Hall-Littlewood polynomials, branching graphs, and the combinatorics of *p*-adic random matrices

Roger Van Peski (MIT)

MIT-Harvard-MSR Combinatorics Seminar February 18, 2022 Based on https://arxiv.org/abs/2112.02147 and https://arxiv.org/abs/2011.09356

Harmonic analysis of 'big' groups: began with [Thoma 1964] and [Voiculescu 1976] classifying characters of S_{∞} and $U(\infty)$.

Harmonic analysis of 'big' groups: began with [Thoma 1964] and [Voiculescu 1976] classifying characters of S_{∞} and $U(\infty)$.

Newer results: [Olshanski-Vershik 1996] classified infinite Hermitian random matrices invariant under conjugation by $U(\infty)$, [Bufetov-Qiu 2016] infinite *p*-adic random matrices invariant under $\operatorname{GL}_{\infty}(\mathbb{Z}_p)$.

Harmonic analysis of 'big' groups: began with [Thoma 1964] and [Voiculescu 1976] classifying characters of S_{∞} and $U(\infty)$.

Newer results: [Olshanski-Vershik 1996] classified infinite Hermitian random matrices invariant under conjugation by $U(\infty)$, [Bufetov-Qiu 2016] infinite *p*-adic random matrices invariant under $GL_{\infty}(\mathbb{Z}_p)$.

Vershik-Kerov (1980 onward): new proofs by recasting in terms of branching graphs defined from symmetric functions. Work of Borodin, Gorin, Okounkov, Olshanski, many others...

Harmonic analysis of 'big' groups: began with [Thoma 1964] and [Voiculescu 1976] classifying characters of S_{∞} and $U(\infty)$.

Newer results: [Olshanski-Vershik 1996] classified infinite Hermitian random matrices invariant under conjugation by $U(\infty)$, [Bufetov-Qiu 2016] infinite *p*-adic random matrices invariant under $GL_{\infty}(\mathbb{Z}_p)$.

Vershik-Kerov (1980 onward): new proofs by recasting in terms of branching graphs defined from symmetric functions. Work of Borodin, Gorin, Okounkov, Olshanski, many others...

Today: new branching graph result of this type, related to Hall-Littlewood polynomials. Recovers results of [Bufetov-Qiu 2016, Assiotis 2020] on infinite *p*-adic random matrices. Hall-Littlewood polynomials and branching graphs

Hall-Littlewood polynomials

Hall-Littlewood (Laurent) polynomials

$$P_{\lambda}(x_1,\ldots,x_n;t) := \frac{1}{v_{\lambda}(t)} \sum_{\sigma \in S_n} \sigma \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{1 \le i < j \le n} \frac{x_i - tx_j}{x_i - x_j} \right)$$

are symmetric (Laurent) polynomials in x_1, \ldots, x_n depending on another parameter t, indexed by integer signatures

$$\operatorname{Sig}_n = \{ (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_1 \ge \dots \ge \lambda_n \}.$$

Here $v_{\lambda}(t)$ is the constant normalizing so that

$$P_{\lambda}(x_1,\ldots,x_n;t)=x_1^{\lambda_1}x_2^{\lambda_2}\cdots x_n^{\lambda_n}+$$
other terms.

Hall-Littlewood polynomials

Hall-Littlewood (Laurent) polynomials

$$P_{\lambda}(x_1,\ldots,x_n;t) := \frac{1}{v_{\lambda}(t)} \sum_{\sigma \in S_n} \sigma \left(x_1^{\lambda_1} \cdots x_n^{\lambda_n} \prod_{1 \le i < j \le n} \frac{x_i - tx_j}{x_i - x_j} \right)$$

are symmetric (Laurent) polynomials in x_1, \ldots, x_n depending on another parameter t, indexed by integer signatures

$$\operatorname{Sig}_n = \{ (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n : \lambda_1 \ge \dots \ge \lambda_n \}.$$

Here $v_{\lambda}(t)$ is the constant normalizing so that

$$P_{\lambda}(x_1,\ldots,x_n;t) = x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n} + \text{other terms}$$

Note

$$P_{\lambda}(x_1, \dots, x_n; t = 0) = s_{\lambda}(x_1, \dots, x_n) := \frac{\det(x_i^{\lambda_j + n - j})_{1 \le i, j \le n}}{\prod_{1 \le i < j \le n} (x_i - x_j)}.$$

