p-adic random matrix products and particle systems

Roger Van Peski (MIT)

UChicago Probability and Statistical Physics Seminar March 4, 2022 Based on https://arxiv.org/abs/2011.09356, https://arxiv.org/abs/2112.03725, and work in progress

Fix a prime p. $\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z}$, concretely

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \ldots : a_i \in \{0, \ldots, p-1\}\}.$$

Fix a prime p. $\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z}$, concretely

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \ldots : a_i \in \{0, \ldots, p-1\}\}.$$

Since $\mathbb{Z}_p^{\times} = \{a_0 + a_1p + a_2p^2 + \ldots : a_0 \neq 0\}$, may write any $x \in \mathbb{Z}_p$ as

$$x = u \cdot p^n, u \in \mathbb{Z}_p^{\times}, n \ge 0.$$

Fix a prime p. $\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z}$, concretely

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \ldots : a_i \in \{0, \ldots, p-1\}\}.$$

Since $\mathbb{Z}_p^{\times} = \{a_0 + a_1p + a_2p^2 + \ldots : a_0 \neq 0\}$, may write any $x \in \mathbb{Z}_p$ as $x = u \cdot p^n, u \in \mathbb{Z}_p^{\times}, n \ge 0.$

 $(\mathbb{Z}_p, +)$ is compact, so has Haar probability measure $\mu_{Haar}^{\mathbb{Z}_p}$, explicitly given by taking $a_i \in \{0, \ldots, p-1\}$ iid uniformly random.

Fix a prime $p. \mathbb{Z}_p := \varprojlim \mathbb{Z}/p^n \mathbb{Z}$, concretely

$$\mathbb{Z}_p = \{a_0 + a_1 p + a_2 p^2 + \ldots : a_i \in \{0, \ldots, p-1\}\}.$$

Since $\mathbb{Z}_p^{\times} = \{a_0 + a_1p + a_2p^2 + \ldots : a_0 \neq 0\}$, may write any $x \in \mathbb{Z}_p$ as $x = u \cdot p^n, u \in \mathbb{Z}_p^{\times}, n \ge 0.$

 $(\mathbb{Z}_p, +)$ is compact, so has Haar probability measure $\mu_{Haar}^{\mathbb{Z}_p}$, explicitly given by taking $a_i \in \{0, \ldots, p-1\}$ iid uniformly random.

 $\operatorname{GL}_n(\mathbb{Z}_p)$ also compact, hence has Haar probability measure.

Two worlds

	RMT over $\mathbb C$	RMT over \mathbb{Z}_p
Matrices	$\operatorname{Mat}_n(\mathbb{C})$	$\operatorname{Mat}_n(\mathbb{Z}_p)$
Compact	U(n)	$\operatorname{GL}_n(\mathbb{Z}_p)$
group		
Structure	SVD: $UAV =$	Smith normal form: $UAV =$
theorem	diag $(e^{-r_1},\ldots,e^{-r_n})$	$\operatorname{diag}(p^{\lambda_1},\ldots,p^{\lambda_n})$
	for $U, V \in U(n)$	for $U, V \in \operatorname{GL}_n(\mathbb{Z}_p)$
We study	Singular values e^{-r_i}	Singular numbers λ_i

Some natural ensembles: $n \times m$ corner of Haar U(N) or $\operatorname{GL}_N(\mathbb{Z}_p)$ ('Jacobi'), or iid Gaussian/ $\mu_{Haar}^{\mathbb{Z}_p}$ ('Ginibre'). Both are invariant under left- and right- multiplication by U(N) or $\operatorname{GL}_N(\mathbb{Z}_p)$.

Denote $SN(A) := (\lambda_1, ..., \lambda_n) \in \mathbb{Y}_n$, an integer partition $\lambda_1 \ge ... \ge \lambda_n \ge 0$.

Motivation: random abelian p-groups

If $A_n \in Mat_{n \times n}(\mathbb{Z}_p)$, get abelian *p*-group

$$\operatorname{coker}(A_n) := \mathbb{Z}_p^n / \operatorname{Im}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{\lambda_i} \mathbb{Z}$$

with $\lambda = SN(A_n)$.

Motivation: random abelian p-groups

If $A_n \in Mat_{n \times n}(\mathbb{Z}_p)$, get abelian *p*-group

$$\operatorname{coker}(A_n) := \mathbb{Z}_p^n / \operatorname{Im}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{\lambda_i} \mathbb{Z}$$

with $\lambda = SN(A_n)$.

