KUDLA-RAPOPORT CONJECTURE FOR KRAMER MODELS

QIAO HE, YOUSHENG SHI, AND TONGHAI YANG

ABSTRACT. In this paper, we propose a modified Kudla-Rapoport conjecture for the Kramer model
of unitary Rapoport-Zink space at a ramified prime, which is a precise identity relating intersection
numbers of special cycles to derivatives of Hermitian local density polynomials. We also introduce
the notion of special difference cycles, which has surprisingly simple description. Combining this
with induction formulas of Hermitian local density polynomials, we prove the modified Kudla-
Rapoport conjecture when n = 3. Our conjecture, combining with known results at inert and
infinite primes, implies arithmetic Siegel-Weil formula for all non-singular coefficients when the
level structure of the corresponding unitary Shimura variety is defined by a self-dual lattice.
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In their seminal work [KRI1] and [KRI14b], Kudla and Rapoport made a conjectural local arith-
metic Siegel-Weil formula (the Kudla-Rapoport conjecture) relating the intersection numbers of
special divisors on unitary Rapoport-Zink spaces to the central derivative of certain local density
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polynomials. A unitary Rapoport-Zink (RZ) space is a local version of a unitary Shimura variety
associated to a general unitary group GU(1,n —1). The Kudla-Rapoport conjecture plays a central
role in the arithmetic Siegel-Weil formula for unitary Shimura varieties, which was first proposed by
Kudla in [Kud97] for orthogonal Shimura varieties. When n =1 or 2, the Kudla-Rapoport conjec-
ture was proved in [KR11]. The case when n = 3 was proved in [Ter10]. The general case was proved
recently in [LZ22al] by an ingenious induction. The Archimedean analogue of the Kudla-Rapoport
conjecture was proved in [Liull] and [GS19]. The analogue of the Kudla-Rapoport conjecture for
GSpin Rapoport-Zink space is formulated and proved in [LZ22b].

Originally the Kudla-Rapoport conjecture was proposed only for good primes, namely inert
primes over which the Rapoport-Zink space has hyperspecial level structure. A modified Kudla-
Rapoport conjecture for Rapoport-Zink space with minuscule parahoric level structure over inert
primes has been proposed in [Cho22|. For ramified primes, there are two kinds of well-understood
arithmetic models of RZ spaces. One is the exotic smooth model which has good reduction, the
other is the Kramer model proposed in [Kra03|] which only has semi-stable reduction. The analogue
of Kudla-Rapoport conjecture for the even dimensional exotic smooth model was studied in [LL22],
in which case the conjecture can be proved by the same strategy as [LZ22al]. For the Krdmer model,
however, it was expected that serious modification of the original Kudla-Rapoport conjecture is
needed. A precise formulation has not previously been known. One of the main goals of this paper
is to formulate a precise conjecture (Conjecture based on earlier work of [Shi22] and [HSY23)]
for the case n = 2. We then prove Conjecture for n = 3.

In a very recent joint work with Chao Li (J[HLSY22]), we proved the conjecture completely.
One of the major innovations of [HLSY22] is a decomposition formula of primitive local density
polynomials, which is inspired by the results in the appendix of this work. The geometric side
of the ’horizontal® part in [HLSY22] essentially follows from the current work. To deal with the
vertical part in general, [HLSY22|] uses partial Fourier transform inspired by [LZ22b]. The current
work uses explicit computation instead. Finally, it was discovered in [HLSY22] that the ‘central’
derivative of the primitive local density polynomials has a surprisingly simple formula.

1.1. The naive conjecture. Let p be an odd prime and F' be a ramified quadratic field extension
of a p-adic number field Fy with residue field IF,. Fix an algebraic closure k of IF;. Fix a uniformizer

7 of F such that mg = 72 is a uniformizer of F, and let v; be the valuation on F’ such that v (m) = 1.
Let Fo be the completion of a maximal unramified extension of Fy and F=F® Fo FO Let O} and

O 7 be the rings of integers of F and F, respectively. For a Hermitian lattice or space M of rank
n, we define its sign as

(1.1) X(M) = x((-1)"%

where x is the quadratic character of F) associated to F'//Fy. We call M split or non-split depending
on whether x(M) =1 or —1. For a Hermitian matrix 7', define x(7") to be the sign of its associated
Hermitian lattice.

Let Y and X be pre-fixed framing Hermitian formal Op-modules of signature (0,1) and (1,n—1)
respectively over Spec k. Recall that Hermitian formal Op-modules are a particular kind of formal
p-divisible groups with Op-action, see Section The space of special quasi-homomorphisms

(M) = £1

(1.2) V = Homp, (Y,X) ®z Q

is equipped with a Hermitian form h(,), see (2.2). Let € = x(V). The Rapoport-Zink space ./\/;E{gra
parameterizes certain classes of supersmgular Hermitian formal Op-modules of signature (1,n—1)
over Spf O, see Section It is a formal scheme over Spf O with semi-stable reduction and can

be viewed as a regular model of the formal completion of the corresponding global unitary Shimura
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variety along its basic locus over p. When n is odd, N,If{a is isomorphic to Ngrj‘ . We often write
N instead of NS for simplicity.
For each subset L C V, define ZX'3(L) to be the formal subscheme of N'X** where x deforms to

a homomorphism for any x € L. Let L C V be an Op-lattice of rank r. We say L is integral if
h(,)|r is non-degenerate and takes values in Op. Let x1,...,X, be a basis of L. We define

(13) ]LZKra(L) — [OzKra(xl) ®L tet ®]L OZKI'&(XT):I S KO(NKra)

where ®" is the derived tensor product of complex of coherent sheaves on N'X™ and Ko(NK) is
the Grothendieck groups of finite complexes of coherent locally free sheaves on AKX, By [How19,
Corollary C], “Z¥3(L) is independent of the choice of basis of L. When L has rank n, we define
the intersection number

(1.4) Int(L) = y (VK2 LzKrap))

where y is the Euler characteristic. One can show that Int(L) is finite, see Lemma [2.14]

Let L and M are Hermitian lattices of rank n and m respectively. Moreover, we assume v(M) =
min{v,(h(v,v")) | v,0" € M} > —1. We use Hermy, ps to denote the scheme of Hermitian Op-
module homomorphisms from L to M, which is a scheme of finite type over Op,. More specifically,
for an Op,-algebra R, we define

Lr=1L ®ROr, R, (z®a,y®b)g :=m(x,y) ®0p, ab e Of Q0p, R where z,y € L,a,b € R.
Then
Hermy, ps(R) = {¢ € Homp, (Lr, Mg) | (¢(z),d(y))r = (z,y)r for all z,y € Lr}.

To simplify the notation, let I(M, L, d) denote Hermy, ps(Op, /(7d)). Then direct calculation shows
that

(1.5) a(M, L) = g~ 1(M, L, d)]
become constant for sufficiently large integers d > 0. We call it the local density (of M representing

L).
0 a1

Let H be the (Hermitian) hyperbolic plane with Gram matrix H = <_ﬂ-—1 0

show that there is a (local density) polynomial «(M, L, X) € Q[X] such that

) . One can

a(MHF L) =a(M,L,q%*).

Define its derivative by

0
"(M,L) = ——=—a(M,L,X)|x=1.

«Q ( ) ) aXa( y &y )’Xfl
Since a(M,L,X) (resp. o/(M,L)) only depends on their gram matrices S and T, we will also
denote it by «(S,T, X) (resp. /(S,T)). Let M be the unique unimodular Hermitian Op-lattice of
rank n with x(M) = —x(L). The naive analogue of the local Kudla-Rapoport conjecture is

o/ (M, L)
1.6 Int(L) =2———+=.
But this conjectural formula is not even true for n = 2 according to the main theorem of [HSY23].
The analytic side of the conjecture needs to be modified.
3



1.2. The precise conjecture. By [Shil8, Theorem 1.2], ZKra(L) is empty when L is not integral,
so we have

Int(L) = 0.
On the analytic side, the right hand side of is automatically zero only when v(L) < —2, and
is sometimes non-zero when v(L) = —1. So there should be correction terms involving Hermitian
lattices M with v(M) = —1. By [Jac62], there are n — 1 equivalent classes of Hermitian lattices
which are direct sum of copies of H and unimodular lattices:

(1.7) Mo, =H ST , for 1 <i< g €=+l

where we use IS_,, to denote the unimodular Hermitian lattice of rank n — 2i with x(If_,,) =
x(M,;) = €. When n = 2r is even, we take I, = 0 and H,,, = H". Then the local arithmetic

Siegel-Weil formula, a.k.a. the KR-conjecture at a ramified prime should be of the following form:

Oé/(Iie L) (Hz'n )
1.8 Int(L) = 25\ =) ¢ i
( ) n ( ) 04(177671—';6) + ;CTM OK(IEE,In )
where e = x(L). Since Int(#;, ;) = 0, we should have
o/ (1,5, M7, 5) a(Hy o M)

1.9 g~ I < i Tng) 0
(19) ol In°) z; Y a(ln 1)
This system of equations turns out to determine the coefficients ¢}, ; uniquely by Theorem We

propose the following Kudla-Rapoport conjecture at a ramified prime.