Alternative inductive definition (branching rule)

Write $\mu \prec \lambda$ if $\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \ldots \ge \lambda_n$ ('interlacing'). $m_k(\mu) := |\{i : \mu_i = k\}|.$

Alternative inductive definition (branching rule)

Write
$$\mu \prec \lambda$$
 if $\lambda_1 \ge \mu_1 \ge \lambda_2 \ge \mu_2 \ge \ldots \ge \lambda_n$ ('interlacing').
 $m_k(\mu) := |\{i : \mu_i = k\}|.$

$$P_{\lambda}(x_{1},...,x_{n};t) = \sum_{\substack{\mu \in \operatorname{Sig}_{n-1} \\ \mu \prec \lambda}} \left(x_{n}^{|\lambda|-|\mu|} \prod_{\substack{j \in \mathbb{Z}: \\ m_{j}(\mu)=m_{j}(\lambda)+1}} (1-t^{m_{j}(\mu)}) \right) P_{\mu}(x_{1},...,x_{n-1};t) = \sum_{\substack{\lambda^{(1)} \prec \lambda^{(2)} \prec ... \prec \lambda^{(n)} = \lambda \\ \lambda^{(k)} \in \operatorname{Sig}_{k}}} \prod_{i=1}^{n} \left(x_{i}^{|\lambda^{(i)}|-|\lambda^{(i-1)}|} \prod_{\substack{j \in \mathbb{Z}: \\ m_{j}(\lambda^{(i)})=m_{j}(\lambda^{(i-1)})+1}} (1-t^{m_{j}(\lambda^{(i-1)})}) \right)$$

Skew polynomials

In general, skew Hall-Littlewood polynomials $P_{\lambda/\mu}(x_1,\ldots,x_{n-k};t)$ for $\lambda\in\mathrm{Sig}_n,\mu\in\mathrm{Sig}_k$ defined by

$$P_{\lambda}(x_1,\ldots,x_n;t) = \sum_{\mu \in \operatorname{Sig}_k} P_{\lambda/\mu}(x_{k+1},\ldots,x_n;t) P_{\mu}(x_1,\ldots,x_k;t).$$

Skew polynomials

In general, skew Hall-Littlewood polynomials $P_{\lambda/\mu}(x_1,\ldots,x_{n-k};t)$ for $\lambda\in\mathrm{Sig}_n,\mu\in\mathrm{Sig}_k$ defined by

$$P_{\lambda}(x_1,\ldots,x_n;t) = \sum_{\mu \in \operatorname{Sig}_k} P_{\lambda/\mu}(x_{k+1},\ldots,x_n;t) P_{\mu}(x_1,\ldots,x_k;t).$$

Hence, plugging in $x_i = a_i \in \mathbb{R}_{>0}$ and $t \in (0,1)$ gives

$$\sum_{\mu \in \operatorname{Sig}_{n-1}} \frac{P_{\lambda/\mu}(a_n;t)P_{\mu}(a_1,\ldots,a_{n-1};t)}{P_{\lambda}(a_1,\ldots,a_n;t)} = 1$$

and

$$\frac{P_{\lambda/\mu}(a_n;t)P_{\mu}(a_1,\ldots,a_{n-1};t)}{P_{\lambda}(a_1,\ldots,a_n;t)} \ge 0$$

so for each λ have a **probability measure** on possible $\mu \prec \lambda$.

Branching graph setup

Definition

 \mathcal{G}_t is the \mathbb{N} -graded, weighted graph with

- ▶ vertex set $\bigsqcup_{n \in \mathbb{N}} \operatorname{Sig}_n$
- ▶ edges between any $\mu \in \text{Sig}_{n-1}, \lambda \in \text{Sig}_n$ with $\mu \prec \lambda$

edge weights given by <u>cotransition probabilities</u>

$$L_{n-1}^{n}(\lambda,\mu) := \frac{P_{\lambda/\mu}(t^{n-1};t)P_{\mu}(1,\dots,t^{n-2};t)}{P_{\lambda}(1,\dots,t^{n-1};t)}$$

Branching graph setup

Definition

 \mathcal{G}_t is the $\mathbb{N}\text{-}\mathsf{graded},$ weighted graph with

- ▶ vertex set $\bigsqcup_{n \in \mathbb{N}} \operatorname{Sig}_n$
- edges between any $\mu \in \operatorname{Sig}_{n-1}, \lambda \in \operatorname{Sig}_n$ with $\mu \prec \lambda$

edge weights given by <u>cotransition probabilities</u>

$$L_{n-1}^{n}(\lambda,\mu) := \frac{P_{\lambda/\mu}(t^{n-1};t)P_{\mu}(1,\dots,t^{n-2};t)}{P_{\lambda}(1,\dots,t^{n-1};t)}$$

Remark

Why make variables $1, t, \ldots, t^{n-1}$?

