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1 Setup and Definition of Deformation Functors

Let Π be a profinite group. We define a finiteness condition for Π:

Condition Φp: For every open subgroup of finite index Π0 ⊂ Π there exists only finitely many continuous

homomorphisms Π0 → Fp.

In fact, both GQℓ
and GQ,S satisfy condition Φp.

Choose and fix a finite field k of characteristic p. Let C denote the category (of coefficient rings) whose

objects are complete Noetherian local rings with residue field k and whose morphisms are local homomor-

phisms which induce identity on k. Let C0 be the full subcategory whose objects are artinian. Let Λ be an

object of C. We define CΛ to be the category whose objects are coefficient Λ-algebras and the homomorphism

respect the Λ-algebra structure. We let C0Λ be the artinian full subcategory. Note that we have C = CW (k).

Define Deformation Functors D, DΛ.

2 Schlessinger’s Criteria

Recall that any object of C is an inverse limit of objects of C0. We say a functor F on C is continuous if

F(R) = lim←−
n

F(R/mn),

where R is a complete noetherian local ring with maximal ideal m. Then F is completely determined by its

values on C0. It may happen that F is not representable as a functor on C0, but that there exists an object

R of the larger category C such that we have

F(A) = Hom(R, A)

for every artinian coefficient ring A. In this case, we say that the functor F on the category C0 is pro-

representable. In fact,

Lemma 2.1. If F is continuous, then it is pro-representable as a functor on C0 if and only if it is representable

as a functor on C.

Proof. A consequence of Hom(R,−) commuting with inverse limit in the second factor.

Since we have shown last time that the deformation functor is continuous, instead of showing the defor-

mation functor is representable, we show that it is pro-representable under suitable hypothesis.
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A Theorem of Grothendieck gives a sufficient condition for a functor on C0 to be pro-representable

involving the MV property. However, the hypothesis of the theorem is hard to check. Schlessinger obtained

a set of criteria for pro-representability of functors on the categories of artinian rings which are much easier

to apply.

Let F be a covariant functor

F : C0Λ ⇝ Sets,

and assume that F(k) consists of one element. Before stating the criteria for F to be pro-representable by a

ring R in CΛ, we need a definition.

Definition 2.1. If R and S are two coefficient Λ-algebras, we say a homomorphism

ϕ : R→ S

is small if it is surjective and if ker(ϕ) is principal and is annihilated by mR.

Lemma 2.2. Any surjective homomorphism in C0Λ factors as the composition of small homomorphisms.

Remark 2.0.1. One prototypical example of a small homomorphism which will be of great importance is the

homomorphism

k[ε]→ k

which sends ε 7→ 0.

Now we are ready to set up the Schlessinger’s criteria. Consider rings R0, R1, and R2 in C0Λ. Suppose we
have morphisms ϕ1 : R1 → R0 and ϕ2 : R2 → R0. We define the fibre product R3 = R1 ×R0

R2. Since for

i = 1, 2 we have projections πi : R3 → Ri and F is a functor, we get a map (*)

F(R3)→ F(R1)×F(R0) F(R2)

by universal property of the fibre product.

H1: If the map ϕ2 : R2 → R0 is small, then (*) is surjective.

H2: If R0 = k and R2 = k[ε], then (*) is bijective.

If H2 holds, applying it to the case R1 = k[ε] shows that the tangent space hypothesis is satisfied, and

hence we can think of tF = F(k[ε]) as a k-vector space (can define addition).

H3: The vector space tF = F(k[ε]) is finite-dimensional.

H4: If R1 = R2, ϕ1 = ϕ2, and the ϕi’s are small, then (*) is bijective.

Remark 2.0.2. The first two conditions say that the map (*) should be nice when ϕ2 is simple.

Theorem 2.1 (Schlessinger). Let F be a set-valued covariant functor on C0Λ such that F(k) has exactly one

element. If F satisfies conditions H1 to H4, then F is pro-representable.

Let d = dimk tF. The proof structures R as an inverse limit of quotients of Λ[[X1, X2, · · · , Xd]].

3 Existence of Universal Deformation

We now apply Schlessinger’s theorem to the deformation functor. As we will see, the first three conditions

will always hold, but the fourth will depend on the residual represenation ρ.

