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Random groups and Cohen-Lenstra heuristics

1983: Cohen and Lenstra compute class groups of number fields
Q(

√
−d) for many d, which are finite abelian groups, and study

their distribution.

Too hard, so write Cl(Q(
√
−d)) =

⊕
p prime Cl(Q(

√
−d))p, study

p-Sylow subgroup Cl(Q(
√
−d))p.

For odd p and any finite abelian p-group G, these seemed to obey

lim
D→∞

#{1 ≤ d ≤ D squarefree : Cl(Q(
√
−d))p ∼= G}

#{1 ≤ d ≤ D squarefree}
=
?

∏
i≥1(1− 1/pi)

|Aut(G)|
,

the Cohen-Lenstra heuristic.
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Random matrices and Cohen-Lenstra heuristics

Friedman and Washington 1987: large ‘uniform’ random matrices
over p-adic integers Zp yield Cohen-Lenstra distribution.

A(N) ∈ MatN (Z) is a linear map A(N) : ZN → ZN ,

cok(A(N)) := ZN/A(N)ZN .

Theorem (Wood 2015)

If ξ is a random integer, ξ (mod p) is nonconstant, and
A(N) ∈ MatN (Z) has iid ξ entries, then

lim
N→∞

Pr(cok(A(N))p ∼= G) =

∏
i≥1(1− 1/pi)

|Aut(G)|
.

Since Cl(Q(
√
−d)) ∼= Z∞/M for some M ⊂ Z∞ this explains

Cohen-Lenstra’s observation if M ‘looks random’.
4 / 17
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Explaining Cohen-Lenstra heuristics

Subsequent works of Bhargava, Ellenberg, Poonen, Rains, Sawin,
Venkatesh, Wood, ...: different random matrix classes (alternating,
rectangular, etc.) yield heuristics for other number-theoretic
objects. Extensions to non-abelian groups.

Universality results for random symmetric integer matrices [Wood
2017, Nguyen-Wood 2022] show that sandpile groups of
Erdös-Rènyi graphs have (different!) universal limiting distribution.
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Main result: cokernels of random matrix products

Theorem (Nguyen-VP 2022)

Let G1 . . . , Gk be finite abelian p-groups, ξ be any integer r.v.
which is nonconstant mod p, and A

(N)
1 , . . . , A

(N)
k ∈ MatN (Z) iid

with iid ξ entries. Then

lim
N→∞

Pr ( cok(A
(N)
1 )p ∼= G1, cok(A

(N)
1 A

(N)
2 )p ∼= G2, . . . ,

cok(A
(N)
1 · · ·A(N)

k )p ∼= Gk)

=

∞∏
j=1

(1− 1/pj)k
k∏

i=1

#Sur(Gi, Gi−1)

#Aut(Gi)

(taking G0 to be the trivial group).

Remark: for finite collections p1, . . . , pj , the pi-parts are
independent and given by product measure.
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Parametrizing random groups and singular values

For nonsingular A(N) ∈ MatN (Z), cokernel decomposes as

cok(A(N)) := ZN/A(N)ZN ∼=
⊕

p prime

cok(A(N))p

and cok(A(N))p ∼=
⊕N

i=1 Z/pλ
(p)
i Z for some

λ
(p)
1 ≥ λ

(p)
2 ≥ . . . ≥ λ

(p)
N ≥ 0.

Singular value decomposition:
For nonsingular A ∈ MatN (C),
∃U, V ∈ U(N) s.t.
UAV = diag(µ1, . . . , µN ), where
µi ∈ R>0.

Smith normal form:
For nonsingular A ∈ MatN (Z),
∃U, V ∈ GLN (Z) s.t.
UAV = diag(a1, . . . , aN ) and
ai =

∏
p p

λ
(p)
i .
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Matrix products

Singular values of real/complex random matrix products: motivated
by

Chaotic dynamical systems (Furstenberg-Kesten 1960,...)
Transfer matrices for disordered systems in statistical physics
(Ruelle 1979, Akemann, Burda, Kieburg and others, 2000s)
Deep neural networks (various, recent)

‘Structured’ (e.g. Gaussian) matrix products: beautiful algebraic
theory from harmonic analysis on Lie groups and special functions
(Ahn, Gorin, Strahov, Sun,... 2010s).

Cokernels of products of random integer matrices?
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Integrable probability and C vs. Zp RMT analogies

Macdonald processes [Borodin-Corwin 2011]: class of discrete-time
Markov processes on {λ ∈ ZN : λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0} with
many parameters; specialize to measures arising in random tilings,
polymers, random matrices, interacting particle systems, ...

Macdonald process Mq,t,N,k:

probability measure on

{λ ∈ Z
N
: λ1 ≥ λ2 ≥ . . . ≥ λN ≥ 0}k

Heckman-Opdam process:
joint dist. of singular values of

A
(N)
1 , . . . , A

(N)
1 · · ·A

(N)
k for N ×N

iid Gaussian matrices over R,C,H
[Borodin-Gorin-Strahov ’18],

[Gorin-Marcus ’18]

Hall-Littlewood process M0,1/p,N,k:
joint distribution of

cok(A
(1)
1 ), . . . , cok(A

(N)
1 · · ·A

(N)
k ) for

N ×N uniform matrices
over Zp [VP ’20]

q → 0

β ∈ {1, 2, 4}
t = qβ/2

q → 1
λ rescaled

t = 1/p

10 / 17
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Matrix products

Theorem (VP 2021)