• Simple formulas for
$$L_{n-1}^n$$
 since
 $P_{\lambda}(1,\ldots,t^{n-1};t) = t^{\sum_i (i-1)\lambda_i} \frac{\prod_{i=1}^n (1-t^i)}{\prod_x \prod_{i=1}^{m_x(\lambda)} (1-t^j)}.$

• When t = 1/p, L_{n-1}^n appears in *p*-adic random matrix theory!

Finding coherent systems

Probability measures M_1, M_2, \ldots on levels $1, 2, \ldots$ of \mathcal{G}_t are coherent if

$$M_{n-1}(\cdot) = \sum_{\mu \in \operatorname{Sig}_n} M_n(\mu) L_{n-1}^n(\mu, \cdot)$$

for each n. Convex combinations of coherent systems are coherent.

Finding coherent systems

Probability measures M_1, M_2, \ldots on levels $1, 2, \ldots$ of \mathcal{G}_t are <u>coherent</u> if

$$M_{n-1}(\cdot) = \sum_{\mu \in \operatorname{Sig}_n} M_n(\mu) L_{n-1}^n(\mu, \cdot)$$

for each n. Convex combinations of coherent systems are coherent.

Question

What are the (indecomposable) coherent systems of probability measures $(M_n)_{n \in \mathbb{N}}$ on \mathcal{G}_t ?

Main result

Let
$$\operatorname{Sig}_{\infty} = \{(\mu_1, \mu_2, \ldots) \in \mathbb{Z}^{\infty} : \mu_1 \ge \mu_2 \ge \ldots\}.$$

Theorem (VP 2021)

For any $t \in (0,1)$, the set of indecomposable coherent systems on \mathcal{G}_t is naturally in bijection with $\operatorname{Sig}_{\infty}$. Under this bijection $\lambda \in \operatorname{Sig}_{\infty}$ corresponds to the coherent system $(M_n^{\lambda})_{n\geq 1}$ defined explicitly by

$$M_n^{\lambda}(\mu) := \left(\prod_{i=1}^n (1-t^i)\right) \prod_{x \in \mathbb{Z}} t^{(\lambda'_x - \mu'_x)(n-\mu'_x)} \prod_{i=1}^{\mu'_x - \mu'_{x+1}} \frac{1 - t^{\lambda'_x - \mu'_x + i}}{1 - t^i}$$

for $\lambda \in \operatorname{Sig}_n$, where $\mu'_x = \#\{i : \mu_i \ge x\}$ and same for λ'_x .

Question

What are the (indecomposable) coherent systems of probability measures $(M_n)_{1 \le n \le N}$ on the first N levels of \mathcal{G}_t ?

Question

What are the (indecomposable) coherent systems of probability measures $(M_n)_{1 \le n \le N}$ on the first N levels of \mathcal{G}_t ?

1. Any $\lambda^{(N)} \in \operatorname{Sig}_N$ gives indecomposable coherent system $L_1^2 \cdots L_{N-1}^N(\lambda, \cdot), L_2^3 \cdots L_{N-1}^N(\lambda, \cdot), \dots, L_{N-1}^N(\lambda, \cdot)$ on first n levels of \mathcal{G}_t

Question

What are the (indecomposable) coherent systems of probability measures $(M_n)_{1 \le n \le N}$ on the first N levels of \mathcal{G}_t ?

- 1. Any $\lambda^{(N)} \in \operatorname{Sig}_N$ gives indecomposable coherent system $L_1^2 \cdots L_{N-1}^N(\lambda, \cdot), L_2^3 \cdots L_{N-1}^N(\lambda, \cdot), \ldots, L_{N-1}^N(\lambda, \cdot)$ on first n levels of \mathcal{G}_t
- 2. To get coherent system on all levels, take limits of these. They converge iff parts $\lambda_i^{(N)}$ do for each i.