We first make a definition.
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Definition 3.1. Let ρ be a residual representation. We let

C(ρ) = HomΠ(k
n, kn) = {P ∈Mn(k) | Pρ(g) = ρ(g)P for all g ∈ Π}

Let ρ be a deformation of ρ to a coefficient Λ-algebra A. We define

CA(ρ) = HomΠ(A
n, An) = {P ∈Mn(A) | Pρ(g) = ρ(g)P for all g ∈ Π}

In particular, C(ρ) = Ck(ρ).

Theorem 3.1. Suppose Π is a profinite group that satisfies property Φp, ρ : Π → GLn(k) is a continuous

representation, and Λ is a complete Noetherian ring with residue field k. Then the deformation functor DΛ

always satisfies property H1, H2, and H3. Furthermore, if C(ρ) = k, then DΛ also satisfies property H4.

We will now start the proof of the theorem. We fix the following notations throughout.

Let R0, R1, R2 be artinian coefficient Λ-algebras and suppose we are given ϕi : Ri → R0 as above. Let

Ei := Homρ(Π, GLn(Ri))

be the set of homomorphisms from Π to GLn(Ri) which reduce to ρ modulo the maximal ideal. Let

Γn(Ri) := ker(GLn(Ri)→ GLn(k)) = 1 +Mn(mRi
).

Then

DΛ(Ri) = Ei/Γn(Ri).

Therefore, the map of concern in Schlessinger’s (*) translates to

E3/Γn(R3)→ E1/Γn(R1)×E0/Γn(R0) E2/Γn(R2).

By the property of local ring map and the explicit description of Γn(Ri), it is not hard to see that if Ri → R0

is surjective, then so is Γn(Ri)→ Γn(R0).

Lemma 3.1. Property H1 is true.

Proof. Suppose ϕ2 is small (in fact we only need that it is surjective). Given a pair of deformation (ρ1, ρ2)

of deformations to R1 and R2 which induce the same deformation to R0, we want to show that we can paste

them together to get a deformation to R3. The pasting is clear if we are only considering the Ei’s. For the

actual map (*), the key is to pick the representatives properly so they match when projected down to R0.

Pick any pair of representative (π1, π2) for the equivalence class of (ρ1, ρ2) and by assumption we know

that ϕ1(π1) ∼ ϕ2(π2) when projected down to R0, i.e. there exists an element M ∈ Γn(R0) such that,

M
−1

(ϕ1(π1))M = ϕ2(π2).

Since ϕ2 is surjective, we know that Γn(R2) ↠ Γn(R0). Thus, we can lift M to M ∈ Γn(R2). As a result,

π1 and M−1π2M has the same image in GLn(R0), which implies the pair (π1,M
−1π2M) defines an element

π3 ∈ E3. The equivalence class of ϕ3 is mapped to the equivalence class of (ρ1, ρ2).

Now to prove H2, we first establish a criterion for (*) to be injective. Let π2 ∈ E2 and let π0 ∈ E0 denote

its image when projected down to R0. Set

Gi(πi) = {g ∈ Γn(Ri) | g commutes with the image of πi}.

Note that Gi(ϕi) ⊂ CRi
(ϕi) but they are not identical.
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Lemma 3.2. If for all π2 ∈ E2 the map

G2(π2)→ G0(π0)

is surjective, then the map (*) is injective.

Proof. Suppose ρ and π are elements of E3 that induce elements ρi, πi in Ei for i = 0, 1, 2. Suppose that ρ, π

have the same image under (*), then there exists Mi ∈ Γn(Ri) such that ρi = M−1
i πiMi. Mapping down to

E0 we see that

ρ0 = M1
−1

π0M1 = M2
−1

π0M2,

so that M2M1
−1 ∈ G0(π0). By the surjectivity in the assumption, we can find N ∈ G2(π2) that is mapped

to M2M1
−1

.

Define N2 = N−1M2, then we have

N−1
2 π2N2 = M−1

2 Nπ2N
−1M2 = M−1

2 π2M2 = ρ2.

On the other hand, N2 is mapped to M1 ∈ Γ0(R0). Thus, the pair (M1, N2) defines an element M ∈ Γn(R3)

and have ρ = M−1πM . Thus, ρ and π are equivalent and we are done.

