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Quick crash course in p-adic numbers

Fix a prime p. Zp := lim �Z/pnZ, concretely

Zp = {a0 + a1p+ a2p
2 + . . . : ai 2 {0, . . . , p� 1}}.

Since Z⇥
p = {a0 + a1p+ a2p

2 + . . . : a0 6= 0}, may write any

x 2 Zp as

x = u · pn, u 2 Z⇥
p , n � 0.

(Zp,+) is compact, so has Haar probability measure µ
Zp

Haar
,

explicitly given by taking ai 2 {0, . . . , p� 1} iid uniformly random.

GLn(Zp) also compact, hence has Haar probability measure.
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Two worlds

RMT over C RMT over Zp

Matrices Matn(C) Matn(Zp)
Compact U(n) GLn(Zp)
group

Structure SVD: UAV = Smith normal form: UAV =
theorem diag(e�r1 , . . . , e

�rn) diag(p�1 , . . . , p
�n)

for U, V 2 U(n) for U, V 2 GLn(Zp)
We study Singular values e

�ri Singular numbers �i

Some natural ensembles: n⇥m corner of Haar U(N) or GLN (Zp)

(‘Jacobi’), or iid Gaussian/µ
Zp

Haar
(‘Ginibre’). Both are invariant

under left- and right- multiplication by U(N) or GLN (Zp).

Denote SN(A) := (�1, . . . ,�n) 2 Yn, an integer partition

�1 � . . . � �n � 0.
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Motivation: random abelian p-groups

If An 2 Matn⇥n(Zp), get abelian p-group

coker(An) := Zn

p/Im(An) ⇠=
nM

i=1

Z/p�iZ

with � = SN(An).

For An with iid additive Haar entries (‘Ginibre’),

[Friedman-Washington ’87] showed

lim
n!1

Pr

 
coker(An) ⇠=

M

i

Z/p�iZ
!

=
const

|Aut (
L

i
Z/p�iZ)|

matching numerically observed distribution of p-torsion part of class

groups of quadratic imaginary number fields. Newer results:

[Bhargava et al. ’15], many works by Wood ’10-’20,
[Clancy-Kaplan-Leake-Payne-Wood ’15], [Fulman ’16], [Nguyen-Wood ’18],...
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Ginibre singular values vs. iid µ
Zp

Haar
singular numbers
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The real/complex product process

Can study singular values of A⌧A⌧�1 · · ·A1 for Ai random

real/complex matrices, ⌧ = 1, 2, . . ..

(Furstenberg-Kesten 1960) Gaussian fluctuations for

log(largest singular value of A⌧ · · ·A1) via ergodic theory.

Works by Akemann, Burda, Forrester, Ipsen, Kieburg, Liu,

Wang, Wei, and others, 2010s onward. Connections to

statistical physics, dynamical systems, other areas...

Works by Ahn, Gorin, Strahov, Sun analyze via degenerations

of Macdonald processes, also 2010s onward.
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Simulating p-adic matrix products

Set �(⌧) = (�1(⌧),�2(⌧), . . . ,�n(⌧)) := SN(A⌧ · · ·A1).

τ

λ1(τ )

λ2(τ )

λ3(τ )

λ4(τ )

Example: �(⌧)
when

Ai 2M4(Z2)
are iid with iid

additive Haar

entries.

View (�1(⌧),�2(⌧), . . . ,�n(⌧)) as n particles on Z evolving in

discrete time.
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LLN and dynamical CLT

Theorem (VP 2020)

Let A1, A2, . . . 2Mn(Zp) have iid additive Haar entries, and recall

�(⌧) := SN(A⌧ · · ·A1). Then as ⌧ !1,

�i(⌧)

⌧

a.s.��! 1

pi � 1
. (LLN)

Furthermore

�i(bksc)� ks

pi�1p
kCi

k!1���! B
(i)
s (CLT)

for B
(1)
s , . . . , B

(n)
s independent Brownian motions, Ci explicit

constants.

Also holds when Ai are n⇥ n corners of Haar-distributed elements

of GLD(Zp), not necessarily identical (universal!).
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Proof idea

Proof uses new explicit random-walk descriptions of �(⌧). Each

�i(⌧) independently samples a ‘desired jump’ Xi � 0 and donates

if necessary to preserve interlacing.

�2 �1 0 1 2 3 4 5 6 7 8 9 10

X3 = 2 X2 = 4 X1 = 1

�(⌧) = (6, 4, 0)

�2 �1 0 1 2 3 4 5 6 7 8 9 10

0 4 1

�2 �1 0 1 2 3 4 5 6 7 8 9 10

0 03

�2 �1 0 1 2 3 4 5 6 7 8 9 10

0 0 0
�(⌧ + 1) = (9, 6, 2)

Particles separate since EX1 > EX2 > . . ., and Donsker applies.
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Local limits

Question

For r 2 (0, 1), does joint evolution of bulk singular numbers

�brNc+i(⌧), i 2 {. . . ,�1, 0, 1, . . .} converge as matrix size N !1
to some Markov process on

Y21 := {µ = (. . . , µ�1, µ0, µ1, . . .) 2 ZZ
�0 : µi+1  µi}?

