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Fix a prime p. Z, := l'&nZ/p”Z, concretely

Z, = {ap+aip+ap*+...:a; €{0,...,p—1}}.

Since Z; = {ag +a1p + asp? + ... : ag # 0}, may write any
x € Ly as
r=u-p",u€Zy,n>0.

(Zy,+) is compact, so has Haar probability measure u%faar’
explicitly given by taking a; € {0,...,p — 1} iid uniformly random.

GL,,(Z,) also compact, hence has Haar probability measure.
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Two worlds

RMT over C RMT over 7,

Matrices Mat,, (C) Maty,(Z,)
Compact U(n) GL,(Zy)
group
Structure SVD: UAV = Smith normal form: UAV =
theorem | diag(e™",...,e7 ") diag(p™t, ..., p*)

for U,V € U(n) for U,V € GL,(Z,)
We study | Singular values e™" Singular numbers \;

Some natural ensembles: n x m corner of Haar U(N) or GLy(Z))

(“Jacobi’), or iid Gaussian/ujzg}’aar (‘Ginibre'). Both are invariant
under left- and right- multiplication by U(N) or GLy(Z,).

Denote SN(A) := (A1,...,An) € Y, an integer partition

A]_Z"‘ZATLZO
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Motivation: random abelian p-groups

If A,, € Maty,xn(Z,), get abelian p-group
coker(A,) == Z7 /Im(A @Z/p Y/

with A = SN(A4,,).
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Motivation: random abelian p-groups

If A,, € Maty,xn(Z,), get abelian p-group

coker(A,) == Z7 /Im(A @Z/p Y/

with A = SN(A4,,).

For A,, with iid additive Haar entries (‘Ginibre’),
[Friedman-Washington '87] showed

const
lim Pr | coker(A Z/p rig,
n—s00 ( @ / > ‘AUt (EBZ Z/pAiZ)‘

matching numerically observed distribution of p-torsion part of class
groups of quadratic imaginary number fields. Newer results:
[Bhargava et al. '15], many works by Wood '10-'20,

[Clancy-Kaplan-Leake-Payne-Wood '15], [Fulman '16], [Nguyen-Wood '18],...
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" : N/ .
Ginibre singular values vs. iid g,  singular numbers

Marc;henko—Pastur law

Sine process

Bessel process Airy point process

Histogram of singular values of a single
10* x 10* Ginibre (iid Gaussian) matrix
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Histogram of singular numbers of a single
100 x 100 iid additive Haar matrix
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The real/complex product process

Can study singular values of A;A,_1---A; for A; random
real /complex matrices, 7 = 1,2, .. ..

@ (Furstenberg-Kesten 1960) Gaussian fluctuations for
log(largest singular value of A, --- A1) via ergodic theory.

@ Works by Akemann, Burda, Forrester, Ipsen, Kieburg, Liu,
Wang, Wei, and others, 2010s onward. Connections to
statistical physics, dynamical systems, other areas...

@ Works by Ahn, Gorin, Strahov, Sun analyze via degenerations
of Macdonald processes, also 2010s onward.
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Simulating p-adic matrix products
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are iid with iid
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Simulating p-adic matrix products
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Example: \(7)

when
Aa() | A@ c M4(ZQ)
o are iid with iid

additive Haar

f, () 1 entries.

80 100

View (A1(7), A2(7), ..., An(7)) as n particles on Z evolving in

discrete time.
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LLN and dynamical CLT

Theorem (VP 2020)

Let Ay, Ay, ... € My, (Z,) have iid additive Haar entries, and recall
A(T) :=SN(A,---Ay). Then as T — o0,

)\i a.s. 1
™) as, 1 (LLN)
T pt—1
Furthermore .
No(lks|) — s
WD) =57 oo, Bl (CLT)
VEC;

for Bgl), e Bén) independent Brownian motions, C; explicit
constants.

v

Also holds when A; are n x n corners of Haar-distributed elements

of GLp(Z,), not necessarily identical (universall).
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Proof idea

Proof uses new explicit random-walk descriptions of A(7). Each
i (7T) independently samples a ‘desired jump’ X; > 0 and donates
if necessary to preserve interlacing.