Question

What are the (indecomposable) coherent systems of probability measures $(M_n)_{1 \le n \le N}$ on the first N levels of \mathcal{G}_t ?

- 1. Any $\lambda^{(N)} \in \operatorname{Sig}_N$ gives indecomposable coherent system $L_1^2 \cdots L_{N-1}^N(\lambda, \cdot), L_2^3 \cdots L_{N-1}^N(\lambda, \cdot), \ldots, L_{N-1}^N(\lambda, \cdot)$ on first n levels of \mathcal{G}_t
- 2. To get coherent system on all levels, take limits of these. They converge iff parts $\lambda_i^{(N)}$ do for each i.
- 3. Need control over

$$\begin{split} L_m^{m+1}\cdots L_{n-1}^n(\lambda,\mu) &= \frac{P_{\lambda/\mu}(t^m,t^{m+1},\ldots,t^{n-1};t)P_\mu(1,\ldots,t^{m-1};t)}{P_\lambda(1,\ldots,t^{n-1};t)} \text{ as } \\ n \to \infty. \text{ Use explicit formulas for } P_{\lambda/\mu}(t^m,t^{m+1},\ldots,t^{n-1};t) \text{ from recent work [Borodin 2014] on } \underline{\text{fused higher spin stochastic}} \\ \text{six-vertex model.} \end{split}$$

$L_{n-1}^{n}(\lambda,\mu)$	Solved by	Relevant to
$\frac{s_{\lambda/\mu}(1)s_{\mu}(1,,1)}{s_{\lambda}(1,,1)}$	[Vershik-Kerov '82]	Rep thy of $U(n), U(\infty)$

$L_{n-1}^n(\lambda,\mu)$	Solved by	Relevant to
$\frac{s_{\lambda/\mu}(1)s_{\mu}(1,,1)}{s_{\lambda}(1,,1)}$	[Vershik-Kerov '82]	Rep thy of $U(n), U(\infty)$
$\frac{J_{\lambda/\mu}(1;\theta)J_{\mu}(1,\ldots,1;\theta)}{J_{\lambda}(1,\ldots,1;\theta)}$	[Okounkov- Olshanski '98]	Classical Gelfand pairs $(U(n),O(n))$, $(U(n)\times U(n),U(n))$, and $(U(2n),Sp(n))$

$L_{n-1}^n(\lambda,\mu)$	Solved by	Relevant to
$\frac{s_{\lambda/\mu}(1)s_{\mu}(1,,1)}{s_{\lambda}(1,,1)}$	[Vershik-Kerov '82]	Rep thy of $U(n), U(\infty)$
$\frac{J_{\lambda/\mu}(1;\theta)J_{\mu}(1,\ldots,1;\theta)}{J_{\lambda}(1,\ldots,1;\theta)}$	[Okounkov- Olshanski '98]	Classical Gelfand pairs $(U(n),O(n))$, $(U(n)\times U(n),U(n))$, and $(U(2n),Sp(n))$
$\frac{s_{\lambda/\mu}(q^{n-1})s_{\mu}(1,,q^{n-2})}{s_{\lambda}(1,,q^{n-1})}$	[Gorin '10]	Quantum groups? [Sato '19]

$L_{n-1}^n(\lambda,\mu)$	Solved by	Relevant to
$\frac{s_{\lambda/\mu}(1)s_{\mu}(1,,1)}{s_{\lambda}(1,,1)}$	[Vershik-Kerov '82]	Rep thy of $U(n), U(\infty)$
$\frac{J_{\lambda/\mu}(1;\theta)J_{\mu}(1,\ldots,1;\theta)}{J_{\lambda}(1,\ldots,1;\theta)}$	[Okounkov- Olshanski '98]	Classical Gelfand pairs $(U(n),O(n))$, $(U(n)\times U(n),U(n))$, and $(U(2n),Sp(n))$
$\frac{s_{\lambda/\mu}(q^{n-1})s_{\mu}(1,,q^{n-2})}{s_{\lambda}(1,,q^{n-1})}$	[Gorin '10]	Quantum groups? [Sato '19]
$\frac{P_{\lambda/\mu}(t^{n-1};q,t)P_{\mu}(1,,t^{n-2};q,t)}{P_{\lambda}(1,,t^{n-1};q,t)}$	[Cuenca '18] if $t\in q^{\mathbb{N}}$???

