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These notes are based on Gouvea’s book Deformations of Galois Representations and Mazur’s
paper An Introduction to the Deformation Theory of Galois Representations.

1 Introduction and review of Galois Representations

To understand the role of Galois deformations in Number Theory, we first need to become
familiar with the basic objects in this theory: Galois representations. This is nothing more than
the representation theory of Galois groups. Therefore, the first thing we should ask is what we
already know about these groups. In the following section, we describe their structure as far as
it is known and state some of their properties.

1.1 Structure of Galois groups

Let F/K be a normal and separable extension of fields (not necessarily finite). The Galois group
Gal(F/K) has a natural topology given by

Gal(F/K) ∼= lim←−Gal(K ′/K)

where the K ′ ⊂ F run through the finite normal extensions of K, making it a profinite group.

Theorem 1.1. There is a correspondence between subextensions of F/K and closed subgroups
of Gal(F/K). It is given by

K ′ 7→ Gal(F/K ′), H 7→ FH

In the special case in which F = K is an algebraic closure of K, we call Gal(K/K) the absolute
Galois group of K and denote it GK . For this section let’s also assume K = Q

The group GQ is not very well understood in general (let alone GK). One of the most useful
tools for its study is its “local structure”. For each place p there is a canonical inclusion Q ↪→ Qp.
However, there are many different inclusions Q ↪→ Qp (equivalent to the different extensions of
the p-adic valuation on Q to Q). Choosing one, we get an inclusion GQp ↪→ GQ, and changing
the choice of embedding changes this by conjugation. We call the image of GQp inside GQ the
decomposition group at p (well-defined up to conjugation).

We understand the groups GQp much better. There is a surjective map

Gal(Qp/Qp)→ Gal(Fp/Fp) ∼= Ẑ

given by restriction to Qur
p and the fact Gal(Qur

p /Qp) ∼= Gal(Fp/Fp). The kernel of this map
is called the inertia group at p and denoted Ip. In turn, the inertia group has a normal Sylow
pro-p-subgroup Wp (wild inertia), and the quotient (tame inertia) satisfies

Ip/Wp
∼=

∏
ℓ ̸=p

Zℓ
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Remark 1. A Galois extension K/Q is unramified iff the composite

Ip ↪→ GQp ↪→ GQ → Gal(K/Q)

is trivial. Same with tamely ramified and Wp.

This whole picture is determined only up to conjugation, hence the best way to study these
groups is via their representations.

1.1.1 Restricting the ramification

Another way to simplify the study of the absolute Galois group is by restricting the ramifications.
Fix S a finite set of primes including all the archimedean ones. Consider the maximal extension
QS unramified outside S. We want to study the group

GQ,S = Gal(QS/Q),

which is a quotient of GQ, but much easier to understand. Still, there are many things we don’t
know about these groups, for example, whether they are topologically finitely generated (it is
conjectured by Shafarevich that they are). However, we know they satisfy a weaker condition,
that will turn out to be enough for our purposes.

Definition 1.1. We say that a profinite group G satisfy the p-finiteness condition if for any
open subgroup H ⊂ G, there are finitely many continuous homomorphisms from H to Z/pZ

Proposition 1.1. The group GK,S satisfies the p-finiteness condition.

Since a nontrivial element of Homcont(GK,S ,Z/pZ) corresponds to an extension of degree d
unramified outside S, this is a consequence of the following well-known result

Theorem 1.2 (Hermite-Minkowski). Let K be a number field, S a finite set of primes, and d a
positive integer. There are finitely many extensions F/K of degree d unramified outside S.

Regarding the local structure of GK,S , we have the following stronger result

Theorem 1.3. If K is a finite extension of Qp, then GK is topologically finitely generated.

Therefore we are interested in studying

• The group GK,S

• The conjugacy classes of the homomorphisms GKv → GK,S

1.2 Galois representations

Why are we interested in Galois representations? There are two main reasons:

1. They arise naturally from very well-known objects such as elliptic curves and modular
forms (to be discussed in more detail later)
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2. The local picture described earlier is only defined up to conjugation. In this case, group
representations come in particularly handy. As an example, even though the Frobenius
elements φp are only defined up to conjugation, their image under a representation has
some useful well-defined properties, such as the trace, the determinant, or in general its
characteristic polynomial.