X3 =2 Xo=4 X;=1
A(T) = (6,4,0) - | ——@— : @ >
-2 -1 0 1 2 3 4 5 6 7 8 9 10
0 4 1
-« I/I_\". o ——©@ >
-2 —1 0 1 2 3 4 5 6 7 8 9 10
0 03
< : o : . — QP . . . >
-2 -1 0 1 2 3 4 5 6 7 8 9 10

0 0 0
AT+ 1) =1(9,6,2) - : : : g : : : ./—\".—|—>
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Proof uses new explicit random-walk descriptions of A(7). Each
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if necessary to preserve interlacing.

X3 =2 Xo=4 X1 =1

A(T) = (6,4,0) -« g : —@———@— : : >
-2 -1 0 1 2 3 4 5 6 7 8 9 10

0 4 1
- — g o—© -
-2 -1 0 1 2 3 4 5 6 7 8 9 10

0 /_\,103
< l @ . — Q) >
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0 0 0
AT+ 1) =1(9,6,2) - : : : g : : : ./—\.—|+

Particles separate since EX; > EX5 > ..., and Donsker applies.
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Local limits

Question

For r € (0,1), does joint evolution of bulk singular numbers

ArN|4i(T), 0 €4...,—1,0,1,...} converge as matrix size N — oo
to some Markov process on

Yoo :={pn = (.-, pet, o, i1, - --) € ZZ¢ ¢ prig1 < pi}?
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Local limits

Question

For r € (0,1), does joint evolution of bulk singular numbers
ArN|4i(T), 0 €4...,—1,0,1,...} converge as matrix size N — oo
to some Markov process on

Yoo :={pn = (.-, pet, o, i1, - --) € ZZ¢ ¢ prig1 < pi}?

Definition
The bi-infinite reflected Poisson walk (BRPW)

M(T) — ( e 7/’L—1(T>7 IUO(T)v ,U'l(T)7 . )7T > 0 is the .
continuous-time stochastic process with 11;(T) jumping by rate-p™"
Poisson clock, donating move if blocked.

In previous examples, X; ~ Ber(p~*) for large i, so Poisson limit
theorem implies BRPW bulk limit. How universal?
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Universal bulk limit

Theorem (VP 2022+, to appear)
Let r € (0,1), and for each N > 1, let

) AZ(N),i > 1 iid N x N matrices with distribution invariant
under left- and right- GLy(Z,) multiplication,

o XM (7) =N ... 4y,
Then the joint evolution of Lij(T) := ;N |+:([¢7'T]),i € Z
converges to the BRPW u(T) for explicit ¢ = c(r, LaW(SN(AZ(N)))),
provided that the random partitions SN(A%)), N > 1 satisfy

(1) SN(A(N)) is not identically (0,...,0), and

N—oo

@ N — #{nonzero SNs of A(N)} —— 0 in probability.

11/19



Universal bulk limit

Theorem (VP 2022+, to appear)
Let r € (0,1), and for each N > 1, let

) AZ(N),i > 1 iid N x N matrices with distribution invariant

under left- and right- GLy(Z,) multiplication,

o AM) () = sN(AM ... AM),
Then the joint evolution of Lij(T) := ;N |+:([¢7'T]),i € Z
converges to the BRPW u(T) for explicit ¢ = c(r, LaW(SN(AZ(N)))),
provided that the random partitions SN(A%)), N > 1 satisfy

(1) SN(A(N)) is not identically (0,...,0), and

N—oo

@ N — #{nonzero SNs of A(N)} —— 0 in probability.

Taking » = 1, same hypotheses, get edge limit to an infinite
reflected Poisson walk (..., u_1(T), uo(T)).
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Comparison to dynamical local limits over C

Bulk local limits of log singular values of complex ...while p-adic local limits feature
matrix products: Brownian motions with drift only local interactions at collisions
conditioned never to intersect (highly nonlocal)
[Akemann-Burda-Kieburg ‘20], [Ahn ‘22]

pi(T)

p-1(T)
po(T)

i (T)
e /W; T

W p2(T)

M w3(T")
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Limits of height function?