Definition

The bi-infinite reflected Poisson walk (BRPW)

µ(T ) = (. . . , µ�1(T ), µ0(T ), µ1(T ), . . .), T � 0 is the

continuous-time stochastic process with µi(T ) jumping by rate-p
�i

Poisson clock, donating move if blocked.

In previous examples, Xi ⇡ Ber(p�i) for large i, so Poisson limit

theorem implies BRPW bulk limit. How universal?
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Universal bulk limit

Theorem (VP 2022+, to appear)

Let r 2 (0, 1), and for each N � 1, let

A
(N)
i

, i � 1 iid N ⇥N matrices with distribution invariant

under left- and right- GLN (Zp) multiplication,

�
(N)(⌧) = SN(A(N)

⌧ · · ·A(N)
1 ).

Then the joint evolution of Li(T ) := �brNc+i(bc�1
T c), i 2 Z

converges to the BRPW µ(T ) for explicit c = c(r, Law(SN(A(N)
i

))),

provided that the random partitions SN(A(i)
N
), N � 1 satisfy

1 SN(A(N)
i

) is not identically (0, . . . , 0), and

2 rN �#{nonzero SNs of A
(N)
i

} N!1����! 1 in probability.

Taking r = 1, same hypotheses, get edge limit to an infinite

reflected Poisson walk (. . . , µ�1(T ), µ0(T )).
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Comparison to dynamical local limits over C
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Limits of height function?
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Mapping dynamics to particle system

Natural to consider randomly evolving integer partition

�(T ) = (�1(T ),�2(T ), . . .), T � 0 where �i(T ) jumps by rate

(1� p)p�i
Poisson clock, with reflection/move donation.

Map xk = |{i : �i � k}|� k; above � = (6, 5, 3, 3, 2, 1, 1, 1),
x = (7, 3, 1,�2,�3,�5,�7,�8, . . .). Then

rate(xk 7! xk + 1) = p
�(xk+k)(1� p

�(xk�1�xk�1))
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Slowed t-TASEP and ‘p-adic �-ensembles’

Extrapolate to particle system at general t = p
�1 2 (0, 1),

rate(xk 7! xk + 1) = t
xk+k(1� t

gapk), gapk := xk�1 � xk � 1

‘Slowed t-TASEP’: if instead rate(xk) = (1� t
gapk), get q-totally

asymmetric exclusion process (q-TASEP) of [Borodin-Corwin ’11].

Theorem (VP 2021)

In suitable joint t! 1, time!1 limit, fluctuations of xk converge

jointly to Gaussians Z
(k)
0 , unique stationary distributions of

dZ
(k)
T

= ((k � 1)Z(k�1)
T

� kZ
(k)
T

)dT + dW
(k)
T

, k � 1,

for W
(k)
T

, k � 1 independent standard Brownian motions.
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Convergence to random function?

Theorem (VP 2021)

The process R
(u)
s := u

1/4
flim(u+ s

p
u) converges as u!1 to

the unique stationary Gaussian process Rs, s 2 R with covariances

Cov(Ra, Rb) =

Z 1

0
y
2
e
�y

2�|b�a|y
dy.
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Zp vs. C: correlations of random height function
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Integrable probability and C vs. Zp RMT analogies

Macdonald polynomials P�(x1, . . . , xn; q, t) indexed by � 2 Yn are

symmetric polynomials in x1, . . . , xn with two parameters q, t.

Macdonald measure
[Borodin-Corwin ’11]

Pr(λ) =
Pλ(1, . . . , tn−1; q, t)Qλ(tm−n+1, . . . , tD−n; q, t)

Πq,t(1, . . . , tn−1; tm−n+1, . . . , tD−n)

Heckman-Opdam measure:
singular values of n×m corners

of Haar O(D), U(D), Sp∗(D)
matrices [Forrester-Rains ’05]

Hall-Littlewood measure:
singular numbers of n×m

corners of Haar GLD(Zp) matrices
[VP ’20]

q → 0
β ∈ {1, 2, 4}
t = qβ/2

q → 1
λ rescaled

t = 1/p
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Conclusion

We showed:

Structural parallels to RMT over C mediated by special

functions, bringing Macdonald process tools and ideas

Brownian fluctuations for each singular number of A⌧ · · ·A1

Bulk limit to bi-infinite reflected Poisson walk

Unexpected p ! 1 continuous bulk limit due to surprising

locality of interactions

Some open questions:

Stationary distribution of slowed t-TASEP (in progress)

Applications of p-adic matrix products to groups arising in NT,

random graphs,...?

Thanks for listening!
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