbrace{\mathcal{S}^{(\infty)}(\tau_N)'_i}_{i^{th} \text{ row}} - \log_p(\tau_N) - \zeta \xrightarrow{N \to \infty} \mathcal{L}^{(i)}_{p^{-1}, p^{-\zeta}/(p-1)}.$

Theorem (VP '23)

Let $\tau_N = p^{N-\zeta}$. Then we have (joint) convergence in distribution $\underbrace{\mathcal{S}^{(\infty)}(\tau_N)'_i}_{i^{th} \text{ row}} - \log_p(\tau_N) - \zeta \xrightarrow{N \to \infty} \mathcal{L}^{(i)}_{p^{-1}, p^{-\zeta}/(p-1)}.$

 $\mathcal{L}_{p^{-1},p^{-\zeta}/(p-1)}^{(1)},\mathcal{L}_{p^{-1},p^{-\zeta}/(p-1)}^{(2)},\ldots \text{ also give fixed-time row}$ marginals of reflecting Poisson sea, bulk limit of $\mathcal{S}^{(\infty)}$.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- p^{-i} exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- p^{-i} exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- p^{-i} exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots),$ $T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- p^{-i} exponential clock (independent of each other), donating move if blocked.

Definition (VP 2023)

The reflecting Poisson sea $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots),$ $T \ge 0$ is the continuous-time stochastic process with each $\mu_i(T)$ increasing by 1 according to rate- p^{-i} exponential clock (independent of each other), donating move if blocked.

Moral

[Nguyen-VP '24]: Universal convergence of discrete 'time' stochastic process $\operatorname{cok}(A_{\tau}^{(N)}\cdots A_1)_p, \tau=0,1,2,\ldots$ to $\mu(T)$ in 1-pt (single-time) distribution.

Moral

[Nguyen-VP '24]: Universal convergence of discrete 'time' stochastic process $\operatorname{cok}(A_{\tau}^{(N)}\cdots A_{1})_{p}, \tau=0,1,2,\ldots$ to $\mu(T)$ in 1-pt (single-time) distribution.

Multi-time convergence? ([VP '23a] does for 'uniform' matrices via Macdonald techniques)

The rescaled moment method

'Traditional' moment method [Wood 2014]: show $G_N \to G$ in law by showing $\mathbb{E}[\# \operatorname{Sur}(G_N, H)] \to \mathbb{E}[\# \operatorname{Sur}(G, H)]$ for all abelian *p*-groups *H*. 'Traditional' moment method [Wood 2014]: show $G_N \to G$ in law by showing $\mathbb{E}[\# \operatorname{Sur}(G_N, H)] \to \mathbb{E}[\# \operatorname{Sur}(G, H)]$ for all abelian *p*-groups *H*.

Issue: $cok(A_{\tau}^{(N)}\cdots A_1)_p$ gets bigger as $N, \tau \to \infty$. No convergence of groups!

'Traditional' moment method [Wood 2014]: show $G_N \to G$ in law by showing $\mathbb{E}[\# \operatorname{Sur}(G_N, H)] \to \mathbb{E}[\# \operatorname{Sur}(G, H)]$ for all abelian *p*-groups *H*.

Issue:
$$cok(A_{\tau}^{(N)}\cdots A_1)_p$$
 gets bigger as $N, \tau \to \infty$. No convergence of groups!

'Rescaled moment method' [Nguyen-VP '24]: If rescaled moments have nice limits

$$\frac{\mathbb{E}[\#\operatorname{Sur}(G_N, H)]}{C_N} \to C_H$$

for all H, then p-rank fluctuations (rows) converge to discrete random variables. *No integrable input.*

Outlook

p-singular numbers of products \rightsquigarrow reflecting Poisson sea, universally (single-time)

	Single-time	Multi-time
Matrices w/ iid entries	[Nguyen-VP '24], [VP '23a]	?
GL_N -invariant matrices	?	[VP '23b]

Outlook

p-singular numbers of products \rightsquigarrow reflecting Poisson sea, universally (single-time)

	Single-time	Multi-time
Matrices w/ iid entries	[Nguyen-VP '24], [VP '23a]	?
GL_N -invariant matrices	?	[VP '23b]

Thanks!