$L_{n-1}^n(\lambda,\mu)$	Solved by	Relevant to
$\frac{s_{\lambda/\mu}(1)s_{\mu}(1,,1)}{s_{\lambda}(1,,1)}$	[Vershik-Kerov '82]	Rep thy of $U(n), U(\infty)$
$\frac{J_{\lambda/\mu}(1;\theta)J_{\mu}(1,\ldots,1;\theta)}{J_{\lambda}(1,\ldots,1;\theta)}$	[Okounkov- Olshanski '98]	Classical Gelfand pairs $(U(n),O(n))$, $(U(n) \times U(n),U(n))$, and $(U(2n),Sn(n))$
$a_{n-1}(a^{n-1}) \in (1 - a^{n-2})$		$(O(n) \times O(n), O(n)), \text{ and } (O(2n), Sp(n))$
$\frac{s_{\lambda/\mu}(q)s_{\mu}(1,,q^{n-1})}{s_{\lambda}(1,,q^{n-1})}$	[Gorin '10]	Quantum groups? [Sato '19]
$\frac{P_{\lambda/\mu}(t^{n-1};q,t)P_{\mu}(1,,t^{n-2};q,t)}{P_{\lambda}(1,,t^{n-1};q,t)}$	[Cuenca '18] if $t \in q^{\mathbb{N}}$???
$\frac{P_{\lambda/\mu}(t^{n-1};t)P_{\mu}(1,,t^{n-2};t)}{P_{\lambda}(1,,t^{n-1};t)}$	[VP '21]	<i>p</i> -adic random matrices

p-adic random matrix theory

Fix p prime.

Recall *p*-adic integers $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$ and *p*-adic numbers \mathbb{Q}_p , completion of \mathbb{Q} w.r.t. $|\frac{a}{b}p^k|_p := p^{-k}$.

Fix p prime.

Recall *p*-adic integers $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$ and *p*-adic numbers \mathbb{Q}_p , completion of \mathbb{Q} w.r.t. $|\frac{a}{b}p^k|_p := p^{-k}$.

Proposition (Smith normal form)

For any $A \in \operatorname{Mat}_{n \times (n+k)}(\mathbb{Q}_p)$ nonsingular, there exist $U \in \operatorname{GL}_n(\mathbb{Z}_p), V \in \operatorname{GL}_{n+k}(\mathbb{Z}_p)$ and unique $\lambda \in \operatorname{Sig}_n$ so $UAV = \operatorname{diag}_{n \times (n+k)}(p^{-\lambda_1}, \dots, p^{-\lambda_n})$

We call the λ_i singular numbers in the above case, write $\lambda = SN(A)$.

Fix p prime.

Recall *p*-adic integers $\mathbb{Z}_p = \lim_{p \to \infty} \mathbb{Z}/p^n \mathbb{Z}$ and *p*-adic numbers \mathbb{Q}_p , completion of \mathbb{Q} w.r.t. $|\frac{a}{b}p^k|_p := p^{-k}$.

Proposition (Smith normal form)

For any $A \in \operatorname{Mat}_{n \times (n+k)}(\mathbb{Q}_p)$ nonsingular, there exist $U \in \operatorname{GL}_n(\mathbb{Z}_p), V \in \operatorname{GL}_{n+k}(\mathbb{Z}_p)$ and unique $\lambda \in \operatorname{Sig}_n$ so $UAV = \operatorname{diag}_{n \times (n+k)}(p^{-\lambda_1}, \dots, p^{-\lambda_n})$

We call the $\lambda_i \operatorname{singular} numbers$ in the above case, write $\lambda = \operatorname{SN}(A)$. For A singular, allow $\lambda_i = -\infty$ and take $p^{\infty} = 0$.

Fix p prime.

Recall *p*-adic integers $\mathbb{Z}_p = \varprojlim \mathbb{Z}/p^n \mathbb{Z}$ and *p*-adic numbers \mathbb{Q}_p , completion of \mathbb{Q} w.r.t. $|\frac{a}{b}p^k|_p := p^{-k}$.

Proposition (Smith normal form)

For any $A \in \operatorname{Mat}_{n \times (n+k)}(\mathbb{Q}_p)$ nonsingular, there exist $U \in \operatorname{GL}_n(\mathbb{Z}_p), V \in \operatorname{GL}_{n+k}(\mathbb{Z}_p)$ and unique $\lambda \in \operatorname{Sig}_n$ so $UAV = \operatorname{diag}_{n \times (n+k)}(p^{-\lambda_1}, \dots, p^{-\lambda_n})$

We call the $\lambda_i \operatorname{singular} numbers$ in the above case, write $\lambda = \operatorname{SN}(A)$. For A singular, allow $\lambda_i = -\infty$ and take $p^{\infty} = 0$.

