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These notes are based on Mazur’s paper An Introduction to the Deformation Theory of Galois
Representations and Tobe Gee’s paper Modularity Lifting Theorems.

1 Representations of profinite groups

Let II be a profinite group, A a coefficient ring (complete, noetherian, local, finite residue field)
with residue field k. Let
p:1I = GL,(A)

Remark 1. An equivalent definition of a representation is a free A-module M of rank n with a
continuous action of IT and a choice of basis (changing the basis gives an equivalent representa-
tion), with the obvious correspondence. We will use both notions interchangeably.

Why coefficient rings

We will mostly be interested in the case of representations p : II — GL,(A) where A
is an extension of Q,. These extensions are not coefficient rings (their residue field is
not finite). However, their rings of integers are, and this is enough because of the following

Fact. If L/Q, is an algebraic extension, and p : II = GL, (L) is a continuous representa-
tion, then p is equivalent to a representation in GL,(Op).
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Definition 1.1. The underlying residual representation to p,
p:II — GL, (k)
is the composition of p with the natural projection map GL,(A) — GLy (k).

Definition 1.2. We say p : I — GL,(k) is absolutely irreducible if it is irreducible over k
(equivalently, over any field extension of k).

Let A[[II]] denote the completed group-ring of II with coefficients in A, i.e.
A[[H]] = lim A[[TT/TTo]]
where Il runs through the normal open subgroups of II of finite index. Then

Proposition 1.1. There is a correspondence between continuous representations p : II —
GL,(A) and continuous A-algebra homomorphisms

r: A[[lT]] = My (A)
given by restriction (viewing IT < A[[I1]]*).

Proposition 1.2. The residual representation associated to p is absolutely irreducible if and
only if the homomorphism 7 is surjective.



Corollary 1.1 (Schur’s lemma). If the residual representation p is absolutely irreducible, any
matrix in M, (A) which commutes with all the elements in the image of p is a scalar.

Proof. The elements commuting with Im(p) must commute with the completion m = Im(r) =
M,,(A), where the last equality follows from the previous proposition. Therefore such an element
must lie in the center Z(M,,(A4)) ={\-1d, | A € A} O

Definition 1.3. Given a representation p : I — GL,(A), the character associated to p is the
map X, : I = A given by x,(g) = tra(p(g))-

Proposition 1.3. Let p,p’ : II — GL,(A) be a representation with the same character, i.e.
tra(p(g)) = tra(p’(g)) for all g € II. Suppose that one of these representations is residually
absolutely irreducible. Then p and p’ are equivalent representations.

Remark 2. Without the irreducibility assumption, we have the weaker consequence p* ~ p/*s
(Recall that the semisimplification of p is the direct sum of all the composition factors in a
composition series)

A direct application of Chebotarev Density Theorem gives

Corollary 1.2. Let p,p' : Gx s — GL,,(A) be continuous representations. Suppose that one of
these representations is residually absolutely irreducible. Suppose further that

tra(p(Froby)) = tra(p’ (Froby))

for ¢ running through a set of prime numbers (outside S) which is of Dirichlet density 1. Then
p is equivalent to p'.

Assume p : II — GL,(A) is a representation whose character x, = tra(p) has values in a
subring Ag C A. A descent from p to Ap is a representation pg : II — GL,,(Ap) which, after
extension of scalars, becomes equivalent to p.

Theorem 1.1. For A a coefficient ring, there always exists a descent of p in the situation above.

Remark 3. The proof uses a result of Carayol and Serre about Azumaya algebras.

2 Local Galois Representations

Let ¢ be a prime, and let K/Qy. As usual, wg denotes a uniformizer, Ok is the ring of integers,
and k is the residue field. We want to study representations Gx — GL,,(A4), for A a coefficient
ring with residual characteristic p. In this section, we will focus on the case of a finite extension
L/Q, and will consider representations G — GL(V'), for V' a finite-dimensional L-vector space.
(recall this is equivalent to a representation over GL,,(Op) for dim(V') = n)

2.1 Casel#p

Recall the short exact sequence

0—Ig >Gg > G, —0
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Let Froby € Gy, be a Frobenius element (i.e. a topological generator for Gy, = Z). We define the
WEeil group via the diagram

0 y Ixe Gk > G 0
0 y I » Wk > Frob? —— 0

so that Wy is the subgroup of elements of G that map to an integral power of the Frobenius.

Local Class Field Theory is summarized in the following

Theorem 2.1. Let W2P denote the group W /[Wk,Wk]. Then there are unique isomorphisms
Artg : K* — Wf‘(b such that

1. if K'/K is a finite extension, then Artx: = Artx o Ng//k, and
2. (2) we have a commutative square

Artg
K % Wfab
EE— K

]

7 ——— FrobZ
where the bottom arrow is the isomorphism sending a — Frob%.

Recall that we have a character t : I /Px — Hp# Zyp. Any other character is of the form
t' = ut for some u € [1,4Z;. Fix t for the rest of the section, and let ¢, be the composite of ¢
with the projection to Z,.

Remark 4. The continuous irreducible representations of the group W2 are just the continuous
characters of Wi, and local class field theory gives a simple description of them, as representa-
tions of K*

Definition 2.1. A Weil-Deligne representation of Wy on a finite-dimensional L-vector space V
is a pair (r, N) consisting of a representation r : Wx — GL(V') with open kernel, and a nilpotent
endomorphism N € End(V') such that for all o € W,

r(o)Nr(o)™! = (#k) <N
where vi : Wg — Z is determined by o |guw= Frobg.