For A_n with iid additive Haar entries ('Ginibre'), [Friedman-Washington '87] showed

$$\lim_{n \to \infty} \Pr\left(\operatorname{coker}(A_n) \cong \bigoplus_i \mathbb{Z}/p^{\lambda_i} \mathbb{Z}\right) = \frac{\operatorname{const}}{|\operatorname{Aut}\left(\bigoplus_i \mathbb{Z}/p^{\lambda_i} \mathbb{Z}\right)|}$$

matching numerically observed distribution of *p*-torsion part of class groups of quadratic imaginary number fields. Newer results: [Bhargava et al. '15], many works by Wood '10-'20, [Clancy-Kaplan-Leake-Payne-Wood '15], [Fulman '16], [Nguyen-Wood '18],...

Ginibre singular values vs. iid $\mu_{Haar}^{\mathbb{Z}_p}$ singular numbers

Can study singular values of $A_{\tau}A_{\tau-1}\cdots A_1$ for A_i random real/complex matrices, $\tau = 1, 2, \ldots$

- (Furstenberg-Kesten 1960) Gaussian fluctuations for $\log(\text{largest singular value of } A_{\tau} \cdots A_1)$ via ergodic theory.
- Works by Akemann, Burda, Forrester, Ipsen, Kieburg, Liu, Wang, Wei, and others, 2010s onward. Connections to statistical physics, dynamical systems, other areas...
- Works by Ahn, Gorin, Strahov, Sun analyze via degenerations of Macdonald processes, also 2010s onward.

Simulating *p*-adic matrix products

Set
$$\lambda(\tau) = (\lambda_1(\tau), \lambda_2(\tau), \dots, \lambda_n(\tau)) := SN(A_{\tau} \cdots A_1)$$
.

Example: $\lambda(\tau)$ when $A_i \in M_4(\mathbb{Z}_2)$ are iid with iid additive Haar entries.

Simulating p-adic matrix products

Set
$$\lambda(\tau) = (\lambda_1(\tau), \lambda_2(\tau), \dots, \lambda_n(\tau)) := SN(A_{\tau} \cdots A_1)$$
.

Example: $\lambda(\tau)$ when $A_i \in M_4(\mathbb{Z}_2)$ are iid with iid additive Haar entries.

View $(\lambda_1(\tau), \lambda_2(\tau), \dots, \lambda_n(\tau))$ as n particles on \mathbb{Z} evolving in discrete time.

LLN and dynamical CLT

Theorem (VP 2020)

Let $A_1, A_2, \ldots \in M_n(\mathbb{Z}_p)$ have iid additive Haar entries, and recall $\lambda(\tau) := SN(A_\tau \cdots A_1)$. Then as $\tau \to \infty$,

$$\frac{\lambda_i(\tau)}{\tau} \xrightarrow{a.s.} \frac{1}{p^i - 1}.$$
 (LLN)

Furthermore

$$\frac{\lambda_i(\lfloor ks \rfloor) - \frac{ks}{p^i - 1}}{\sqrt{k}C_i} \xrightarrow{k \to \infty} B_s^{(i)}$$
(CLT)

for $B_s^{(1)}, \ldots, B_s^{(n)}$ independent Brownian motions, C_i explicit constants.

Also holds when A_i are $n \times n$ corners of Haar-distributed elements of $GL_D(\mathbb{Z}_p)$, not necessarily identical (universal!).

Proof idea

Proof uses new explicit random-walk descriptions of $\lambda(\tau)$. Each $\lambda_i(\tau)$ independently samples a 'desired jump' $X_i \ge 0$ and donates if necessary to preserve interlacing.

Proof idea

Proof uses new explicit random-walk descriptions of $\lambda(\tau)$. Each $\lambda_i(\tau)$ independently samples a 'desired jump' $X_i \ge 0$ and donates if necessary to preserve interlacing.

Particles separate since $\mathbb{E}X_1 > \mathbb{E}X_2 > \ldots$, and Donsker applies.