 $(\mathbb{Z}_p,+)$ and $\mathrm{GL}_N(\mathbb{Z}_p)$ are compact, hence have Haar probability measures.

Question

What is the distribution of SN(A) for natural random A?

Motivation If $A_n \in \operatorname{Mat}_{n \times n}(\mathbb{Z}_p)$, then

$$\operatorname{coker}(A_n) := \mathbb{Z}_p^n / \operatorname{Im}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{-\lambda_i} \mathbb{Z}$$

is an abelian *p*-group with $\lambda = SN(A_n)$.

Motivation If $A_n \in \operatorname{Mat}_{n \times n}(\mathbb{Z}_p)$, then

$$\operatorname{coker}(A_n) := \mathbb{Z}_p^n / \operatorname{Im}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{-\lambda_i} \mathbb{Z}$$

is an abelian *p*-group with $\lambda = SN(A_n)$.

For A_n with i.i.d. additive Haar entries, [Friedman-Washington '87] showed

$$\lim_{n \to \infty} \Pr\left(\operatorname{coker}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{-\lambda_i}\mathbb{Z}\right) = \frac{\operatorname{const}}{|\operatorname{Aut}\left(\bigoplus_i \mathbb{Z}/p^{-\lambda_i}\mathbb{Z}\right)|}$$

matching numerically observed distribution of p-torsion part of class groups of quadratic imaginary number fields.

Motivation If $A_n \in Mat_{n \times n}(\mathbb{Z}_p)$, then

$$\operatorname{coker}(A_n) := \mathbb{Z}_p^n / \operatorname{Im}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{-\lambda_i} \mathbb{Z}$$

is an abelian *p*-group with $\lambda = SN(A_n)$.

For A_n with i.i.d. additive Haar entries, [Friedman-Washington '87] showed

$$\lim_{n \to \infty} \Pr\left(\operatorname{coker}(A_n) \cong \bigoplus_{i=1}^n \mathbb{Z}/p^{-\lambda_i} \mathbb{Z} \right) = \frac{\operatorname{const}}{|\operatorname{Aut}\left(\bigoplus_i \mathbb{Z}/p^{-\lambda_i} \mathbb{Z} \right)|}$$

matching numerically observed distribution of $p\mbox{-torsion}$ part of class groups of quadratic imaginary number fields.

Limits for different A_n model other random (abelian *p*-)groups in NT ([Bhargava et al. '15], many works by Wood '10-'20...) and Jacobians of random graphs ([Clancy-Kaplan-Leake-Payne-Wood '15], [Fulman '16], [Nguyen-Wood '18], ...).

Two worlds: RMT over $\mathbb C$ and $\mathbb Q_p$

	RMT over $\mathbb C$	RMT over \mathbb{Q}_p
Group G	$\operatorname{GL}_n(\mathbb{C})$	$\operatorname{GL}_n(\mathbb{Q}_p)$
Maximal		
compact	U(n)	$\operatorname{GL}_n(\mathbb{Z}_p)$
subgroup K		_
Structure	SVD: $UAV =$	Smith normal form: $UAV =$
theorem	$\operatorname{diag}(r_1,\ldots,r_n)$	diag $(p^{-\lambda_1},\ldots,p^{-\lambda_n})$
	for $U, V \in U(n)$	for $U, V \in \operatorname{GL}_n(\mathbb{Z}_p)$
We study	Singular values r_i	Singular numbers λ_i
Extreme	$U \operatorname{diag}(r_1, \ldots, r_n) V$	$U \operatorname{diag}(p^{-\lambda_1}, \dots, p^{-\lambda_n})V$
bi-K-invariant	for $U, V \in U(n)$	for $U, V \in \operatorname{GL}_n(\mathbb{Z}_p)$
measures on G	Haar-distributed	Haar-distributed

From random matrices to Hall-Littlewood polynomials

Theorem (VP 2020)

Let $1 \leq n \leq m$ be integers, $A \in Mat_{n \times m}(\mathbb{Q}_p)$ random, bi-invariant with fixed singular numbers $\lambda \in Sig_n$. If A' is the top $(n-1) \times m$ submatrix of A, then for $\mu \in Sig_{n-1}$

$$\Pr(SN(A') = \mu) = \frac{P_{\lambda/\mu}(t^{n-1}; t)P_{\mu}(1, \dots, t^{n-2}; t)}{P_{\lambda}(1, \dots, t^{n-1}; t)}$$
$$= L_{n-1}^{n}(\lambda, \mu)$$

with t = 1/p.