Conjecture 1.1. The identity (1.8) always holds with the coefficients cf, ;

For convenience, we set

uniquely determined by

o/ (1,4, L) a(H, L)
1.10 0De 9 &n =) e
(1.10) n(L) =2 r= g Z NT=roL
We remark that since Int(L) is always an integer, the conjecture suggests that dDen(L) should
be an integer, which is already not obvious.
The conjecture holds for /\/'QKf1 by results in [Shi22] and [HSY23|. In this paper, we will prove
the conjecture for n = 3 and pr0V1de some partial results in general case.

Theorem 1.2. Conjecture is true when n = 3.

1.3. Special difference cycles. One of the novelty of the paper is the concept of special difference
cycles. Let Ly be an Op-lattice of V of rank n1 < n. Define the special difference cycle D(L;) €
Ko(N*) by

(111) D(Ll) ]LZKra _|_Z z z(z 1)/ Z ]LZKra(LI) c K()(NKra)-
LicL'cir,
dimg, (L' /L1 )=i
Here D(L;) can be seen as a higher codimensional analogue of the difference divisor first intro-

duced in [Ter10l Definition 2.10]. By the definition and a g-adic linear-algebraic inclusion-exclusion
principle, we have (see Lemma [2.16)

(1.12) bzl = ) D).

L'integral
LiCL/'CLyp
4



Here Lr = L ®o,. F for an Op-lattice L. The above summation is in fact finite. Assume that we
have a decomposition L = L1 @ Ly of Op-lattices such that L; has rank n; and nq +ns = n. Define

(1.13) Int(L)™) = y(NK2 D(Ly) - 2K (Ly))

where - is the product on Ko(AN®™) induced by tensor product of complexes. Notice that this
definition in fact depends on the decomposition of L.
On analytic side, we define

ni

(1.14) ODen(L)™) := dDen(L) — Y (~1)""'¢'"V2 3" 9Den(L} @ Ly).
i=1 LchlchlyF
dim L} /L1 =i

This definition again depends on the decomposition of L. What motivates the definition of
dDen(L)™) and D(L;) is the fact that Den(L)(™) is equal to the derivative of certain primi-
tive local density polynomials, see [Kat99, Proposition 2.1] or Theorem below. The analogue
of holds for dDen(L)(™). As a consequence we have the following theorem (see Theorem

for a refinement).

Theorem 1.3. Conjecture 18 true if and only if for every lattice L = L1 @ Lo such that L; has
rank n;, we have

(1.15) Int(L)™) = 9Den(L)™),

We speculate that D(L1) is of a simple form when n; = n—1. One strong evidence for this is that
the ‘horizontal” part of D(L;) is either empty or isomorphic to one or two copies of Spf W where
W is the integer ring of an extension of F of degree ¢°, see Proposition Another evidence
is that the intersection of D(L;) with an exceptional divisor in A% is +1 or 0, see Lemma
When n = 3, we show that D(L;) has a simple decomposition, see Theorem below.

1.4. The case n = 3. The proof of Theorem is divided into three cases, see Section For
v(L) < 0, we show directly 0Den(L) = Int(L) = 0. The case v(L) = 0 is reduced to the case n = 2,
which was proved in [Shi22] and [HSY23]. For v(L) > 0, we prove that Int(L)? = dDen(L)? for
a decomposition L = L’ @ Span{x}, and then apply Theorem (more precisely Theorem .

In order to prove Int(L)®?) = dDen(L)?), we need to understand the decomposition of D(L).
We say a lattice A C V is a vertex lattice if 1A C Af C A where A? is dual lattice of A with respect
to h(,) and we call ¢ = dimg, (A/A*) the type of A. This has to be an even integer between 0 and n.
We denote the set of vertex lattices of type ¢t by V. When n = 3, a type 2 lattice Ay corresponds
to a line N, = P! in NE™ and a type 0 lattice Ag corresponds to a divisor Excy, = P3. Let Hy,
be the hyperplane class of Excp,. We have the following theorem.

Theorem 1.4. If V(Lb) > 0, we have the following decomposition of cycles in GrQKo(NBf{ra)
DLy =Y (2[0x,,] + > Ha,)

A2€V2 Ao EVO
LPcA} AoCAz

where Gr®Ko(NX™) is the associated graded ring of Ko(NX™) with respect to the codimension
filtration.

Theorem is proved by intersecting D(LI’) with special divisors that are isomorphic to /\/2}7(?1
and computing the intersection numbers in two different ways. One way relates the intersection
numbers to the main result of [Shi22]. The other way uses the decomposition in Theorem and
detects the multiplicity of each component that shows up on the right hand side.
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1.5. Global application. In the last part of the paper, we apply the local results above to the
global intersection problem proposed by [KR14b]. For brevity and clarity of exposition we restrict
our attention to the case when F' is an imaginary quadratic field. We remark here that our results
can be applied to the case when F' is a general CM field given correct local assumptions. Let
ME‘:?L_I) be the moduli functor over Spec O which parametrizes principally polarized abelian

varieties A with an action ¢ : Op — End(A), a compatible polarization A : A — AY and a filtration
Fa C Lie A which satisfies the signature (1,n — 1) condition (see . Let V be a Hermitian
vector space over F' of signature (n—1, 1) containing a self-dual lattice L. The lattice L determines
an open and closed substack

M C M(O,l) XSpec Op M{%Z—l)

which is an integral model of a unitary Shimura variety. For a point in M(S) (S an Op-scheme),

i.e., a pair (K, 0, \o) € Mg1)(5), (4,1, A, Fa) € /\/l]éfz_l)(S), define the locally free O p-module

V'(E,A) = Homp, (E, A).

It is equipped with the Hermitian form h'(x,y) = Lal()\al oyY oXoux). For a m x m nonsingular
Hermitian matrix 7" with values in Op, let Z(T") be the stack of collections (F, tg, Ao, A, t, A, Fa,X)
such that (E, g, Ao, 4,1, A\, Fa) € M(S), x € V/(E,A)™ with h/(x,x) = T. Then Z(T) is repre-
sentable by a Deligne-Mumford stack which is finite and unramified over M ([KR14bl, Proposition
2.9]). When t € Z~¢, each component of Z(t) can be viewed as a divisor by [How15l Proposition
3.2.3]. In general, Z(T") does not necessarily have the expected codimension which is the rank of
T.

Let C = {C,} be an incoherent collection of local Hermitian spaces of rank n associated to V
such that Cy = V, for all finite £ and C, is positive definite. It is “incoherent” in the sense that
it does not come from a global Hermitian space. For a nonsingular Hermitian matrix 7" of rank n
with values in O, Let Vp be the Hermitian space with gram matrix 7'. Define

(1.16) Diff (T, C) = {p a place of Q | C, is not isomorphic to (Vr),}.

Then Z(T) is empty if |Diff(7,C)| > 1. If Diff(7,C) = {p} for a finite prime p inert or ramified
in F, then the support of Z(7T') is on the supersingular locus of M over SpecF,. Let e be the
ramification index of F),/Q,. Define the arithmetic degree

(1.17) degr = X(2(T), Oz(1,) @ Oz1p) &% Oz, - log p?/°,

where @ stands for derived tensor product on the category of coherent sheaves on M, y is Euler-
characteristic and t; (1 < ¢ < n) are the diagonal entries of 7. When Diff(T',C) = {oo}, then in
fact Z(T) is empty and one can use integration of a green current to define the arithmetic degree
d/%T(v) with the parameter v being a positive definite hermitian matrix v of order n (which will
be imaginary part of 7), see for example [LZ22al §15.3].

On the analytic side, we consider an incoherent Eisenstein series E(7, s, ®) for a non-standard
section ® in a degenerate principal series representation of U(n,n)(A), see Section Here 7 is
in the Hermitian Siegel upper half space

(1.18) H, = {r =u+iv | u € Herm,,v € Herm,, >0},

where Herm,, (resp. Herm,, ~¢) is the set of n x n (positive definite) Hermitian matrices with values
in C and s € C. Our local conjecture and result imply the following theorem, which extends [LZ22al,
Theorem 1.3.1] to include ramified primes.

Theorem 1.5. (Arithmetic Siegel-Weil formula for non-singular coefficients) Assume that the
fundamental discriminant of F is dp =1 (mod 8) and that Conjecture holds for every F, with
6



pldp. For any nonsingular Hermitian matriz T with values in O of size n, we have
Efp(1,0,8) = C - degr(v) - ¢",  ¢" = exp(2mitz(T7)),

where ElL(,0, ®) is the T-th Fourier coefficient of E'(1,0,®) and C is a constant that only depends
on F and L. In particular, the arithmetic Siegel-Weil formula holds for n = 2,3 for non-singular

T.

In a very recent joint work with Chao Li ([HLSY22]), we proved Conjecture and so this
theorem is now unconditional.

1.6. Notations. For Op-lattices (resp. Op-lattices) L and L', we write L é L'ifLcL c %L
and dimg, (L'/L) =t (vesp. dimy(L'/L) = t). We say a vector v € L is primitive if ly¢ L.