Local limits

Question

For $r \in (0, 1)$, does joint evolution of bulk singular numbers $\lambda_{\lfloor rN \rfloor + i}(\tau), i \in \{\dots, -1, 0, 1, \dots\}$ converge as matrix size $N \to \infty$ to some Markov process on

$$\mathbb{Y}_{2\infty} := \{ \mu = (\dots, \mu_{-1}, \mu_0, \mu_1, \dots) \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}} : \mu_{i+1} \le \mu_i \} ?$$

Local limits

Question

For $r \in (0,1)$, does joint evolution of bulk singular numbers $\lambda_{\lfloor rN \rfloor + i}(\tau), i \in \{\dots, -1, 0, 1, \dots\}$ converge as matrix size $N \to \infty$ to some Markov process on

$$\mathbb{Y}_{2\infty} := \{ \mu = (\dots, \mu_{-1}, \mu_0, \mu_1, \dots) \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}} : \mu_{i+1} \leq \mu_i \}?$$

Definition

The bi-infinite reflected Poisson walk (BRPW) $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with $\mu_i(T)$ jumping by rate- p^{-i} Poisson clock, donating move if blocked.

Local limits

Question

For $r \in (0,1)$, does joint evolution of bulk singular numbers $\lambda_{\lfloor rN \rfloor + i}(\tau), i \in \{\dots, -1, 0, 1, \dots\}$ converge as matrix size $N \to \infty$ to some Markov process on

$$\mathbb{Y}_{2\infty} := \{ \mu = (\dots, \mu_{-1}, \mu_0, \mu_1, \dots) \in \mathbb{Z}_{\geq 0}^{\mathbb{Z}} : \mu_{i+1} \leq \mu_i \}?$$

Definition

The bi-infinite reflected Poisson walk (BRPW) $\mu(T) = (\dots, \mu_{-1}(T), \mu_0(T), \mu_1(T), \dots), T \ge 0$ is the continuous-time stochastic process with $\mu_i(T)$ jumping by rate- p^{-i} Poisson clock, donating move if blocked.

In previous examples, $X_i \approx \text{Ber}(p^{-i})$ for large *i*, so Poisson limit theorem implies BRPW bulk limit. How universal?

Universal bulk limit

Theorem (VP 2022+, to appear)

Let $r \in (0,1)$, and for each $N \ge 1$, let

• $A_i^{(N)}, i \ge 1$ iid $N \times N$ matrices with distribution invariant under left- and right- $\operatorname{GL}_N(\mathbb{Z}_p)$ multiplication,

•
$$\lambda^{(N)}(\tau) = \operatorname{SN}(A_{\tau}^{(N)} \cdots A_{1}^{(N)})$$

Then the joint evolution of $L_i(T) := \lambda_{\lfloor rN \rfloor + i}(\lfloor c^{-1}T \rfloor), i \in \mathbb{Z}$ converges to the BRPW $\mu(T)$ for explicit $c = c(r, Law(SN(A_i^{(N)}))),$ provided that the random partitions $SN(A_N^{(i)}), N \ge 1$ satisfy $SN(A_i^{(N)})$ is not identically $(0, \ldots, 0)$, and $N - \#\{\text{nonzero SNs of } A_i^{(N)}\} \xrightarrow{N \to \infty} \infty$ in probability.

Universal bulk limit

Theorem (VP 2022+, to appear)

Let $r \in (0,1)$, and for each $N \ge 1$, let

• $A_i^{(N)}, i \ge 1$ iid $N \times N$ matrices with distribution invariant under left- and right- $\operatorname{GL}_N(\mathbb{Z}_p)$ multiplication,

•
$$\lambda^{(N)}(\tau) = \operatorname{SN}(A_{\tau}^{(N)} \cdots A_{1}^{(N)})$$

Then the joint evolution of $L_i(T) := \lambda_{\lfloor rN \rfloor + i}(\lfloor c^{-1}T \rfloor), i \in \mathbb{Z}$ converges to the BRPW $\mu(T)$ for explicit $c = c(r, Law(SN(A_i^{(N)})))$, provided that the random partitions $SN(A_N^{(i)}), N \ge 1$ satisfy

SN
$$(A_i^{(N)})$$
 is not identically $(0, \ldots, 0)$, and

2
$$rN - \#\{\text{nonzero SNs of } A_i^{(N)}\} \xrightarrow{N \to \infty} \infty$$

in probability.

Taking r = 1, same hypotheses, get edge limit to an *infinite* reflected Poisson walk $(\ldots, \mu_{-1}(T), \mu_0(T))$.

Comparison to dynamical local limits over ${\mathbb C}$

Bulk local limits of log singular values of complex matrix products: Brownian motions with drift conditioned never to intersect (highly nonlocal) [Akemann-Burda-Kieburg '20], [Ahn '22]

...while p-adic local limits feature only local interactions at collisions

Limits of height function?

