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What is Liouville Quantum Gravity?

First introduced by Polyakov in 1981:

"Quantum Geometry of Bosonic Strings”

Brownian motion :
@ Canonical random path
@ Scaling limit of random walks

Liouville Quantum Gravity :
@ Canonical two-dimensional geometry
@ Conjectured limit of planar maps
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Conformal Field Theory

Goal of field theory: compute correlations of certain
observables called fields: (] [,., #i(z))

Conformal Field Theory: conformal invariance in 2D
= Imposes constraints on correlation functions

Examples of CFT's:
@ Continuum limit of critical Ising model
@ Liouville Quantum Gravity

Another point of view: SLE curves (see Miller/Sheffield
course)
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Brownian motion seen as a path integral

Space of paths: ¥ = {0 :[0,1] —» R, 0(0) = 0}
Action functional: Sgu(a) =1 [ |o’(r)[2dr

1
> /z Do F(c)e 58m)

Do: formal uniform measure on X

E[F((Bs)o<s<1)] =

Classical Theory / Quantum Theory

Minimum of Sgy — straight line = classical solution
Path integral — Brownian motion = quantum correction

Guillaume Remy (ENS) Liouville Quantum Gravity July 6, 2016 4 /19



Some definitions

Let M be a two-dimensional surface (sphere, torus,..).
Metric tensor g : M — S (R)

f(x)
Simple case: g(x) = (eo egx))

o Area of A: [, e/™dx? = [, A\ (dx)
o Gradient squared: |08 X|*> = e~ |0X|?
o Scalar curvature R, = —e FAf.

Spherical metric on R?: g(x) = 1+|X| 7 ((1) (1)> Ry = 2.
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Classical Liouville Theory

For all maps X : M — R, we define:
1
Si(X.8) = 4 [ (0XP + QRX + amue ™)
T Jm

Q,~, i > 0 positive constants

Uniformization of (M, g)

Assume X,,;; to be the minimum of S; and define

g = eXmng. Then Ry = —2mp~y? if we choose Q =
= The minimum of S; provides a metric of constan
negative curvature.

~2 N
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Defining Liouville Quantum Gravity

Formal definition

Random metric €’?g where the law of ¢ is given by:
E[F(9)] = L [ F(X)e 5X€)DX

First goal: give a meaning to ¢ for different M.

@ M = Riemann sphere: David-Kupiainen-Rhodes-Vargas

@ M = Torus or higher genus: David-Guillarmou-Rhodes-Vargas
@ M = Unit disk: Huang-Rhodes-Vargas

@ M = Annulus: Remy

¢ = Liouville field
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Why the Liouville action?

e |08 X|?: analogue of the |o/|> for Brownian motion

%IF(X)e_ifM 95XP*Xe DX - formally defines the
law of the Gaussian Free Field (GFF)

@ (IR, X: curvature term

o [i eVX)\g = area of M in the metric g’ = e’Xg
= penalizes large areas
= required to have a well defined Liouville field
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Insertion points

o For M = S?, Gauss-Bonnet: [, RgAy =81 >0

@ No metric of constant negative curvature

=S, has no minimum
= 2 [ F(X)e™:X-£)DX not defined

@ Instead we consider:
%f F(X)e27:1aiX(Zi)e—SL(ng)DX — <H7:1 ea,-X(z,-)>
— correlation function of the fields e®¢(#)

@ (z,«;): insertion points = singularities of the metric

e For S?: at least 3 insertions required
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Computing the partition function

Consider M = §?2

Main objective: give a mathematical meaning to

Mz (F.g) = / DX [ e e X8 F(X)

where again:

1
Si(X,g) = E/M(\('?gX\2 + QR X + 4rpe™)\g

Remark: Q = % +3
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Step 1 : the squared gradient term

. . = 1 2
Goal: give meaning to 5 [ F(X)e # Jul5XPPNe DX
o= Ju 05X PdAg — a=1 [ X(—3E)Xd)

Density of an infinite dimensional Gaussian vector of
covariance function (—£)~! = Green function
= defines a GFF

Gradient term: defines X up to a constant ¢
¢ = average value of the field
We integrate over ¢ with the Lebesgue measure.
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Step 1 : the squared gradient term

L [ F(X)e a ml®*XPAs DX = [ dcE[F(X + ¢)]

@ On the |.h.s: formal functional integral
@ On the r.h.s: X has the law of a GFF

The partition function H (F g) becomes:

/ dCE[F(X+C) H ea;(X(z,-)JrC)efﬁ fM(QRg(X+C)+47rueV(X+C)))\g]
R ;
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Step 2 : Gaussian multiplicative chaos

X is a random distribution, X is ill defined

Regularization procedure: circle average X,

1 2 .
X(2)= 5 /9 Xzt ee)do

Gaussian multiplicative chaos
The following limit exists in probability in the sense of
weak convergence of measures for v € [0, 2):

lim e FEX ), (2) = X FEXE I\ (2)

Remark: E[X.(2)?] + In € remains bounded as ¢ — 0.
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Step 3 : regularization of the partition

function

Define N%")(F, g, €) =

2
i (X4 €) TT; € et r0l =i (@R Xcre)amue’s 0190,

When does the limit I|m H(Z”a’)(F,g,e) exist?
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Main result

Consider M = §?2

Non-triviality of the partition function
Assume v €10,2) and > 0, then

z' “NF,g) = I|m |_|(Z’ “)(F, g, ¢€) exists and is finite and
non zero
< > . >2Qand Vi, a; < Q

Definition of the law of the Liouville field ¢:

n(F, g)

BIF)] = o
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Liouville measure

@ ¢ is a random distribution = difficult to define e7?

o Well defined Liouville measure Z(A) = [, e1%),

Conjectured limit of uniform planar maps for

vzﬁ

Conjectured limit of planar maps with an Ising
model for v = /3
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Surfaces with boundary

Must add boundary terms to S;:
50X,8) = Su(X, &) + 2 [om(QKeX + 2mpper ) Nog
Example: M =unit disk

@ Bulk insertion points (z;, «;)

@ Boundary insertion points (s;, ;)

Non-triviality of the partition function
Assume v €[0,2), pg >0, and p > 0, then

N&Ee)(F, g) = lim N&%*)(F, g, €) exists and is finite and
non zero

<:>Za,—|—zj >Q Vi, a,<QandVJ,BJ<Q
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Surfaces of higher genus

Higher genus: non trivial moduli space
@ Torus

@ Annulus

A(a, b) = annulus in the plane with radii a < b
Then A(a,b) ~ A(d', b)) <= 1 =%
= modular parameter, important in physics.

T=12

o
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Thank you for listening!
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