Theorem 2.2 (Grothendieck’s Monodromy theorem). Fix ¢ € Wi a lift of Frobg. If
p: Gk — GL(V) is a continuous representation then there is a finite extension K'/K and a
uniquely determined nilpotent N € End(V) s.t.
p(o) =exp(Nty(o)), Vo elg
p(e)Np(o) ™! = (#R) KON, Yo e Wi
We have an equivalence of categories from the category of continuous representations of Gx on

f.d. L-v.s. to the category of bounded (7 (o) stabilizes an O -lattice) Weil-Deligne representations
on f.d. L-v.s., taking

p= (V,r,N), 1(0) = p(o) exp(~ty(p~ 7o) N)



Remark 5. One significant advantage of Weil-Deligne representations over Galois representa-
tions is that there are no subtle topological issues: the topology on the Weil-Deligne representa-
tion is the discrete topology.

It turns out that the Frobenius Weil-Deligne representations are in bijection with irreducible
admissible representations of the GL, (F"), thus linking two kinds of representations

2.2 Casel=p

This case is far more complicated than the case I # p, largely because wild inertia can act in a
highly nontrivial fashion. The study of representations Gx — GL,(Q,) with K/Q, finite is part
of what is called p-adic Hodge theory. We will give a very brief account of the big picture.

There is a hierarchy of classes of representations
{crystalline} C {semistable} C {de Rham} C {Hodge Tate}

For any of these classes, we say that p is potentially X if there is a finite extension K'/K such
that p |g,, is X. A representation is potentially de Rham if and only if it is de Rham, and
potentially HT if and only if it is HT.

The notion of a de Rham representation is designed to capture the representations arising in
geometry. Similarly, the definitions of crystalline and semistable are designed to capture the
notions of good and semistable reduction, respectively. (Given X /K smooth projective variety
with one of these properties, H,Vl(X i K, @P) is a representation of the corresponding kind)

A useful heuristic when comparing to the [ # p case is that crystalline representations cor-
respond to unramified representations, semistable representations correspond to representations
for which inertia acts unipotently, and de Rham representations correspond to all representa-
tions. The analogous notion of inertia acting quasi-unipotently as in Grothendieck’s monodromy
theorem is potential semistability. Therefore the following result (conjectured by Fontaine) can
be viewed as an analog of Grothendieck’s monodromy theorem.

Theorem 2.3 (The p-adic monodromy theorem). A representation is de Rham if and only if it
is potentially semistable.

3 Global Galois Representations

The global Galois representations that we will care about are those that Fontaine and Mazur
call geometric. Let L/Q, be an algebraic extension.

Definition 3.1. If K is a number field, then a continuous representation p : Gx — GL,(L) is
geometric if it is unramified outside of a finite set of places of K, and if for each place v | p,
p lcg, is de Rham.

In practice (and conjecturally always), geometric Galois representations arise as part of a
compatible system of Galois representations.

Suppose that K and F are number fields, that S is a finite set of places of K and that n is a
positive integer.



Definition 3.2. By a weakly compatible system of n-dimensional p-adic representations (for
varying p) of Gg defined over F' and unramified outside S we mean a family of continuous
semisimple representations

ry: G — GL(K)

where A runs over the finite places of M, with the following properties.

e For each v ¢ S and A not dividing the same prime p as v, r) is unramified at v and the
characteristic polynomial of 7(Frob,) lies in F'[X] and is independent of A.

e Each representation r) is de Rham at all places above the residue characteristic of A\, and
crystalline at any place v ¢ S which divides the residue characteristic of \.

e For each 7 : K — F, the 7-HT weight of r) are independent of \.

Definition 3.3. We say that a weakly compatible system is strictly compatible if for each finite
place v of K there is a Weil-Deligne representation V\@U of Wk, over F such that for each finite
place A of F' and every F-linear embedding ¢ : F' < F), we have tWD, = WD(ry |(;KU)F_SS.

Conjecturally, every weakly compatible system is strictly compatible. We also have the follow-
ing consequence of the Fontaine-Mazur conjecture:

Conjecture. Any semisimple geometric representation Gx — GL, (L) is part of a strictly
compatible system of Galois representations.

In practice, most progress on understanding these conjectures has been made by using auto-
morphy lifting theorems to prove special cases of the following conjecture.

Conjecture. Any weakly compatible system of Galois representations is strictly compatible, and
is in addition automorphic, in the sense that there is an algebraic automorphic representation m
of GL,(Ag) with the property that WD, 2 recg, (7| det |(*=™)/2) for each finite place v of K,
where recg, is the local Langlands correspondence.

The main source (and conjecturally the only source) of compatible systems of Galois represen-
tations is the étale cohomology of algebraic varieties.

Theorem 3.1. Let K be a number field, and let X/K be a smooth projective variety. Then
for any i, j, the H: (X xx K,Q,)*(j) (the (j) denoting a Tate twist) form a weakly compatible
system (defined over Q) as p varies.

Conjecturally, it is a strictly compatible system, and there is no need to semisimplify the
representations.

Conjecture (Fontaine-Mazur). Any irreducible geometric representation p : Gxg — GL,(Q,) is
(the extension of scalars to Q, of) a subquotient of a representation arising from étale cohomology
as in the previous theorem