Let G1 =
⊕

j Z/pλ(1)j , G2 =
⊕

j Z/pλ(2)j , . . . , Gk =
⊕

j Z/pλ(k)j

be abelian p-groups, and A
(N)
1 , . . . , A

(N)
k ∈ MatN (Z) with iid

entries uniform on {0, 1, 2, . . . , pD} for large enougha D. Then

lim
N→∞

Pr(cok(A
(N)
1 · · ·A(N)

ℓ )p ∼= Gℓ, 1 ≤ ℓ ≤ k)

= (explicit rational function in p depending on λ(1), . . . , λ(k))

aIn terms of G1, . . . , Gk
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lim
N→∞

Pr(cok(A
(N)
1 · · ·A(N)

ℓ )p ∼= Gℓ, 1 ≤ ℓ ≤ k)

= p−
∑

i≥1(i−1)λ(k)i
∏
i≥1

(1− 1/pi)k

×
∏

1≤i≤k

∏
x≥1

p−(
λ(i)′x−λ(i−1)′x+1

2 )
[
λ(i)′x − λ(i− 1)′x+1

λ(i)′x − λ(i)′x+1

]
p−1

aIn terms of G1, . . . , Gk

[Nguyen-VP 2022]: above is universal. Interpretation of limit?
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Interpreting the limit distribution

General philosophy: random algebraic structures S often follow
marginals of distributions

Pr(S) =
1

Z

1

|Aut(S)|
.

We have extra structure: AkZN ⊂ ZN , so e.g.
A1 · · ·Ak−1AkZN ⊂ A1 · · ·Ak−1ZN , hence have maps

cok(A1 · · ·Ak) ↠ cok(A1 · · ·Ak−1) ↠ · · · ↠ cok(A1).

Related to our distribution?
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Interpreting the limit distribution: theorem and conjecture

Theorem (Nguyen-VP 2022)

For k ≥ 1, p prime,

Pr([Gk

ϕk−−−↠ · · ·
ϕ2−−−↠ G1]) =

∏
j≥1(1− 1/pj)k

#Aut(Gk

ϕk−−−↠ · · ·
ϕ2−−−↠ G1)

defines a probability measure on isomorphism classes

[Gk

ϕk−−−↠ · · ·
ϕ2−−−↠ G1], and the marginal joint distribution of

G1, . . . , Gk (without maps ϕi) is our universal distribution.

Conjecture

For A(N)
ℓ as before, limiting distribution of the isomorphism class

[cok(A
(N)
1 · · ·A(N)

k )p ↠ · · · ↠ cok(A
(N)
1 )p] is the above one.
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Universal limiting coranks over finite fields

Corollary

Take p prime and ξ a nonconstant random variable in Fp,
A

(N)
1 , . . . , A

(N)
k ∈ MatN (Fp) iid with iid ξ entries. Then

lim
N→∞

Pr
(
rank(A

(N)
1 · · ·A(n)

i ) = N − (r1 + . . .+ ri), 1 ≤ i ≤ k
)

= (p−1; p−1)k∞

k∏
i=1

p−ri(ri+...+r1)

(p−1; p−1)ri(p
−1; p−1)ri+...+r1

for any r1, . . . , rk ∈ Z≥0 where (q; q)ℓ := (1− q) · · · (1− qℓ).

[Wood 2015] showed k = 1 case, partial results in [Maples 2010].
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Methods: (joint) moments of abelian p-groups

Usual strategy to show G(N) → G in law (Wood 2010s):
1 Compute H-moments E[# Sur(G,H)] for all H.
2 Compute limN→∞ E[# Sur(G(N), H)] (should agree!).
3 Show implies G(N) → G if G’s moments do not grow too fast.

We generalize to joint (H1, . . . ,Hk)-moment of (G1, . . . , Gk),

E[# Sur(G1, H1) · · ·#Sur(Gk, Hk)] :

1 Hall-Littlewood symmetric function identities (nontrivial!).
2 Additive combinatorics/linear algebra estimates.
3 New joint moment convergence theorem, bootstrapping

single-group result of [Wood 2014].

16 / 17



Random groups and main result Corollaries, clarifications and stories

Methods: (joint) moments of abelian p-groups

Usual strategy to show G(N) → G in law (Wood 2010s):
1 Compute H-moments E[# Sur(G,H)] for all H.
2 Compute limN→∞ E[# Sur(G(N), H)] (should agree!).
3 Show implies G(N) → G if G’s moments do not grow too fast.

We generalize to joint (H1, . . . ,Hk)-moment of (G1, . . . , Gk),

E[# Sur(G1, H1) · · ·#Sur(Gk, Hk)] :

1 Hall-Littlewood symmetric function identities (nontrivial!).
2 Additive combinatorics/linear algebra estimates.
3 New joint moment convergence theorem, bootstrapping

single-group result of [Wood 2014].

16 / 17



Random groups and main result Corollaries, clarifications and stories

Conclusion

Recap: New universal collection of random groups from 4 angles.

Recent updates:
[Lee 2022]: independently defined joint moments and proved

similar moment convergence theorem for another application.
[Sawin-Wood 2022]: moment convergence theorems in

general category-theory setup which specializes to ours (but
doesn’t compute our moments, or Lee’s).

Directions:
Applications of matrix products to NT/random graphs/etc.?
Joint distribution of cokernels of general polynomials in several
matrices (Cheong, Kaplan, Lee)?
Proving conjectured universality of sequence with maps?

Thanks for listening!
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