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These notes are based on Mazur’s paper An Introduction to the Deformation Theory of Galois
Representations and Gouvea’s book Deformations of Galois representations.

1 Review of deformation conditions

Let ρ : Π → GLn(k) be a residual representation that satisfies C(ρ) = k. We know that in this
case the deformation functor Dρ : CΛ → Sets defined by

Dρ(A) = {equivalence classes of liftings ρ : Π → GLn(A) of ρ}

is representable.

Definition 1.1. A deformation condition for ρ is a property Q that satisfies

1. ρ has the property Q

2. If ρ : Π → GLn(A) has the property Q and α : A → A′, then α∗ρ has the property Q

3. If the pushforwards of ρ : Π → GLn(A×k B) to A and B have property Q, then so does ρ.

A deformation condition cuts out a subfunctor DQ of Dρ represented by a quotient RQ of
Rρ. We denote by tQ := DQ(k[ε]) the Zariski tangent space of DQ. As a vector space, tQ is
isomorphic to a subspace of tρ ∼= H1(Π,Ad(ρ)), and we often write

tQ =: H1
Q(Π,Ad(ρ)) ⊆ H1(Π,Ad(ρ)).

Recall the deformation conditions that we discussed in the previous talk.

1. Deformations with fixed determinant: We say a deformation ρ of ρ to R has deter-
minant δ : Π → Λ× if det ρ = ιR ◦ δ, where ιR is the structure morphism ιR : Λ → R. This
is a deformation condition and we have

H1
det=δ(Π,Ad(ρ)) = H1(Π,Ad0(ρ))

2. Categorical deformations: Fix P a full subcategory of Λ[[Π]]-modules of finite length
closed under passage to subobjects, quotients and finite direct sums. Being of type P is a
deformation condition.

3. Ordinary deformations: Let ρ : Π → GL2(R) be a deformation given by the Π-module
V ∼= R×R, and let I ⊂ Π be a closed subgroup. We say ρ (or V ) is I-ordinary if V I ⊂ V is
a free R-module of rank 1 and a direct summand of V . Being I-ordinary is a deformation
condition, and

H1
I−ord(Π,Ad(ρ)) = H1(Π,AdI(ρ)),

where AdI(ρ) is the subspace of Ad(ρ) of matrices which correspond to homomorphisms
that factor through V/V I .
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2 Deformation conditions of global Galois representations

2.1 Motivation

Consider the following standard problem. We have a representation ρE,p : GQ, S → GL2(Zp)
arising from the p-torsion points of an elliptic curve E, and we want to get some information
about it (the most frequent being its modularity).

To do so, we aim to describe ρE,p as a deformation of the residual representation ρE,p, since
we have better knowledge of these representations (for instance Serre’s conjecture asserts that
every representation of GQ over a finite field is modular), and we can try to lift its properties to
ρE,p using the theory of Galois deformations.

For this reason, we want to make the deformation problem as tight as possible, meaning that
we only consider deformations satisfying certain local deformation conditions, so that ρE,p is
still a deformation captured by our problem but at the same time so that every representation
captured by our problem is modular.

This also motivates the choice of deformation conditions that we consider, since these are
properties that the ρE,p often satisfy. For instance, we know that the determinant of ρE,p is the
p-adic cyclotomic character, and ρE,p is unramified outside of pNE . If E/Q is semistable, then
ρE,p is semistable in the sense that it is either flat or ordinary at p and has the form ρ |Iℓ= (1∗01)
for ℓ ̸= p.

2.2 Global deformation problems

Let Λ be a coefficient ring with residue field characteristic p. Let Π = GK,S be the Galois group
of the maximal extension of K unramified outside a finite set of places S containing all primes
above p.

Definition 2.1. By a global Galois deformation problem we mean a specification of a local
deformation condition for each prime λ ∈ S. Concretely, given ρ : GK,S → GLn(k), we specify a
local deformation condition for each restriction ρ |GKλ

Lemma. A global Galois deformation problem is a deformation condition for ρ.

Theorem 2.1. The diagram

H1
Q(GK,S ,Ad(ρ)) H1(GK,S ,Ad(ρ))

⊕
λ∈S

H1
Qλ

(GKλ
,Ad(ρ))

⊕
λ∈S

H1(GKλ
,Ad(ρ))

is Cartesioan, so it identifies H1
Q(GK,S ,Ad(ρ)) with the set of cocycles of H1

Q(GK,S ,Ad(ρ)) which,
for each λ ∈ S, map under restriction to the image of H1

Qλ
(GKλ

,Ad(ρ)).

This makes H1
Q(GK,S ,Ad(ρ)) into a Selmer group, which is simply a part of the global coho-

mology group defined by local conditions for each λ ∈ S.
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2.3 Representations that are ordinary at p

Let ρ : GQ,S → GL2(k), and assume ρ is ordinary at p, meaning that its restriction to GQp is
Ip-ordinary in the sense defined in the previous section. Let Dord be the functor

Dord(R) = {deformations of ρ to R which are ordinary at p}

This is representable, and we write R0(ρ) for the universal ordinary deformation ring. This case
is particularly interesting because of several things, the first being the following

Theorem 2.2 (Wiles). If ρ is modular, then any ordinary deformation of ρ is also modular.

This is proven by identifying the ring R0(ρ) with a certain p-adic Hecke algebra. Also, the
homomorphism R(ρ) → R0(ρ) is well understood in many cases. One has

Theorem 2.3 (Mazur, Martin). Let S = {p,∞}, ρ : GQ,S ordinary at p. Suppose either that

• det ρ ̸= 1, ω, ω−1, ω
p−1
2 , or

• ρ is tamely ramified,

then the kernel of R(ρ) → R0(ρ) is generated by two elements.

Under a few more reasonable hypotheses, one can show that R(ρ) is a power series ring in
two variables over R0(ρ). In practical terms, studying ordinary deformations can lead to results
about all deformations.

2.4 Application: Fermat’s last theorem

Theorem 2.4. If p ≥ 5 is prime and a, b, c ∈ Z, then ap + bp + cp = 0 =⇒ abc = 0

Proof. Assume there is a solution to ap + bp + cp for p ≥ 5 with abc ̸= 0, and assume WLOG
a ≡ −1 (mod 4) and 2 | b. Let E be the elliptic curve

E : y2 = x(y − ap)(x+ bp)

and let ρE,p be the associated p-adic Galois representation. One can show that

• ρE,p is absolutely irreducible

• ρE,p is odd

• ρE,p is unramified outside 2p, flat at p and semistable at 2

By a theorem of Ribet, we know that no such Galois representation can be modular. Hence if we
prove that ρE,p is modular we get the contradiction. To do so, consider the global deformation
problem for ρ given by the following deformation conditions: we say ρ is of type Q for some set
of primes ΣQ disjoint of S if

• ρ has determinant χp.
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• ρ is unramified outside S ∪ {p} ∪ ΣQ.

• ρ is semistable outside ΣQ.

• If p /∈ ΣQ and ρ is flat at p, then ρ is also flat at p.

Under a few more hypotheses on the residual representation ρ that are satisfied by ρE,p, Wiles
shows that every deformation of type Q is modular, by explicitly constructing a Hecke algebra
TQ and an isomorphism RQ

∼−→ TQ. The proof concludes by showing that ρE,p is of type Q
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