Random A € Mat,(C)

! !

fa(z) = [{i: Mi(A) > z}| fa(z) = |{i: SN(A); > z}|

Random A € Mat,(Z,)

y Dulk scaling limit i Bulk scaling limit

???

1D slices of 2D
Gaussian free field
[Borodin ‘10]
(logarithmic
correlations, not a
function!)
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Mapping dynamics to particle system

Natural to consider randomly evolving integer partition
MNT) = (M (1), 2(T),...),T > 0 where X\;(T) jumps by rate
(1 — p)p~* Poisson clock, with reflection/move donation.

M(T) M(T) AN
AVANYLIAVAN
o o o o o o [ L J { ]
024(T) zo(T) 21(T)

Map z = [{i: \; > k}| — k; above A = (6,5,3,3,2,1,1,1),
x = (7,3,1,—-2,-3,—5,—7,—8,...). Then

rate(:vk — T + 1) — p_(zvk+k)(1 — p—(wk;—1—:vk—1)) 1a)10



Slowed t-TASEP and ‘p-adic S-ensembles’

Extrapolate to particle system at general t = p~! € (0, 1),
rate(xy, — x + 1) = t57F(1 — t5%P%),  gap, = a1 — T — 1

‘Slowed ¢-TASEP': if instead rate(z) = (1 — t8%Pk), get g-totally
asymmetric exclusion process (q-TASEP) of [Borodin-Corwin "11].
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Extrapolate to particle system at general t = p~! € (0, 1),
rate(xy, — x + 1) = t57F(1 — t5%P%),  gap, = a1 — T — 1

‘Slowed ¢-TASEP': if instead rate(z) = (1 — t8%Pk), get g-totally
asymmetric exclusion process (q-TASEP) of [Borodin-Corwin "11].

Theorem (VP 2021)

In suitable joint t — 1, time — oo limit, fluctuations of x;. converge
jointly to Gaussians Z(()k), unique stationary distributions of

dz® = (k= 1) 28V —kzZ8 e + aw® . k>1,

for W}m, k > 1 independent standard Brownian motions.
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Convergence to random function?

Hay(@) = |{i: M(T) > 2} fim(z) = 201

p—1,T — 00
> T
subtract mean

i Ao(T) M(T) g

Scaling limit to random function?

Theorem (VP 2021)

The process Ré“) = u'? fiim (U + sy/u) converges as u — 0o to
the unique stationary Gaussian process Ry, s € R with covariances

Cov(Ra,Rb):/ yle v —Ib—alygy,
0
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Z, vs. C: correlations of random height function

Random A € Mat,(C)

i :

fa(z) = [{i: Ai(A) > z}| fa(z) = [{i: SN(A); > z}|

Random A € Maty(Zp)

Bulk scaling limit p— 1l bulk scaling limit
1D slices of 2D
Gaussian free field 1D Gaussian o
[Boroc!ln ‘1'0] process [VP ‘21] - VI
(logarithmic
correlations, not a Shmation by A. Kaxael
function!)
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Integrable probability and C vs. Z, RMT analogies

Macdonald polynomials Py(x1,...,xy;q,t) indexed by A € Y,, are
symmetric polynomials in x4, ..., z, with two parameters ¢, t.

Macdonald measure
[Borodin-Corwin ’11]
_ P g AT P g )
M (1, .. =L gm—ntl  gD—n)

Pr(\)

B e {1,2,4}
t = q°?

q—1

A rescaled

eckman-Opdam measure:

singular values of n x m corners
of Haar O(D),U(D), Sp*(D)

matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n x m
corners of Haar GLp(Z,) matrices
[VP ’20]
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Conclusion

We showed:

@ Structural parallels to RMT over C mediated by special
functions, bringing Macdonald process tools and ideas
@ Brownian fluctuations for each singular number of A, --- A4

@ Bulk limit to bi-infinite reflected Poisson walk

@ Unexpected p — 1 continuous bulk limit due to surprising
locality of interactions
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Thanks for listening!
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