Through out the paper, we always assume a Hermitian lattice is non-degenerate. For Hermitian
lattices L and L', we use L& L’ to denote orthogonal direct sum, and L& L’ as direct sum of lattices.
Given a Hermitian lattice L with Hermitian form (, ), we consider two different dual lattices of L.
We use L* (resp. L") to denote the dual lattice of L with respect to (,) (resp. trp/ (5 ). Recall
that v(L) is defined to be min{v,(h(v,v")) | v,v" € L}. For each Hermitian lattice L, there exists
a Jordan decomposition L = @;>,L; such that L? = 77'L;. We call L integral if s > 0. For an
integral lattice L, we define

t(L) = Zrank@F(Li).
i>1

Following |LL22), Definition 2.11], for a lattice L with hermitian form (, ), we may find a basis

of L whose Gram matrix is

0 7.[.261+1 0 7-r20t+1
<ﬁ17r2b1> @D (&Wzbs) > ( 2141 0 DD _ 201 0

for some fB1,...,08s € (’)}X70 and by,...,bs,c1,...,¢ € Z. Moreover, we define its (unitary) funda-
mental invariants (ag, - - ,a,) to be the unique nondecreasing rearrangement of (2by, - - - , 2bs, 2¢; +
1,--+,2¢;+1). The partial order of Z" induces a partial order on the set of fundamental invariants.
1

matrix H;. Given a Hermitian lattice M, we use M to denote M o HE. We use I¢, to denote
a unimodular Hermitian lattice of rank m and x(IS,) = €. For a Hermitian matrix 7', we define
v(T) = v(L) where L is a lattice whose Gram matrix is 7. We use Herm, (F") to denote the set
of Hermitian matrices over F' of size n. When there is no confusion, we also simply denote it as
Herm,,. For T, T’ € Herm,,(F'), we say T is equivalent to 7" if there is a U € GL,(Op) such that
U*TU = T', where U* = 'U. In this case, we denote it as T ~ T".

For t € Op,, let v(t) = valy,(t) and write t = to(—m)""). For z € V, we set q(z) = (z,z) and
v(z) =v(q(z)). We use (t) to denote a lattice Opx of rank one with g(x) = ¢.

The notations in each section that are not mentioned here will be explained at the very beginning
of the section.

> and H = H_1. We also use it to denote a Hermitian lattice with Gram

1.7. The structure of the paper. The paper is divided into three parts. In Part [I} we prove
some facts about special cycles for arbitrary n. More specifically, in Section [2| we recall some basic
facts about N'K™ and define special cycles and special difference cycles on it. In Section 3| we
compute the intersection number between special cycles and the exceptional divisors. In Section [
we prove a decomposition theorem for the horizontal component of LZKra(Lb) when L’ has rank
n— 1.

Part [2] is about Hermitian local densities. In Section [5, we study induction formulas of local
density polynomials and relate the local density polynomials with primitive local densities. In
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Section @ we show that the coefficients Cp,i I are uniquely determined and give an algorithm
to compute them. In Sections [7] and [8] we compute the local density polynomials when n < 3.

In Part [3]we prove Theorem[1.2] i.e. Conjecture for n = 3. In Section 9} we study the reduced
locus of the special cycles for n = 3. In Section e decompose LZKra(Lb) for L’ of rank 2 and
v(L?) = 0, and compute the intersection number of Ny, with ZX™(x). Finally, we prove Theorem
and finish the proof of Theorem [I.2]in Section [11] and explain its global applications in

In Appendix [A] we compute the primitive local densities that are used in Part [2] of the paper.

1.8. Acknowledgement. We thank Chao Li for his help during the preparation of this paper. We
thank the referees for their careful reading of the paper and their comments which make the paper
more readable.

Part 1. The geometric side
2. RAPOPORT-ZINK SPACE AND SPECIAL CYCLE

We denote a the Galois conjugate of a € F' over Fy. Let Nilp O be the category of O z-schemes
S such that 7 is locally nilpotent on S. For such an S, denote its special fiber S Xgpr0,. Speck by

S. Let o be the Frobenius element of Fj /Fp.

2.1. RZ spaces. Let S € NilpOj. A p-divisible strict Op,-module over S is a p-divisible group
over S with an Op, action whose induced action on its Lie algebra is via the structural morphism
@ Fy — Os.

Definition 2.1. A formal Hermitian Op-module of dimension n over S is a triple (X, ¢, ) where
X is a supersingular p-divisible strict Op,-module over S of dimension n and Fy-height 2n (su-
persingular means the relative Dieudonné module of X at each geometric point of S has slope %),
t: Op — End(X) is an Op-action and X : X — XV is a principal polarization in the category of
strict Op,-modules such that the Rosati involution induced by A is the Galois conjugation of F'/Fy
when restricted on Op. We say (X, ¢, A) satisfies the signature condition (1,n — 1) if for all a € Op
we have

(i) char(c(a) | Lie X) = (T — s(a)) - (T — s(a))" ! where s : Op — Og is the structure morphism;

(ii) The wedge condition proposed in [Pap00]:

A"(1(a) — s(a) | Lie X) = 0, A%(«(a) — s(a) | Lie X) = 0.

Let (X, tx, Ax) be a formal Hermitian Op-module of dimension n over k, and N be its rational
relative Dieudonne module. Then N is an 2n-dimensional Fy-vector space equipped with a o-linear
operator F and a o~ !-linear operator V. The Op-action 1x : Op — End(X) induces on N an
Op-action commuting with F and V. We still denote this induced action by ¢x and denote tx(7)
by 7. Let 7 := 7V~ and C := N7. Then C is an n-dimensional F-vector space equipped with
a Hermitian form (,)x defined using the polarization Ax, see [Shil8, Equation (2.7)]. When n is
odd, there is a unique choice of (X, tx, Ax) up to quasi-isogenies that preserves the polarization by a
factor in (’)}X,O. When n is even, there are two such choices according to the sign e = x(C) (see (L.1)))
of C. See [Shil8, Remark 2.16] and [RTW14, Remark 4.2]. Fix a formal Hermitian Op-module
(Y, ey, Ay) of signature (0, 1) over Speck. It is unique up to Op-linear isomorphisms. Define

(2.1) V = Homp, (Y,X) ® Q,
which is equipped with a Hermitian form

(2.2) h(z,y) =Ny oy’ odx oz € End}(Y) 5 F
8



where " is the dual quasi-homomorphism of y and End%(Y) is the ring of F-linear quasi-endomorphisms
of Y. The Hermitian spaces (V,h(,)) and (C, (,)x) are related by the F-linear isomorphism

(2.3) b:V—C, x> x(e)

where e is a generator of the relative covariant Dieudonné module M(Y) of Y. Let (,)y be the
analogue of (,)x for Y, namely the Hermition form on the rational relative Dieudonné module of
Y defined by Ay. By [Shil8, Lemma 3.6], we have

(2.4) B, %) (e, €) = (b(), b))
By scaling the Hermitian form (, )y we can assume that
(6, G)Y =1,

so V and C' are isomorphic as Hermitian spaces. We will sometimes identify V and C.

Definition 2.2. Fix a formal Hermitian Op-module (X, tx, Ax) of dimension n over k with the
sign € = x(C). The moduli space TE ¢ is the functor sending each S € Nilp O3 to the groupoid of
isomorphism classes of quadruples (X, ¢, A, p) where (X, ¢, A) is a formal Hermitian Op-module over
S of signature (I,n —1) and p: X xg S — X X Spec k S is a quasi-morphism of formal Op-modules
of height 0. An isomorphism between two such quardruples (X, ¢, \, p) and (X',//, N, p') is given
by an Op-linear isomorphism « : X — X’ such that p' o (a x5 S) = p and o*(X) is a O, multiple

of A\. We drop the subscript € in ,1; ¥ when we do not emphasize on the sign.

By the discussion before , when n is odd, two different choices of € give us isomorphic
moduli spaces. When n is even, two different choices of € give us two sets of non-isomorphic moduli
spaces. By [RTW14], ./\/,1; % is representable by a formal scheme flat and of relative dimension
n — 1 over Spf Op. We remark here that although [RTW14] works on the category of p-divisible
groups (namely when Fy = Q,), their arguments and results easily extend to the category of strict
formal Op,-modules using relative Dieudonné theory or more generally the relative display theory
developed in [ACZ16]. When n = 1, we have ./\/'1P *? = Spf O . The universal Hermitian Op-module
over N7 is the canonical lifting (G, g, Ag, pg) of (Y, uy, Ay) to Spf Op in the sense of [Gro86].
When n > 1, ./\/}11D * is regular outside the set of superspecial points over Speck, which are the
points characterized by the condition ¢(7)|rie x = 0. The set of superspecial points is in fact the
set of type 0 lattices (see Section [2.3)), hence is isolated and we denote it by Sing.

