Liouville Quantum Gravity

Guillaume Remy

École Normale Supérieure

July 6, 2016

What is Liouville Quantum Gravity?

First introduced by Polyakov in 1981:

"Quantum Geometry of Bosonic Strings"

Brownian motion:

- Canonical random path
- Scaling limit of random walks

Liouville Quantum Gravity:

- Canonical two-dimensional geometry
- Conjectured limit of planar maps

Conformal Field Theory

Goal of field theory: compute correlations of certain observables called fields: $\langle \prod_{i \in I} \phi_i(z_i) \rangle$

Conformal Field Theory: conformal invariance in 2D ⇒ Imposes constraints on correlation functions

Examples of CFT's:

- Continuum limit of critical Ising model
- Liouville Quantum Gravity

Another point of view: SLE curves (see Miller/Sheffield course)

Brownian motion seen as a path integral

Space of paths: $\Sigma = \{ \sigma : [0,1] \to \mathbb{R}, \sigma(0) = 0 \}$

Action functional: $S_{BM}(\sigma) = \frac{1}{2} \int_0^1 |\sigma'(r)|^2 dr$

$$\mathbb{E}[F((B_s)_{0 \leq s \leq 1})] = \frac{1}{Z} \int_{\Sigma} D\sigma F(\sigma) e^{-S_{BM}(\sigma)}$$

 $D\sigma$: formal uniform measure on Σ

Classical Theory / Quantum Theory

Minimum of $S_{BM} \to \text{straight line} = \text{classical solution}$ Path integral \to Brownian motion = quantum correction

Guillaume Remy (ENS) Liouville Quantum Gravity July 6, 2016 4 / 1

Some definitions

Let M be a two-dimensional surface (sphere, torus,..).

Metric tensor g : $M o S_2^+(\mathbb{R})$

Simple case:
$$g(x) = \begin{pmatrix} e^{f(x)} & 0 \\ 0 & e^{f(x)} \end{pmatrix}$$

- Area of A: $\int_A e^{f(x)} dx^2 = \int_A \lambda_g(dx)$
- Gradient squared: $|\partial^g X|^2 = e^{-f} |\partial X|^2$
- Scalar curvature $R_g = -e^{-f}\Delta f$.

Spherical metric on
$$\mathbb{R}^2$$
: $g(x) = \frac{4}{(1+|x|^2)^2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $R_g = 2$.

Classical Liouville Theory

For all maps $X : M \to \mathbb{R}$, we define:

$$S_L(X,g) = \frac{1}{4\pi} \int_M (|\partial^g X|^2 + QR_g X + 4\pi \mu e^{\gamma X}) \lambda_g$$

 $Q, \gamma, \mu > 0$ positive constants

Uniformization of (M, g)

Assume X_{min} to be the minimum of S_L and define $g'=e^{\gamma X_{min}}g$. Then $R_{g'}=-2\pi\mu\gamma^2$ if we choose $Q=\frac{2}{\gamma}$. \Longrightarrow The minimum of S_L provides a metric of constant negative curvature.

Defining Liouville Quantum Gravity

Formal definition

Random metric $e^{\gamma\phi}g$ where the law of ϕ is given by:

$$\mathbb{E}[F(\phi)] = \frac{1}{7} \int F(X) e^{-S_L(X,g)} DX$$

First goal: give a meaning to ϕ for different M.

- M = Riemann sphere: David-Kupiainen-Rhodes-Vargas
- ullet M = Torus or higher genus: David-Guillarmou-Rhodes-Vargas
- \bullet M =Unit disk: Huang-Rhodes-Vargas
- *M* = Annulus: Remy

 $\phi = \text{Liouville field}$

Why the Liouville action?