Definition 1.2. A Galois representation defined over A, unramified outside S, is a continuous
homomorphism

ρ : GK,S → GLn(A),

where A is a topological ring and n ∈ Z+. We say two representations ρ1, ρ2 are equivalent if
Pρ1P

−1 = ρ2 for some P ∈ GLn(A).

An equivalent definition of a Galois representation is a free A-module of rank n with a contin-
uous action of GK,S and a choice of basis (changing the basis gives an equivalent representation),
with the obvious correspondence. We will use both notions interchangeably.

The standard choices for the ring A are the following

1. A = C. These are known as Artin representations and are the most classical. In this case,
the image of GK,S must be finite, so they factor through a finite quotient.

2. A is a finite field. These arise naturally from elliptic curves and modular forms. Serre’s
famous conjecture asserts that every Galois representation of this kind is modular.

3. A = Zp or Qp or a finite extension. They also arise from elliptic curves and modular forms.
This case gives the best match in topologies since Zp also carries a profinite topology.

We are mainly interested in the last two cases. We want to understand all the finitely ramified
representations into GLn(A). For n = 1 this is essentially done by Class Field Theory, in fact

Theorem 1.4 (Kronecker-Weber). There are isomorphisms

Gab
Q
∼=

∏
p

Z×
p
∼= Ẑ×, Gab

Q,S
∼=

∏
p∈S

Z×
p

Therefore we will care about the case n > 1, and mostly about the case n = 2, since the
representations that arise from elliptic curves and modular forms are of this kind.

Our goal is to understand the whole “package” of GK,S together with its local structure GKv →
GK,S via these representations

ρ : GK,S → GLn(A).

Note that, since the groups GKv are topologically generated by a choice of Frobenius φv, the
restriction of ρ to GKv is given by simply giving the conjugacy class of the image of the Frobenius
under ρ. As we mentioned earlier, the trace av := trA(ρ(φv)) is independent of the choice of
Frobenius. Also, in many instances, the data

v 7→ av ∈ A, v /∈ S

will be enough to reconstruct ρ up to equivalence (by Chebotarev, it suffices to have this data
for a set of places of density 1).
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1.3 Coefficient rings

In general, we will consider the ring A to be a coefficient ring

Definition 1.3. A coefficient ring is a complete noetherian local ring A with finite residue field
k, of characteristic p.

Such a ring carries a profinite topology, a basis of opens being given by powers of the maximal
ideal,

A = lim←−
ν→∞

A/mν
A

Analogously, the group GLn(A) carries the corresponding profinite topology

GLn(A) = lim←−
ν→∞

GLn(A/m
ν
A)

Definition 1.4. A coefficient ring homomorphism is a map f : A′ → A such that f−1(mA) = mA′

and the induced homomorphism on residue fields is an isomorphism.

There is a natural ring homomorphism Zp → A, but this is only a coefficient ring homomor-
phism if k = Fp. Instead, one takes the ring of Witt vectors W (k), which is the absolutely
unramified extension of Zp with residue field k. Now any coefficient ring A with residue field
k is naturally endowed with a coefficient ring homomorphism W (k) → A that makes A into a
topological W (k)-algebra

1.4 Sources of Galois representations

1.4.1 Elliptic curves

Given an elliptic curve E defined over a number field K, consider the group of n-torsion points
E[n], which is the group of rational points over K which lie in the kernel of the homomorphism
x 7→ nx.

The group GK acts naturally as a group of automorphisms of E(K), and hence induces an
action of GK on E[n]. Since E[n] is abstractly the product of two cyclic groups of order n, this
action gives a homomorphism

GK → Aut(E[n]) ∼= GL2(Z/nZ).

Passing to the projective limit of these representations as n ranges over the natural numbers,
or as n ranges over all powers of a fixed prime p, we get representations

ρE : GK → GL2(Ẑ)

ρE,p∞ : GK → GL2(Zp)

A similar construction on a general abelian variety of dimension g gives a Galois representation
of degree 2g.
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