Definition 2.3. Fix (X, ux, Ax) be as in Definition The moduli space N5 is the functor
sending each S € NilpOp to the groupoid of isomorphism classes of quintuples (X, ¢, A, p, F)
where (X,1,\, p) € Np?(S) and F is a locally free direct summand of Lie X of rank n — 1 as
an Og-module such that Op acts on Lie X/F by the structural morphism and acts on F by
the Galois conjugate of the structural morphism. An isomorphism between two such quintuples
(X, e, N\, p, F) and (X', N, p', F') is an isomorphism « : (X, 1, A, p) — (X', N, p)) in }ng(s)
such that o*(F’) = F. Again we drop the subscript € in N}fga when we do not emphasize on the
sign.

By [Kr#03] (see also [Shi22, Proposition 2.7]), the natural forgetful functor ® : AKra — NP

forgetting F is the blow up of NP along its singular locus Sing. For each point A € Sing, its
inverse image ®!(A) is an exceptional divisor Exc, isomorphic to ]P’Z_l.

2.2. Special cycles.



Definition 2.4. For an Op-lattice L of V, define ZP*P(L) to be the subfunctor of Nj* sending
each S € Nilp O to the isomorphism classes of tuples (X, ¢, A, p) € NF *P(S) such that for any
x € L the quasi-homomorphism

plozopg:GxsgS—XxgS

extends to a homomorphism Gg — X. For x € V™, we let ZF#P(x) := ZP2(L) where L = Span{x}.

Let
zRra(x) = zKra(py .= zPap() X \/Pap NEra,
By Grothendieck-Messing theory ZP#P(L) (hence ZK™(L)) is a closed formal subscheme of A P

We sometimes add the subscript , . to ZF® (L), ZFa(x), ZK3(L) and 2¥%(x) to indicate their
ambient moduli spaces.

Definition 2.5. For an Op-lattice L C V, define Z(L) to be the strict transform (see the definition
after [HarL3, Chapter II, Corrollary 7.15)) of ZF#P(L) under the blow up MK — Af P,

Proposition 2.6. Suppose x(V) = e. Let L be a self-dual lattice of rank m in V with n = x(L).
We have
ZRP(L) = N

—m,en’

and Z, (L) = N2

—m,en*

Proof. Let us start with the case L = Span{xgp} where xg € V. Assume that u = h(xg,Xp).
Multiplying the Hermitian form (, )x on C by ™! does not affect the various moduli spaces involved.
So we can perform this and assume that h(xg,xp) = 1. Moreover, the sign of its orthogonal
complement in V becomes

e =e-x(u™h) - x(u ") x (=) = ex(w)"x(-1)"

Then for (X, 1, )\, p) € Zh2P(x0)(S), we define

x5 = Ag oxg oA, e:=x00x; € End(X).
By the fact that h(xg,x0) = 1 we know that e is an idempotent. It is routine to check that

(1—e)X,(1—e), (1 —e")A(1—e),p(1 —e))
is an object in ./\/’:fﬁ)’q(S). Conversely given (Y, 1y, Ay, py) € /\/ffiel(S), the object

(Y x Gs,ty X tgg, Ay X Agg, 9 ° (py X pgs))
is in Zp% (x0)(S) where g € U(V) such that g~'xq is the inclusion 0 x id : Y — X,,_; x Y where
X,,_1 is the framing object of NP

n—1,e1°

shows that Z}L)ﬂp(xo) i foliel. For general L of rank m and determinant u, find a basis with

The above two functors are inverse to each other. This

Gram matrix {1,...,1,u} and apply the above result repeatedly. So we have Zg7ip(L) = NE_aEMm
where

e = ex(u)" Ty (—1)
Notice that by scaling the Hermitian form by (—1)™u again we have N,ffpm’em = foﬂm. It then
follows from [Harl3, Chapter II, Corollary 7.15] that Z, (L) is the blow up of Z};ﬁp(L) along its

superspecial points, which is VX2 . O

Corollary 2.7. Let L be as in Proposition andy €V such that y 1 L. Then
ZR(y) N Zne(L) = 250 ()

n—m,en

Remark 2.8. It follows directly from the definition that ZN(L) is a closed sub formal scheme of

Z(x1)N---NZ(x,) if {X1,...,%,} is a basis of L. However in general these two can not be identified.
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2.3. Bruhat-Tits stratification. For an O;-lattice M of N, define M ? to be the dual lattice of
M with respect to the form (, )x. Recall the following results.

Proposition 2.9. ([RTW14, Proposition 2.2 and 2.4]) Let N'(k) be the set of O x-lattices
N(E)={McCopF| M =M, rr(M)C M C x~'7(M), dimy(M + 7(M))/M < 1}.
Then the map
NP () 5 N(K), 7= (X0, p) = M(z) = p(M(X)) € N
s a bijection.

We say a lattice A C C is a vertex lattice if 7A C Af C A where A? is dual lattice of A with
respect to (,)x, and we call ¢ = dimg, (A/A?) the type of A. We denote the set of vertex lattices
(resp. of type t) by V (resp. V). We say two vertex lattice A; and A are neighbours if Ay C As
or Ao C Ay. Then we can define a simplicial complex £ as follows. When n is odd or when n is
even and C' is non-split, then an r-simplex is formed by Ag, ..., A, if any two members of this set
are neighbours. When n is even and C' is split, we refer to discussion before [RTW14, 3.4] for the
definition of £. We also use £, . to denote L if C' has dimension n and x(C) = e. Again when n is
odd, £, 1 = Ly —1, hence we use £, to denote it.

By results in Sections 4 and 6 of loc. cit., to each A € V! we can associate a Deligne-Lusztig
varieties Ny and N} of dimension ¢/2, such that

Na(k) ={M e N(k) | M C A®o, Oz},
and
Ni(k) ={M € N(k) | A(M) = A}.

Here A(M) is the minimal vertex lattice such that A(M) ®p, O contains M which always exists
by [RTW14, Proposition 4.1]. By Theorem 1.1 of loc.cit., we know that

NA = |_| No/,
NELACA
and
Pa
'/\[redp = |_| NX
AeL
where each N} is a closed subvariety of N;lzgp . By loc. cit., we also know that

o ifANA
NAQNA/ _ NAOA 1 ﬂ EV,
0 otherwise.
For a lattice L C V, define
(2.5) V(L) ={A eV |LCA*}, and V/(L) == {A € V' | L C A%}

When L = Span{x} we also denote V(L) (resp. V(L)) by V(x) (resp. V!(x)). For any subset S
of V, we define £(S) to be the subcomplex of £ such that a simplex is in £(.5) if and only if every
vertex in it is in S. For a lattice L of V and x € C, define

(2.6) L(L)=L(V(L)).

When L = Span{x} we also denote £(L) by L(x).
11



2.4. Horizontal and vertical part. A formal scheme X over Spf O} is called horizontal (resp.
vertical) if it is flat over Spf O (resp. m is locally nilpotent on Oy). For a formal scheme X over
Spf O, its horizontal part X} is canonically defined by the ideal sheaf Ox o of torsion sections
on Ox. If X is noetherian, there exists a m € Z-¢ such that 7"Ox ior = 0. We define the
vertical part X, C X to be the closed formal subscheme defined by the ideal sheaf 7" Ox. Since
Ox tor N T"Ox = {0}, we have the following decomposition by primary decomposition

(2.7) X=X,UX,
as a union of horizontal and vertical formal subschemes. Notice that the horizontal part Xp is

canonically defined while the vertical part X, depends on the choice of m.

Lemma 2.10. For a lattice L” C 'V of rank greater or equal to n — 1 with nondegenerate Hermitian
form, Z¥2(LP) is noetherian.

Proof. The lemma can be proved as in [LZ22al, Lemma 2.9.2]. O

Lemma 2.11. For a rank n — 1 lattice L C 'V with nondegenerate Hermitian form, ZKra(Lb)v 18

supported on the reduced locus ./\/;Igéa of NKra e, O zkra(rpy, s annihilated by a power of the ideal

sheaf of NX1a.
Proof. The proof is the same as that of [LZ22a, Lemma 5.1.1]. O

2.5. Derived special cycles. For a locally noetherian formal scheme X together with a formal
subscheme Y, denote by K} (X) the Grothendieck group of finite complexes of coherent locally
free Ox-modules acyclic outside Y. For such a complex A®, denote by [A*] the element in KY(X)
represented by it. We use Ko(X) to denote K (X). Denote by FIKY (X) the codimension i
filtration on K} (X) and Gr'K} (X) its i-th graded piece. We have a cup product - on K} (X)
defined by tensor product of complexes:

[45] - [43] = 43 © A3].
When X is a scheme, the cup product satisfies ([SABK94], Section 1.3, Theorem 1.3])
(2.8) F'K (X)g - F/ K (X)g € FHEG (X))o

It is expected that is also true when X is a formal scheme. We will only need special cases of
this fact which can be checked directly, see for example Lemma, [3.4] and

Let Ky(Y) be the Grothendieck group of coherent sheaves of Oy-modules on Y. When X is
regular we have the following isomorphism

(2.9) KY(X) = K)(Y).