- $|\partial^{g}X|^{2}$: analogue of the $|\sigma'|^{2}$ for Brownian motion $\frac{1}{Z}\int F(X)e^{-\frac{1}{4\pi}\int_{M}|\partial^{g}X|^{2}\lambda_{g}}DX$: formally defines the law of the Gaussian Free Field (GFF)
- QR_gX : curvature term
- $\int_M e^{\gamma X} \lambda_g$ = area of M in the metric $g' = e^{\gamma X} g$ \Rightarrow penalizes large areas \Rightarrow required to have a well defined Liouville field

Insertion points

- ullet For $M=\mathbb{S}^2$, Gauss-Bonnet: $\int_{\mathbb{S}^2} R_g \lambda_g = 8\pi > 0$
- No metric of constant negative curvature $\Rightarrow S_L$ has no minimum $\Rightarrow \frac{1}{7} \int F(X)e^{-S_L(X,g)}DX$ not defined
- Instead we consider:

$$\frac{1}{Z}\int F(X)e^{\sum_{i=1}^{n}\alpha_{i}X(z_{i})}e^{-S_{L}(X,g)}DX=\langle \prod_{i=1}^{n}e^{\alpha_{i}X(z_{i})}\rangle$$

- = correlation function of the fields $e^{\alpha_i \phi(z_i)}$
- (z_i, α_i) : insertion points = singularities of the metric
- For S²: at least 3 insertions required

Computing the partition function

Consider $M = \mathbb{S}^2$

Main objective: give a mathematical meaning to

$$\Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g) = \int DX \prod_i e^{\alpha_i X(z_i)} e^{-S_L(X,g)} F(X)$$

where again:

$$S_L(X,g) = \frac{1}{4\pi} \int_M (|\partial^g X|^2 + QR_g X + 4\pi \mu e^{\gamma X}) \lambda_g$$

Remark: $Q = \frac{2}{\gamma} + \frac{\gamma}{2}$

Step 1: the squared gradient term

Goal: give meaning to $\frac{1}{Z}\int \widetilde{F}(X)e^{-\frac{1}{4\pi}\int_{M}|\partial^{g}X|^{2}\lambda_{g}}DX$

$$e^{-\frac{1}{4\pi}\int_M |\partial^g X|^2 d\lambda_g} = e^{-\frac{1}{2}\int_M X(-\frac{\Delta_g}{2\pi})Xd\lambda_g}$$

Density of an infinite dimensional Gaussian vector of covariance function $(-\frac{\Delta}{2\pi})^{-1}=$ Green function \Rightarrow defines a GFF

Gradient term: defines X up to a constant c c = average value of the field We integrate over <math>c with the Lebesgue measure.

Step 1: the squared gradient term

$$rac{1}{Z}\int\widetilde{F}(X)e^{-rac{1}{4\pi}\int_{M}|\partial^{g}X|^{2}\lambda_{g}}DX=\int_{\mathbb{R}}dc\mathbb{E}[\widetilde{F}(X+c)]$$

- On the l.h.s: formal functional integral
- On the r.h.s: X has the law of a GFF

The partition function $\Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g)$ becomes:

$$\int_{\mathbb{R}} dc \mathbb{E}[F(X+c) \prod_{i} e^{\alpha_{i}(X(z_{i})+c)} e^{-\frac{1}{4\pi} \int_{M} (QR_{g}(X+c)+4\pi \mu e^{\gamma(X+c)}) \lambda_{g}}]$$

Step 2 : Gaussian multiplicative chaos

X is a random distribution, $e^{\gamma X}$ is ill defined

Regularization procedure: circle average X_{ϵ}

$$X_{\epsilon}(z) = \frac{1}{2\pi} \int_{\theta=0}^{2\pi} X(z + \epsilon e^{i\theta}) d\theta$$

Gaussian multiplicative chaos

The following limit exists in probability in the sense of weak convergence of measures for $\gamma \in [0, 2)$:

$$\lim_{\epsilon \to 0} e^{\gamma X_{\epsilon}(z) - \frac{\gamma^2}{2} \mathbb{E}[X_{\epsilon}(z)^2]} d\lambda_g(z) = e^{\gamma X(z) - \frac{\gamma^2}{2} \mathbb{E}[X(z)^2]} d\lambda_g(z)$$

Remark: $\mathbb{E}[X_{\epsilon}(z)^2] + \ln \epsilon$ remains bounded as $\epsilon \to 0$.