Now we are ready to prove H2.

Lemma 3.3. Property H2 is true.

Proof. If R0 = k and R2 = k[ε], we already know (*) is surjective by H1. We want to check that

G2(π2)→ G0(π0)

is surjective for these rings. When R0 = k, G0 = Γn(k) = {1}, thus surjectivity holds trivially.

Lemma 3.4. Property H3 is true.

Proof. Let Π0 = ker(ρ) and let ρ be a lift of ρ to k[ε]. If x ∈ Π0, we know that ρ(x) = 1, which implies

ρ(x) ∈ Γn(k[ε]). Thus, ρ defines a map

ρ : Π/Π0 → GLn(k[ε])/Γn(k[ε]) = GLn(k),

which should agree with ρ. Thus, if ρ, ρ′ are two lifts that determine the same map on Π0, then ρ ∼ ρ′. Since

Π0 is an open subgroup of Π and Γn(k[ε]) is a finite p-elementary abelian group. By property Φp
1, there are

only finitely many maps from Π0 to Γn(k[ε]). Thus, by the argument we just established, there are finitely

many elements in DΛ(k[ε]).

Now we move on to prove H3. We first establish a Lemma.

Lemma 3.5. If C(ρ) = k, then for any deformation ρ of ρ to an artinian ring A we have CA(ρ) = A.

Proof. Since A ↠ k is surjective, it factors as a sequence of small extensions. We know that C(ρ) = k by

assumption. It is then suffices to show the alternative claim:

If A→ B is small and CB(ρB) = B, then CA(ρA) = A. Here ρB is induced from ρA by A→ B.

1every p-elementary abelian group is a vector space over Fp
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To prove this, take c ∈ CA(ρA). By our assumption, the image of c in Mn(B) is a scalar matrix. Suppose

c 7→ r̄, where r̄ ∈ B is the image of some r ∈ A. Then we can write

c = r + tM,

where t is a generator of the kernal A → B (this is possible from the small assumption) and M ∈ Mn(A).

Since c commutes with the image of ρA, we have that for every g ∈ Π,

(r + tM)ρA(g) = ρA(g)(r + tM),

which implies

MρA(g) = ρA(g)M

Reducing modulo mA and using the fact that C(ρ̄) = k, we know that M = s + M1 with s ∈ A and

M1 ∈Mn(mA). Since A→ B is small, we know that tMn(mA) = 0. Thus, we have proven that

c = r + ts,

which is a scalar.

Lemma 3.6. Suppose C(ρ) = k, Then property H4 is true.

Proof. For i = 0, 1, 2, we know from the Lemma that Gi(πi) ⊂ CRi
(πi) = Ri. In fact, Gi(πi) ∼= 1+mRi

. For

i = 1, 2, we know that ϕi is surjective. Thus, Gi(πi)↠ G0(R0). By Lemma 3.2 about injectivity of (*) and

H1 about surjectivity of (*), we have shown that (*) is bijective.

Consequently, we have proven the following theorem.

Theorem 3.2 (Mazur, Ramakrishna). Suppose Π is a profinite group that satisfies property Φp, ρ : Π →
GLn(k) is a continuous representation such that C(ρ) = k, and Λ is a complete Noetherian ring with residue

field k. Then there exists a ring R = R(Π, k, ρ) in CΛ, and a deformation ρ of ρ to R,

ρ : Π→ GLn(R),

such that any deformation of ρ to a coefficient Λ-algebra A is obtained from ρ via a unique morphism R → A.

We call R the universal deformation ring and ρ the universal deformation of ρ.

Note that the condition C(ρ) = k is weaker than saying that ρ is absolutely irreducible. In fact, there

exists reducible representations satisfying C(ρ) = k.

4 Example of Universal Deformation Ring

4.1 Π is finite

If Π is finite of order not divisible by p, and suppose that ρ is an inclusion. Then there exists a lift of ρ to

GLn(W (k)), and hence to GLn(Λ) via the canonical map. In fact, the universal deformation ring is Λ.

4.2 n = 1

The universal deformation ring for a character χ : Π → k× is Λ[[Γ]], with Γ the abelianization of the

pro-p-completion of Π.
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