In particular, Ko(X) = K{(X).
When X is a regular scheme of dimension d, there is an isomorphism of graded rings defined by
the Chern character:

d
ch : Ko(X)g = @ CH'(X)g.
i=1
In particular we have
GriKo(X)g = CH!(X)g.
Recall that for x € V, ZK(x) is a divisor, see [How19, Proposition 4.3].
Definition 2.12. For x = (x1,...,x%,) € V", define “ZX(x) to be

ZKra x ra
(210) [OZKra(xl) ®L tee ®]L OZKra(xT)] € KO ( )(NK )
12



where @ is the derived tensor product of complexes of coherent locally free sheaves on A5, By
[How19, Theorem B], “Z¥ra(x) only depends on L := Span{x}, hence can be denoted as “Z¥(L).

Definition 2.13. When L has rank n, we define the intersection number
(2.11) Int(L) = x (N5 LzKra ()
where x is the Euler characteristic.

Lemma 2.14. Z¥%(L) is properly supported on /\f}gga. In particular, Int(L) is finite.

Proof. This can be proved exactly the same way as [LZ22a, Lemma 2.10.1]. O

2.6. Special Difference cycles. Conjecture [I.I] and Theorem motivate us to make the fol-
lowing definition.

Definition 2.15. For L C V arank / lattice, define the special difference cycle D(L) € K OZ NS (NKra)
by
(212) D(L) — ]LZKra(L) +Z(_1)zqz(z—1)/2 Z ]LZKra(L/).
i=1 Lcr'cir
dimp, (L' /L)=i
One interesting observation is the following decomposition of “ZXra(L).

Kra
Lemma 2.16. For L C V a lattice of rank £, we have the following identity in ng (@) (NKra)
where the summation is finite.

]LZKra(L) — Z D(L/)
L'integral
LCL'CLp

Proof. First of all, if L is not integral, neither is L' if L C L'. In this case “ZX™(L) = 0 and the
summation index on the right hand side of the identity in the lemma is empty. This proves the
lemma when v(L) < 0. We can now prove the identity by induction on the fundamental invariant
of L. Assume that the lemma is proved for all L' C Ly with L C L',

For L' with L C L' C 2L, we have

]LZKra(L/) — Z D(L//)
L'cL"cLy
by the induction hypothesis. Combining this with (2.12]), we can write
]LZKra(L) — Z m(L//)D(LII)
LCL"CLg

where m(L") € Z. Now it suffices to show m(L"”) =1 for any L” such that L C L” C Lp.
First, notice that m(L) = 1. For any L” such that L C L” C Lp, let M’ = 1L N L" and
m = dimg, (M'/L). We have

m
(2.13) m(L") ==Y (-1)igt=D2 N 1=1
=1 LcL'cMm’
dime, (L'/L)=
by evaluating the identity in the corollary to [Tam63l Lemma 12] at ¢t = 1. (|
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Remark 2.17. When ¢ =1 and L = Span{x}, the Cartier divisor
D(L) = Z(x) — Z(%x)
is the difference divisor D(x) defined in [Terl(), Definition 2.10].
Definition 2.18. Assume L = L1 @ Lo, where L; is of rank n; and ni + ny = n. We define
(2.14) Int(L)™) = (VK2 D(L,) - L 2K (Ly)).
Notice that Int(L)(”l) depends on the decomposition L = Ly ¢ Ls.

3. SPECIAL CYCLES AND EXCEPTIONAL DIVISORS

For a formal subscheme Z of NX™ we use the notation ®z (resp. ®%) instead of ®ep, (resp.
®H@Z). We also simply write ® (resp. ®") instead of ® ks (resp. ®H/(/Kr.d). Let us first recall the
following distribution law of derived tensor product. In this section, we identify V with C' by the
isomorphism b defined in ({2.3]).

Lemma 3.1. Assume that A; (1 < i < k) is in the derived category of bounded coherent sheaves
on N2 and i : Z — NK™ is q closed embedding of formal subscheme. Then the following identity
holds in the derived category of bounded coherent sheaves on Z.

(A @Y. @l AL @l 0z) =it (A @F 0z) @% ... 9% it (A, @F 02).

Proof. We can take locally free representatives of A$ of A;. Then A} ®...® A}, is again a complex
of locally free sheaves on N'X™ hence a locally free representatives of A; @ ... ®“ A;. Hence
i*(Ay QL ... L A4, Oz) can be represented by A} ® ... ® A} ® Oz. Meanwhile A} ® Oz is a
representative of A; @ Oz in the derived category of bounded coherent sheaves on NX™ and is
also a complex of locally free sheaves on Z. Hence i*(A; @ Oz) ®@% ... ®% i*(A @ Oz) can be
represented by (A} ® Oz) ®z ... ®z (A} ® Oz). Now by the distribution law of tensor products
we have
1.0 A400z=(A1®0z)Rz...0z (A, ® Oz).

This finishes the proof of the lemma. ([l

Proposition 3.2. Assume that the dimension of V is n > 2. Then for each x € V, ZX%(x) is a
divisor. Moreover, we have the following decomposition of Cartier divisors

(3.1) ZR(x) = Z(x)+ Y (ma(x)+1)Excy
AeVO xeA

where mp(X) is the largest integer m such that 7= -x € A.

Proof. The fact that ZX'(x) is a divisor is due to [How19, Proposition 4.3]. By [Shil8, Proposition
3.7], the superspecial point corresponding to a type zero lattice A is in ZF#(x) if and only if x € A.
Hence Excy C ZX(x) if and only if x € A. Since N}fﬁa is regular, we must have a decomposition
as in and the only job left is to determine the multiplicity of each Excy.

Fix a type zero lattice A and let m = my(x). Then 7™ - x is a primitive vector in A. By
Lemma there exists a decomposition

A=A N

where Ay and A" are unimodular lattices of rank 2 and n — 2 respectively and 7~ - x € Ay. Let
n = x(A’). By applying Proposition E’ we see that Z, (A") = ./\/2}%‘;‘ Moreover we have the
following proper intersections

Zfi?(x) N Zne(N) = z;fgg(x), Zne(X) N Zpe(N) = 25 (x),
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and

Exca N 2,176(1\/) = EXCAQ,

where Excyp, is the exceptional divisor in ijﬁ‘ corresponding to the vertex lattice As. Hence the
multiplicity of Excp in Z,If’ff(x) is the same as the multiplicity of Excp, in Z%irf;(x) Now the
proposition follows from [Shi22, Theorem 4.6] and [HSY23, Theorem 4.1]. O

The Chow ring CH®(Excyp) = Gr*Ko(Excy) is isomorphic to Z[H,]/(H} ™" — 1) where Hy is the
hyperplane class of Excp represented by any ]P’Z_2 in Excy.
Proposition 3.3. Assume dimV =n > 2. Assume x € V such that h(x, )S) #0 and A is a type 0
vertez lattice containing x. Let m := my(x) as in Proposition . Then Z(x) and Excy intersect

properly and
[Oé(x)ﬂEch] = (2777, + 1)HA € CHl(EXCA).

Proof. First Z(x) and Excy are Cartier divisors with no common component, so they intersect
properly. Let m = my(x) and x' :== 7~™ - x. By assumption m > 0. By Proposition we have
{veA|h(x',v) =0} =Span{y} ® A
where v(y) = v(x) and A’ is unimodular. Let n = x(A’) and

Ay ={veA|vLA}.

Ay is rank 2 unimodular and contains x’.

By Propositionﬁ we have Z(A') = NQI%? In particular, Z(A’) is regular. By Corollaryﬁ we

know that Z(A') N Z(x) = Za,(x). In particular Z(A’) and Z(x) intersect properly as Zs ¢, (x)

is a divisor in NQI%? On the other hand Z(A’) N Excy is the exceptional divisor Excy, in /\/2}%?

Since Excp = szl, it is also regular. Our strategy is to compute the intersection number
XNV Oz ®" Opxe, O Ozary)

in two different ways. By Lemma [3.1] one way is

(3.2) X(Z(A), Oz )nzx) ®H§(A/) O2(A)nExcy)

where we use the fact that the intersections Z(A’) N Z(x) and Z(A’) N Excy are proper (see for
example [Zha2l1l, Lemma B.2]). The other way is, by Lemma

(33) X(EXCA’ Oé(x)ﬂEch ®HP5XCA OZ(A’)HEXCA)'

When en = —1, by Proposition 3.11 and Theorem 4.5 of [Shi22], we know that is equal to
2m + 1. When e = 1, by Lemma 3.10, Theorem 4.1 and Lemma 5.2 of [HSY23|, we know that
is equal to 2m + 1 as well. Since the intersection number of Hj with Excy, = IP’}C in Excp is
1, the proposition follows. O

3.1. Intersection numbers involving the exceptional divisors.

Lemma 3.4. The class of Opxc, Q... @ Okxc, N CH™ 1(Excy) is (—2Hy)™ 1.

m

Proof. To study this intersection, it suffices to consider the local model N¥ constructed in [Kri03].
Let NX'@ be its special fiber. Recall by equation (4.11) loc. cit., we have

N = Exc + Zy
15



as Cartier divisors where Exc is the exceptional divisor of N¥™ and Z, is a divisor in N¥™ which
intersect properly with Exc. Their intersection is 2H where H is the hyperplane class of Exc. Since
Exc is properly supported on N¥' we have