More analogies with RMT over $\ensuremath{\mathbb{C}}$

Infinite *p*-adic matrices

We define

$$\begin{aligned} \operatorname{GL}_{\infty}(\mathbb{Z}_p) &:= \\ \begin{cases} A \in \operatorname{Mat}_{\infty \times \infty}(\mathbb{Z}_p) : A = \begin{pmatrix} A' & & 0 \\ & 1 & \\ & & 1 \\ 0 & & \ddots \end{pmatrix} \text{ for some } n \ge 1, A' \in \operatorname{GL}_n(\mathbb{Z}_p) \end{cases} \end{aligned}$$

equivalently direct limit of $\operatorname{GL}_1(\mathbb{Z}_p) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}_p) \hookrightarrow \ldots$

Infinite *p*-adic matrices

We define

$$\begin{aligned} \operatorname{GL}_{\infty}(\mathbb{Z}_p) &:= \\ \begin{cases} A \in \operatorname{Mat}_{\infty \times \infty}(\mathbb{Z}_p) : A = \begin{pmatrix} A' & & 0 \\ & 1 & \\ & & 1 \\ 0 & & \ddots \end{pmatrix} \text{ for some } n \ge 1, A' \in \operatorname{GL}_n(\mathbb{Z}_p) \end{cases} \end{aligned}$$

equivalently direct limit of $\operatorname{GL}_1(\mathbb{Z}_p) \hookrightarrow \operatorname{GL}_2(\mathbb{Z}_p) \hookrightarrow \ldots$

Question

What are the (indecomposable) probability measures on $Mat_{\infty \times \infty}(\mathbb{Q}_p)$ which are invariant under left- and right-multiplication by any $A \in GL_{\infty}(\mathbb{Z}_p)$?

Classifying indecomposable measures

Question

What are the (indecomposable) probability measures on $Mat_{\infty \times \infty}(\mathbb{Q}_p)$ which are invariant under left- and right-multiplication by any $A \in GL_{\infty}(\mathbb{Z}_p)$?

Classifying indecomposable measures

Question

What are the (indecomposable) probability measures on $Mat_{\infty \times \infty}(\mathbb{Q}_p)$ which are invariant under left- and right-multiplication by any $A \in GL_{\infty}(\mathbb{Z}_p)$?

Let
$$\overline{\operatorname{Sig}}_{\infty} = \{(\mu_1, \mu_2, \ldots) \in \{\mathbb{Z} \cup \{-\infty\}\}^{\infty} : \mu_1 \ge \mu_2 \ge \ldots\}$$

Theorem (Bufetov-Qiu 2016)

The indecomposable, $\operatorname{GL}_{\infty}(\mathbb{Z}_p)$ -invariant probability measures E_{λ} on $\operatorname{Mat}_{\infty \times \infty}(\mathbb{Q}_p)$ are naturally in bijection with $\overline{\operatorname{Sig}}_{\infty}$.

Recovering [Bufetov-Qiu 2016]

Theorem (Bufetov-Qiu 2016)

The indecomposable, $\operatorname{GL}_{\infty}(\mathbb{Z}_p)$ -invariant probability measures E_{λ} on $\operatorname{Mat}_{\infty \times \infty}(\mathbb{Q}_p)$ are naturally in bijection with $\overline{\operatorname{Sig}}_{\infty}$.

Idea of new proof:

► Measures on Mat_{∞×∞}(Q_p) yield coherent systems of measures on submatrices in Mat_{n×m}(Q_p).

Recovering [Bufetov-Qiu 2016]

Theorem (Bufetov-Qiu 2016)

The indecomposable, $\operatorname{GL}_{\infty}(\mathbb{Z}_p)$ -invariant probability measures E_{λ} on $\operatorname{Mat}_{\infty \times \infty}(\mathbb{Q}_p)$ are naturally in bijection with $\overline{\operatorname{Sig}}_{\infty}$.