Mapping dynamics to particle system

Natural to consider randomly evolving integer partition $\lambda(T) = (\lambda_1(T), \lambda_2(T), \ldots), T \ge 0$ where $\lambda_i(T)$ jumps by rate $(1-p)p^{-i}$ Poisson clock, with reflection/move donation.

Map $x_k = |\{i : \lambda_i \ge k\}| - k$; above $\lambda = (6, 5, 3, 3, 2, 1, 1, 1)$, $\mathbf{x} = (7, 3, 1, -2, -3, -5, -7, -8, ...)$. Then $\mathsf{rate}(x_k \mapsto x_k + 1) = p^{-(x_k+k)}(1 - p^{-(x_{k-1}-x_k-1)})$

Slowed *t*-TASEP and '*p*-adic β -ensembles'

Extrapolate to particle system at general $t = p^{-1} \in (0, 1)$,

$$rate(x_k \mapsto x_k + 1) = t^{x_k + k} (1 - t^{gap_k}), \quad gap_k := x_{k-1} - x_k - 1$$

'Slowed *t*-TASEP': if instead rate $(x_k) = (1 - t^{gap_k})$, get *q*-totally asymmetric exclusion process (*q*-TASEP) of [Borodin-Corwin '11].

Slowed *t*-TASEP and '*p*-adic β -ensembles'

Extrapolate to particle system at general $t = p^{-1} \in (0, 1)$,

 $rate(x_k \mapsto x_k + 1) = t^{x_k + k} (1 - t^{gap_k}), \quad gap_k := x_{k-1} - x_k - 1$

'Slowed *t*-TASEP': if instead rate $(x_k) = (1 - t^{gap_k})$, get *q*-totally asymmetric exclusion process (*q*-TASEP) of [Borodin-Corwin '11].

Theorem (VP 2021)

In suitable joint $t \to 1$, time $\to \infty$ limit, fluctuations of x_k converge jointly to Gaussians $Z_0^{(k)}$, unique stationary distributions of

$$dZ_T^{(k)} = ((k-1)Z_T^{(k-1)} - kZ_T^{(k)})dT + dW_T^{(k)}, \qquad k \ge 1,$$

for $W_T^{(k)}, k \ge 1$ independent standard Brownian motions.

Convergence to random function?

Scaling limit to random function?

Theorem (VP 2021)

The process $R_s^{(u)} := u^{1/4} f_{lim}(u + s\sqrt{u})$ converges as $u \to \infty$ to the unique stationary Gaussian process $R_s, s \in \mathbb{R}$ with covariances

$$\operatorname{Cov}(R_a, R_b) = \int_0^\infty y^2 e^{-y^2 - |b-a|y|} dy.$$

\mathbb{Z}_p vs. \mathbb{C} : correlations of random height function

Integrable probability and \mathbb{C} vs. \mathbb{Z}_p RMT analogies

Macdonald polynomials $P_{\lambda}(x_1, \ldots, x_n; q, t)$ indexed by $\lambda \in \mathbb{Y}_n$ are symmetric polynomials in x_1, \ldots, x_n with two parameters q, t.

Conclusion

We showed:

- Structural parallels to RMT over C mediated by special functions, bringing Macdonald process tools and ideas
- Brownian fluctuations for each singular number of $A_{ au} \cdots A_1$
- Bulk limit to bi-infinite reflected Poisson walk
- Unexpected $p \to 1$ continuous bulk limit due to surprising locality of interactions

Conclusion

We showed:

- Structural parallels to RMT over C mediated by special functions, bringing Macdonald process tools and ideas
- Brownian fluctuations for each singular number of $A_{ au} \cdots A_1$
- Bulk limit to bi-infinite reflected Poisson walk
- Unexpected $p \to 1$ continuous bulk limit due to surprising locality of interactions

Some open questions:

- Stationary distribution of slowed *t*-TASEP (in progress)
- Applications of *p*-adic matrix products to groups arising in NT, random graphs,...?

Conclusion

We showed:

- Structural parallels to RMT over C mediated by special functions, bringing Macdonald process tools and ideas
- Brownian fluctuations for each singular number of $A_{ au} \cdots A_1$
- Bulk limit to bi-infinite reflected Poisson walk
- Unexpected $p \to 1$ continuous bulk limit due to surprising locality of interactions

Some open questions:

- Stationary distribution of slowed *t*-TASEP (in progress)
- Applications of *p*-adic matrix products to groups arising in NT, random graphs,...?

Thanks for listening!