[OEXC ®L ONg(ra] = O

Hence
0 = [Okxe @xra O el
= [OFxc @yicra Oxe] + [Oxe @yira O]
= [Opxc @Nira Opxc] + 2H.
This proves the lemma when m = 2. The general case now follows from Lemma (3.1 U

Corollary 3.5. Let A € V° and x € A. Then we have the following identity in CH'(Excy):
[Obxey ®" Ogicrag)] = —Ha.
Proof. By Propositions and Lemma we have the following identity in CH!(Excy):
[0 zkra(x) ®F Okxe,] = [(2ma(x) + 1) — 2(ma(x) + 1)]Hy = —Hj.
This finishes the proof of the corollary. ([l
Corollary 3.6. Assume that n —m > 1 and Excy C ZX%(xq) ... N 282 (x,,), then
XN, 0 zxcra ) @ - Ozira(,) @ Ofxey ® -+ @Y Opgey ) = (1)1 277"

n—m

Proof. By Corollary Lemmas [3.1 and [3.4] we have
X(N;fra, OZKra(Xl) ®]L e OZKra(xm) ®L OEXCA ®]L e ®L OEXC/\J)

n—m
= X(Exca, (—HA) ®fixe, *** Qlixey (—HA) @Fixey (—2HA) Ofixey *** Qlixey (—2Ha))
m n—m—1
— (~1)m (—2)nm,
O
For A € V9, let P be any IP>,1f in Excy, and
(3.4) Inta (x) = XN, Ozkra () @ Op1 ).
Corollary 3.7. For A € V°, we have
(3.5) XNE™, Opyey @ Opr) = =2,
Proof. By Lemma (3.4} we have
XNV Kra’ OFxcy Q" O]P’}X)
= XV, Ofxey @ (Oxey @0y, Op1))
= X(Exca, (Ofxey ®" OFxc,) ®0p,, Opt)
= —2x(Excp, Hp - [OP}\])
= -2
O
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Corollary 3.8. For A € V°, we have
Inta (x) = —1a(x).
Proof. If x ¢ A, then the intersection number is apparently 0. Otherwise we have by Corollary
XVE, 0 i ) @ Opt )
= x(Excp, (Ozkra(x) @Y Ofxe,) R0y, Op1)
= —x(Excy, Hy - [Opi])
=—1

The above results suggest that the difficulty to compute Int(L) mainly lies in computing
XNVE, Oz, @ - &% O, ).
We end this section by studying the intersection number of difference cycle with exceptional divisors.
Lemma 3.9. If L’ has rank n — 1, then for any A € VO(L?), we have
(-t L =ANLY,

0 otherwise.

XN D(L) - [Oksey]) = {
Remark 3.10. L’ = AN LB; if and only if L’ is of type (see [£.2) and Lemma below) 1 or 0
and A is at the boundary of the L(L).
Proof. Define
1
M' = =1’ N A and m = dimg, (M'/L).
v

Then for L' such that L” C L' C 2L, we know that ZX™(L’) intersects Exc, if and only if L' C M'.
For such L', by Corollary we have

(3.6) XN EZRR(L) - [Opee,]) = (1)
Hence
AN D) - [Opae,]) = (1) L+ D102 3 )
i=1 Lbcr'cM’

dimg, (L'/L%)=i
Notice that m = 0 if and only if M’ = L” which is equivalent to the condition L’ = AN Lk};. In this
case the summation in (4.8]) is over an empty set hence (4.8)) is equal to 1. If m > 0 we know (|4.8))
is equal to 0 by ([2.13]). O
4. HORIZONTAL COMPONENTS OF SPECIAL CYCLES

Given an integral Hermitian lattice L we can have its Jordan decomposition:

(4.1) L =S>0Ly

where L; is wt-modular, see [Jac62]. Define the type of L to be

(4.2) t(L) =) ranko,(L).
t>1
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4.1. Quasi-canonical lifting cycles. Assume that dim(V) = 2. When x(V) = -1, for y € V, by
[Shi22) Theorem 4.5], we have the following equality of Cartier divisors on ./\/'2K£a1

v(y)
Zya(y) =20+ Y _(ZF+ 2)).

s=1
Here Zy (resp. ZF) is a canonical (resp. quasi-canonical) lifting cycle of level 0 (resp. s), see
[Shi22] §3]. Moreover by [Shi22, Proposition 3.12], Z} and Z; do not intersect when s > 1. Let

Os := Op, + Of - 7§ and M, be the finite abelian extension of F corresponding to the subgroup
O under local class field theory. Let W be the integral closure of O in M. Then we have

Zy = Spf O and Z+ = Spf W;. Define the primitive part of 2,7’2,_1(y) to be
+ — .
Zv(y) + Zv(y) if v(y) > 0,
2 if v(y) = 0.

When (V) =1, for y € V such that v(y) > 0, by [HSY23, Theorem 4.1], we have the following
equality of Cartier divisors on NQKfa

Z~2,—1(Y)O =

Z51(y) = 20 + Zu(y),

where Zy = Spf O is a canonical lifting cycle and Z,(y) is a Cartier divisor whose structure sheaf
is annihilated by 7 for some N > 0. Define the primitive horizontal part of Z5(y) to be

= o. | 0 ifv(y) >0,
Z2a(y) '_{ Zy ifv(y) =0.

4.2. Horizontal cycles.
Definition 4.1. Let M’ be a rank n — 1 integral lattice in V. We say that M” is horizontal if one
of the following conditions is satisfied

(1) M’ is unimodular.
(2) M is of the form M°* = M @ Span{y} where M is a unimodular sublattice of rank n — 2
such that (Mz)* (the perpendicular complement of My in V) is nonsplit.

Notice that condition (2) is independent of the choice of M. We denote the set of horizontal lattices
by Hor.

For a rank n — 1 integral lattice L”, define
(4.3) Hor(L’) == {M’ € Hor | L’ € M"}.
Let M° C V be a lattice of rank n — 1 and type 1 or 0. We can decompose M” as
(4.4) M’ = M & Span{y},
for some unimodular lattice M of rank n — 2. Then Proposition and its corollary imply that
Z(M°) 22 2y (napy 2y (Y)-

Under this isomorphism, define Z(M)° to be the formal subscheme of Z(M") isomorphic to
Z9 (M1 (¥)°. By the discussion in Z(M")° is nonempty if and only if M” € Hor, in
which case it consists of the union of irreducible components of Z (M b) isomorphic to Spf Ws. In

particular, Z(M?")° is independent of the choice of M.
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Theorem 4.2. Let L° be a rank n — 1 integral lattice in V, then
(4.5) Z = ) 2y,
M’ €cHor(Lb)

In particular, ZKra(Lb)h is of pure dimension 1. Moreover we have the following identity in
Gr" 1 Ko (NK2):

[OZKra(Lb)h] - Z [OZ”(Mb)o]

MPcHor(LP)

Proof. The proof largely follows [LLZ22al Section 4.4]. Let K be a finite extension of F'. Assume that
z is an irreducible component of ZK™(L°)(Ok) = ZP2P(L*)(Ok), and let G be the corresponding
formal Op-module over Ok . Define

L = Homo, (1,6, T,G)

where G is the canonical lifting and T}, is the integral p-adic Tate module. L is an Op-module of
rank n equipped with the Hermitian form

{z,y} =Agoy oAgou,
under which it is self-dual. We have two inclusions (preserving Hermitian forms)

iK : HomoF(Q,G)F — LF,
and

i : Homp,, (G,G)p — V.
By Lemma 4.4.1 of loc.cit., we have
(4.6) Homo, (G, G) = i (L).
Let
M’ = (L) Nig(ix' (L)) = Homo, (G, G).

Then z C Z(M”)(O). Lemma 4.3 below implies that t(M®) < 1. Hence we know that z is one
of the irreducible component of Z (MP)° = Z2,X(( Mgy (y) assuming the decomposition of M > as

in (4.4). The nonemptiness of Z(M")° implies that M” € Hor. It remains to prove that z has
multiplicity 1 in ZXr2(L?). Consider R-points of both sides of (4.5, where R = Og[z]/(z?). As
in [Kra03| (see [RZ96, Appendix of Chapter 3]) we know

D(G)(R) = Or ®oy, R, and D(G)(R) = (Or ®oy, R)"
where D is the Op,-relative Dieudonné crystal. Define
G =101eDG)(R), fo=nr®1eDG)(R).
Then the Hodge submodule Fy of D(G)(R) is spanned by
(1®m)eéy + fo.

D(G)(R) is equipped with an Op-invariant symplectic form (,) and we can assume that D(G)(R)
has a basis {é1, .. - ,fn} such that

(m@1)é = fi, (& f;) = dy.
Since any element in L’ is Op-linear, we can arrange a change of basis if necessary and assume that

(1@ m)é + fo) = Spanp{(1© 7)(1 @ T)e1 + 1), -, (1@ 7 )(1 @ T)en—1 + fao1)}-
19



Now D(G)(Ok) = D(G)(R) ®r Ok. Let ¢; = &;® 1 and f; = f; ® 1 respectively. There is an exact
sequence of free O ®o,, Ox-modules (the Hodge filtration)

0 — Fil - D(G)(Ok) — LieG — 0
where Fil is isotropic with respect to (,). We must have L’((1 ® m)eg + fo) C Fil. Hence we have
(Iemer+ fi,...,1®@m)ep—1 + fn1 C Fil.
Since Fil is isotropic and by the signature condition, we have
Fil = Spanp, {(1®@m)e1 + f1,..., (1@ 7)en—1+ fu1,(1 @ T)en — fn}.