Idea of new proof:

- ► Measures on Mat_{∞×∞}(Q_p) yield coherent systems of measures on submatrices in Mat_{n×m}(Q_p).
- ▶ Measures on (nonsingular) Mat_{n×(n+k)}(Q_p) correspond to measures on Sig_n.

Recovering [Bufetov-Qiu 2016]

Theorem (Bufetov-Qiu 2016)

The indecomposable, $\operatorname{GL}_{\infty}(\mathbb{Z}_p)$ -invariant probability measures E_{λ} on $\operatorname{Mat}_{\infty \times \infty}(\mathbb{Q}_p)$ are naturally in bijection with $\overline{\operatorname{Sig}}_{\infty}$.

Idea of new proof:

- ► Measures on Mat_{∞×∞}(Q_p) yield coherent systems of measures on submatrices in Mat_{n×m}(Q_p).
- ▶ Measures on (nonsingular) Mat_{n×(n+k)}(Q_p) correspond to measures on Sig_n.
- ▶ Passing to submatrices \leftrightarrow cotransition probabilities L_{n-1}^n [VP '20].

p-adic Hua measures

There is a unique measure on $\operatorname{Gr}_n^{2n}(\mathbb{Q}_p)$ invariant under $\operatorname{GL}_{2n}(\mathbb{Z}_p) \oplus \mathbb{Q}_p^{2n}$, yielding measure on $\operatorname{GL}_n(\mathbb{Q}_p)$ by

p-adic Hua measures

There is a unique measure on $\operatorname{Gr}_n^{2n}(\mathbb{Q}_p)$ invariant under $\operatorname{GL}_{2n}(\mathbb{Z}_p) \oplus \mathbb{Q}_p^{2n}$, yielding measure on $\operatorname{GL}_n(\mathbb{Q}_p)$ by

The *p*-adic Hua measures μ_s^n on $Mat_{n \times n}(\mathbb{Q}_p)$ are natural 1-parameter interpolations between this and additive Haar measure ([Neretin 2012]).

p-adic Hua measures

There is a unique measure on $\operatorname{Gr}_n^{2n}(\mathbb{Q}_p)$ invariant under $\operatorname{GL}_{2n}(\mathbb{Z}_p) \oplus \mathbb{Q}_p^{2n}$, yielding measure on $\operatorname{GL}_n(\mathbb{Q}_p)$ by

The *p*-adic Hua measures μ_s^n on $\operatorname{Mat}_{n \times n}(\mathbb{Q}_p)$ are natural 1-parameter interpolations between this and additive Haar measure ([Neretin 2012]).

Consistent under taking $(n-1) \times (n-1)$ corners \Rightarrow obtain μ_s^{∞} on $\operatorname{Mat}_{\infty \times \infty}(\mathbb{Q}_p)$.

Question

 μ_s^{∞} is a convex combination of extreme bi-invariant measures on $Mat_{\infty \times \infty}(\mathbb{Q}_p)$. Which ones?

Decomposing μ_s^∞

Question

 μ_s^{∞} is a convex combination of extreme bi-invariant measures on $Mat_{\infty \times \infty}(\mathbb{Q}_p)$. Which ones?

[Assiotis 2020]: Found decomposition using mysterious Markov chain; post facto it's

$$\mu_s^{\infty} = \sum_{\text{partitions } \lambda \in \operatorname{Sig}_{\infty}^{\geq 0}} \left(\frac{P_{\lambda}(1, t, \dots; t)Q_{\lambda}(t^{1+s}, t^{2+s}, \dots; t)}{Z(s, t)} \right) E_{\lambda}.$$

Decomposing μ_s^∞

Question

 μ_s^{∞} is a convex combination of extreme bi-invariant measures on $Mat_{\infty \times \infty}(\mathbb{Q}_p)$. Which ones?

[Assiotis 2020]: Found decomposition using mysterious Markov chain; post facto it's

$$\mu_s^{\infty} = \sum_{\text{partitions } \lambda \in \operatorname{Sig}_{\infty}^{\geq 0}} \left(\frac{P_{\lambda}(1, t, \dots; t) Q_{\lambda}(t^{1+s}, t^{2+s}, \dots; t)}{Z(s, t)} \right) E_{\lambda}.$$

[VP 2021]: Recover above, explain why HL polynomials suddenly appear.

Outlook

Outlook

Thanks for your attention!