Step 3: regularization of the partition function

Define
$$\Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g,\epsilon) = \int_{\mathbb{R}} dc \mathbb{E}[F(X_{\epsilon}+c)\prod_i \epsilon^{\frac{\alpha_i^2}{2}} e^{\alpha_i(X_{\epsilon}(z_i)+c)} e^{-\frac{1}{4\pi}\int_M (QR_g(X_{\epsilon}+c)+4\pi\mu\epsilon^{\frac{\gamma^2}{2}} e^{\gamma(X_{\epsilon}+c)})\lambda_g}]$$

When does the limit $\lim_{\epsilon \to 0} \Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g,\epsilon)$ exist?

Main result

Consider $M = \mathbb{S}^2$

Non-triviality of the partition function

Assume $\gamma \in [0,2)$ and $\mu > 0$, then $\Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g) = \lim_{\epsilon \to 0} \Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g,\epsilon)$ exists and is finite and non zero

$$\iff \sum_i \alpha_i > 2Q$$
 and $\forall i, \ \alpha_i < Q$

Definition of the law of the Liouville field ϕ :

$$\mathbb{E}[F(\phi)] = rac{\Pi_{\mu,\gamma}^{(z_i,lpha_i)}(F,g)}{\Pi_{\mu,\gamma}^{(z_i,lpha_i)}(1,g)}$$

Liouville measure

- ϕ is a random distribution \Rightarrow difficult to define $e^{\gamma\phi}$
- Well defined Liouville measure $Z(A)=\int_A e^{\gamma\phi}\lambda_g$ Conjectured limit of uniform planar maps for $\gamma=\sqrt{\frac{8}{3}}$

Conjectured limit of planar maps with an Ising model for $\gamma = \sqrt{3}$

Surfaces with boundary

Must add boundary terms to S_L :

$$\tilde{S}_L(X,g) = S_L(X,g) + \frac{1}{2\pi} \int_{\partial M} (QK_gX + 2\pi\mu_\partial e^{\frac{\gamma}{2}X}) \lambda_{\partial g}$$

Example: M = unit disk

- Bulk insertion points (z_i, α_i)
- Boundary insertion points (s_j, β_j)

Non-triviality of the partition function

Assume $\gamma \in [0,2)$, $\mu_{\partial} > 0$, and $\mu > 0$, then

$$\Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g) = \lim_{\epsilon \to 0} \Pi_{\mu,\gamma}^{(z_i,\alpha_i)}(F,g,\epsilon)$$
 exists and is finite and non zero

$$\iff \sum_i \alpha_i + \sum_j rac{eta_j}{2} > Q$$
, $\forall i, \ lpha_i < Q$ and $\forall j, \ eta_j < Q$

Surfaces of higher genus

Higher genus: non trivial moduli space

- Torus
- Annulus

$$A(a, b) =$$
 annulus in the plane with radii $a < b$

Then
$$A(a,b) \sim A(a',b') \Longleftrightarrow \frac{a}{b} = \frac{a'}{b'}$$

 $\tau = \frac{a}{b} = \text{modular parameter, important in physics.}$

Thank you for listening!

References:

- Lecture notes on Gaussian multiplicative chaos and Liouville Quantum Gravity,
 R. Rhodes, V. Vargas (2016), arXiv.
- Liouville Quantum Gravity on the Riemann sphere,
 F. David, A. Kupiainen, R. Rhodes, V. Vargas
 (2014), to appear in Communications in
 Mathematical Physics.
- Liouville Quantum Gravity on the unit disk,
 Y. Huang, R. Rhodes, V. Vargas (2015), arXiv.
- Liouville Quantum Gravity on the complex tori,
 F. David, R. Rhodes, V. Vargas (2015), to appear in Journal of Mathematical Physics.