Since (z) C R has a nilpotent p.d. structure, by Grothendieck-Messing theory, a lift Z of z to
ZKra(12)(R) corresponds to a lift of Fil to an isotropic O ®¢ r, F-module Fil in D(G)(R) containing

the image of L”. By the same reasonning as above, we must have
Fil = Spang{(1 @ m)é1 + fi,..., (1 @ T)En—1 + fu1, 1 @ 7)én — fu}.
Hence such lift is unique. This implies that the multiplicity of z in ZKra(Lb) is one. O

Lemma 4.3. Let L be a self-dual Hermitian lattice of rank n and W be a n—1 dimensional subspace
of Lr. Then t(M°) <1 for M* =LNW.

Proof. This is exactly the same as the proof of [LZ22al, Lemma 4.5.1]. Notice that in our case we

may need some blocks ( (—?T)“ 75 > in the upper left (n — 1) x (n — 1) block of T" as in loc.cit.

Alternatively, see [LL22, Lemma 2.24(2)]. O

We end this subsection with the following lemma.

Lemma 4.4. Assume M’ € Hor. Then Z(M°)° intersects the special fiber of N}fga at a unique
Excy for some A € V°. Moreover

(./\/'Kra oy oL Ore,) = {1 if M? is unimodular,

2 otherwise.

Proof. By the definition of Hor, we can find a decomposition of M”
M =M a{x}

such that M is self dual. Let A be any vertex lattice containing M”. If M” is unimodular, then A
has to be of the form M’ @ L' where L' is the unique unimodular lattice in (M3)*. If M” is of the
form M @ L’ such that M is of rank n—2 and (MF)J- is nonsplit, then the proof of [Shil8, Theorem
3.10] implies that there is a unique vertex lattice A’ in (Mz)* which is of unimodular (this fact is
the same as the fact that the Bruhat-Tits building of (Mz)* has only one point). Then A must be
of the form M @ A’. In both cases, A is unique and is of type 0.

Assume x(M) = n. By Proposition ﬂ Z(M ) ./\/'QKE”;]3L Moreover Z(M) N Excy = P} is an

exceptional divisor in Ng(g,‘;‘ Hence by Lemma we have

X(N}:ga, Oé(Mb)o ®]L OEXCA) = (N2K€r:;t? O Z(MP)e ®N-Kra O]Pl)

Now the lemma follows from [HSY23, Lemma 5.2] when en = 1, and from [Shi22), Proposition 3.11]
when en = —1. ([l
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4.3. The horizontal part of special difference cycles. Definition [2.15 motivates us to make
the following definition.

Definition 4.5. When L’ is a rank n — 1 integral lattice, define D(L?);, € Gr" ' Ko(NK2) b

n—1
(4.7) D(L)h = [Ozxraqroy, ] + Y (=D D2 3" [Oznp, ]
=1 LbCL'C%Lb

dimg, (L' /L%)=i

Proposition 4.6. Assume L’ is a rank n — 1 integral lattice, then
Z(LP)?° ifL’cH
D(Lb)h _ ( ) Zf . € Hor,
0 if L” ¢ Hor.

Proof. By Theorem [.2] it suffices to compute the multiplicity of an irreducible component in
Z(M")° in D(L);, for all M” € Hor(L?) (see ([.3)). For such a M”, define

1
M'==L’n M’ and m = dimg, (M'/L").
s

Then for a lattice L' with L ¢ L' C 17>, we know that Z(M")° is in ZX¥(L/);, if and only if
L' € M'. Hence the multiplicity of an irreducible components in Z(M?)° in D(L);, is

(4.8) 1+Z )igi—1/ > oL

L’cL’'cM’
dimg, (L'/L%)=i

Notice that m = 0 if and only if M’ = M’ = L, in this case the summation in (4.8) is over an
empty set, hence (4.8)) is equal to 1. If m > 0, (4.8) is equal to 0 by (2.13)). O

Part 2. The analytic side
5. INDUCTION FORMULA AND PRIMITIVE LOCAL DENSITY

In this section, we study various induction formulas of local density polynomials. Let M be
a Hermitian Op-lattice of rank m with v(M) = min{v,(h(v,v")) | v,v’ € M} > —1. and let
M = 1k @ M for an integer k > 0. Let L be a Hermitian Opg-lattice of rank n with Gram matrix
T.

There is a polynomial a(M, L, X') of X—the local density polynomial—such that

(5.1) (M, L,q %) /H / T(x) —T))dx dY,

where T'(x) is the moment matrix of x, dx is the Haar measure on (M*)" with total volume 1, dY
is the Haar measures on Herm,, (F') such that Herm, (OF) has total volume 1, and ¢ is an additive
character of Fy with conductor Op,. Finally, we define (X,Y) = Tr(XY) on Herm,,. We will also
denote a(M, L) = a(M, L, 1) and

0

(5.2) o (M, L) = 5= a(M, L, X)|x-1.

There is another way to define a(M, L, X) as follows. We use Hermy, ps to denote the scheme
of Hermitian Op-module homomorphisms from L to M, which is a scheme of finite type over Op,.
More specifically, for an Op,-algebra R, we define

Lr = L®o, R, (r®a,y®@b)p = 7(x,y) ®0g, ab € OF ®oy R where 2,y € L,a,b € R.
21



Then
Hermp, pr(R) = {¢ € Homp, (Lr, Mg) | (¢(x),¢(y))r = (x,y)r for all z,y € Lr}.
To simplify the notation, we let
(5.3) I(M, L,d) := Hermy, 5 (Op,/(7d)).
Then a direct calculation as in [Shi22, Lemma 6.1] shows that
(5.4) a(M, L) = ¢~ "Cm=)\[(M, L, d)|

for sufficiently large integers d > 0. Since a(M, L, X) only depends on the Gram matrices of M
and L, we may also denote it by «(S,T, X) if S and T are the Gram matrices of M and L.
Now we define primitive local density polynomials. For 1 < ¢ < n, let

(5.5)  (MF)™O = {x = (21, ,x,) € (MH¥)" | dim Span{z, - - , 2} = € in M¥ /7 pF}

For L = Ly & Lo, where Ly = Span{ly,---,l¢} and Lo = Span{lsy1,---,ln}, we define the local
£-primitive density to be

(5.6) BMM, Ly @ L) = /H ., / BT = T))dxaY.

When £ # n, the above definition depends on a choice of L = L1 @ Ls. Hence we always fix such a
decomposition L = L1 EB Lo in this case. When L = L1 & Lo, and L; is represented by T;, we also
denote B(M, L1 & Ly)® as 5(S, Diag(Ty,T2))¥). When £ = n, we simply denote S(M, L1 ® Ly)®
as B(M,L).

Lemma 5.1. Assume L = Ly & Ly where rank(Ly) = ny. Then

oML, X)= > (¢""X)/EIB(M, L} @ Ly, X)),
LiCLi{CLyF

where £(L}/L1) = lengthy, L7 /L.
Proof. This is the analogue of [Kit83, Lemma 3]. Let G = GL,, (F) N My, »,(OF) and U =

GL,,, (OF). By choosing a basis {l1,--- ,l,, } of L1, we may identify U\G with {L| | Ly C L} C
Ly r} by sending g to Ly - g~ 1. Then the identity we want to prove is equivalent to

a(M,L,X)= Y |detg ™ "3(M,L; - g7 © Ly, X)),
geU\G

where |7| = ¢~!. By a partition of M}, we have

o(M, L, X) = / 4y DY, T(x) — T))dx
Hermy, (F) (MF)n

S /H o / o, BTG~ T

geU\G



where g1 = Diag(g, I,,—n, ), and the action of ¢; is simply matrix multiplication on the n components
of M™(")_ Now

/ 4y / DY, T(x) = T))dx
Hermy, (F) (MK (1) gy

—ldetgPrm [ ay [ BV, T(xqn) — T))dx
Herm,, (F) (M [k]yn, ()
= [ detgr /H (F) v /(M[k])n (n1) PV (TG0 = Tlgy Dlga]))dx
—ldetg P [y [ (i) T — Tlor )
Herm,, (F) (M[k])"a(nl)

=laetgPr [y [ Te0 - Tl ax
Herm,, (F) (MK, (1)

— \det gl|2k+m—nB(M[k‘},L X g;l)(nl)
Here T'[g] := g*T'g. Now the lemma is clear. O
Theorem 5.2. Let L be as in Lemmal5dl Then

ni
a(M, L, X) =Y (1) lg@DRtmmxi. N (M, L] @ Ly, X) + B(M, L, X)),

i=1 LicLijcn— 'Ly
dim L} /L1 =i

Proof. This is an analogue of [Kat99, Proposition 2.1]. The proof follows from a combination of
the argument (in a reverse order) in and Lemma O

Motivated by Theorem [5.2] we give the following definition.
Definition 5.3. Let L = Ly & L2 be as in Lemma We define

n1
(5.7) dDen(L)™) := dDen(L) — Z:(—l)i*lqi(ifl)/2 Z ODen (L} @ Ls).
i=1 LiCLiCLyF

dim L} /Ly =i
Corollary 5.4. Let L = L1 & Ly be as in Lemma/[5.1, and e = x(L). Then
1 .
8Den(L)(m) = T e T—en Q/BI(ITTE,L)(nl) + chﬂﬁ(%;“l’/)(nl) .
all, 1, 9) - ’
As a corollary of Lemma [5.1] we have

Corollary 5.5. Let L = L1 & La be as in Lemma (5.1, Then we have the following identity where
the summation is finite:

ODen(L)= Y dDen(Lj & Ly)™).

LiCL|CLy,F

We may reduce the identity Int(L) = 0Den(L) to a primitive version as the following theorem
shows.

Theorem 5.6. Let L = L1 @& Ly CV be as in Lemma|5.1)
(1)  Conjecture is true for L if for every Ly C L} C Ly p, we have

Int(L} @ Ly)™) = dDen(L} & Ly)™).
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(2) If Conjecture holds for all lattices L' = L} & Ly of V of rank n with Ly C L} C Ly p,
then

Int(L; & Ly)™) = dDen(L1 & Ly)™).
(8) For 1 < ny <n, Conjecture is true if and only if for every lattice L = L1 @® Lo C 'V
with rank(L1) = nq, one has

Int(L; & Ly)™) = dDen(L; & Ly)™).

Proof. (1) follows from Lemma and Corollary (2) follows from Definitions and
(3) follows from (1) and (2). O

For the rest of this section, we assume that M is unimodular of rank m with a Gram matrix
Diag(I,—1,v). To go further with the calculation of a(M, L, X), we need an induction formula for
B(M, L, X)® as follows. The proof is essentially the same as that of Corollary 9.11 of [KR11], and
is left to the reader.

Proposition 5.7. Let L = Ly ® Ly, where Lj is of rank nj. Let C(MF L) be the U(M™")-orbits
of sublattices M (i) C MW such that M (i) is isometric to Ly, and write C(MW¥, L) = Ue ;{M (i)}
Then
B(M, L, X)) = D M s M (i) @ M) M (6)Y : M(3)|" Bi(M, Ly, X)o(M(i) ", Ly),
ieJ
where

Bi(M, Ly, X) = lim g~ @mHt=mgfs e [MW, Ly, d)™) |3 © € UM) with ¢(Ly) = 2(M (i)},
and

I(ME Ly, d)™) = {¢ € I(MW, Ly, d) | ranks, ¢(L1) @0, Fq = n1}.
Recall that I(M™, Ly, d) is defined in (5.3).

One special case is that L = H' @ Ly. Since any sublattice of MK = M @ HF isometric to Hi
is always a direct summand of M* and a(M, !, X) = (M, H', X)) = (M, H?, X), the above
proposition specializes to

Corollary 5.8. Assume L = H'® Lo, then
(5.8) a(M,L,X) = B(M,H', X)a(M, Ls, ¥ X) = a(M.H', X)a(M, Ly, ¢* X).

We end this section with two more special cases of Proposition Proofs are given in Appendix

(Al

Proposition 5.9. Let the notation be as in Proposition . Assume ny = 1 and Ly = (t) where
te OFO.

(1) There always exists a primitive vector M (1) € H* with (M (1)) =t, and
M)t = HF e XM @ (),
Here (t) stands for a lattice Opv of rank one with (v,v) = t.
(2) If v(t) = 0, then there exist a primitive vector M (0) € M with ¢q(M(0)) =t, and
MO =2H QI 2@ (vt).

m

(m=2)(m=3)
Here €p—2 = x((—1) T
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(3) If v(t) > 0, then there exist a primitive vector M(0) € M with ¢(M(0)) =t only when M
is isotropic (i.e. 3v € M with q(v) =0). In this case,
M) =t O ) © (—1).
Assuming the existence of M (1) and M(0), we have
1 ifi=1,
q ifi=0.
(4) Under the action of UMW), v is either in the same orbit of a fired vector M (1) € H* or

a fized vector M(0) € M.
(5) We have the following induction formula:

B(M, L, X)) = gy(M, Ly, X)a(M(1)*, L) + ¢" ' Bo(M, L1, X)a(M(0)*, L).

Moreover,
(a) For any L1,

|ME M) @ M@ M) - M(i)| = {

(b) Assume v(t) =0, then

Bo(M, Ly, X) = {(1 +X(M)x(L)g "7 )X if m is odd,

(1—x(M)g~2)X if m is even.
(c) Assume v(t) > 0, then
(1—-q¢'=™X if m is odd,

Bo(M, Ly, X) = {(1 g (M) (g — 1)q—%) X if m is even.

Proof. Parts (1)—(4) are proved in subsection The induction formula for (M, L, X)) follows
from Proposition For the formula of 5;(M, L1, X), see Corollaries and O

Proposition 5.10. Let the notation be as in Proposition . Assume v(L1) > 0 and ny = 2. Then
we have a partition of C(MWF L) = | 2, Ci(MW¥, L) such that for any M(i) € C;(M™, Ly),
M(i)* is isometric to
(CLy) ©HE & MO,
Here MY is a unimodular Op-lattice of rank m — 2(2 — 1) and has determinant (—1)* det L.
Moreover, we have

(5.9) B(M, L, X)) = qu@-“("—?)ﬂi(M,Ll,X)a(M(i)% Ly, X),
where -

Bo(M, L1, X) = (1—X)(1 - ¢*X),

Bi(M, Ly, X) = glq + 1) (1= ¢'~™) + 6.(m)x(M)(g — 1)g~# ) X(1 - X),
q(1 —¢'=™)(1 — g>~™)X? if m is odd,
0 (1= ™) +x(M)(® = 1)g™ ) (1= >™)X2 if m is even.
Here 6.(m) =1 or 0 depending on whether m is even or odd.

Proof. Equation (5.9) follows from Proposition and Proposition For the formula of
Bi(S, L1, X), see Corollaries and Proposition O
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6. THE MODIFIED KUDLA-RAPOPORT CONJECTURE

Recall that the Hermitian lattices used to define the correction terms are of the following forms:
(6.1) Mo, =H ST 5 for 1 <i< g €=+l

€
where I;,_,,

n = 2r is even, we take I§ = 0 and ’H,lwn =H".

is the unimodular Hermitian lattice of rank n — 2i with x(I;,_,;) = x(H;, ;) = . When

Theorem 6.1. Let r. = "T_l when n is odd, and re = |2F<| when n is even. In the following we
Just write r¢ as r.
0‘(7{%,17 2,1) 0‘(7'[%,27 %,1) Q(H%,r: 2,1)
Af = (A ) = 0 o 761,2’%;,2) Oz(/wa., 761,2)
i e . . e ’
0 0 0 (M, Hs,)

Bt = t(a/(IgeaH?l)? to 70/(]1;677-[161,7’))7

and

n,1

where c¢ ; is as in Conjecture .
Then C€ is the solution of the equation

(6.2) AC* = -2B°.
Moreover,
(n—25)(n—2j—1) _ _ 1 if n is odd,
(6.3) A5;=2¢ 2 [Ta-¢* [ -gq 23){ neg o,
0s<i <o Bk 1—eq™ 2 if n is even.

Finally, fori < j,

I(n —2i,2=2=1 5 ) if n is odd
6.4 AS = A - o2 ’
(64) J {I(n — 2, 22214 G g)  if nds even,

where

k
(qd—s+1 _ 1)(qn—d—s + 1)
I(n,d k) = | | .
(n’ ) ) qs _ 1

Proof. First notice that a(Hy, ;, My, ;)

n,.’
exists a unique solution C..
Now we compute A$ ; explicitly. Corollary and Lemma @ imply that

a(H, g5 Hi ) = a(M, 1) n—2js In—2j)-
According to Lemma

0if i < j. So (1.9) is indeed equivalent to (6.2), and there

ot W)= ][ 0 =a7).

0<s<y

By Lemma [ATT]

a(—’fz—QjaIfz—Qj) = |O(Tn—2j)(]Fq)|7
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where TE = I} 5; ®o, Or/(m) is the space over F, with the naturally induced quadratic form.
Now follows from the well-known formula:

(n=2j)(n=2j-1) _ n=21=1 _9s e
—e ) 2q 2 .. Q—qg ) if n is odd,
|O(In—2j)(FQ)| - (n—25)(n—2j—1) —25 n—2j
n n _n=2j 5 —1 _92s . .
2q 2 (1—e 2 )[[,5 (@—¢*°) ifniseven.

To obtain (6.4)), notice that (Corollary
0‘(7'(;,]’»7'[;,1‘) = a(%fzy%i)a( ;—2z’,j—i7I'rEz—2i)a

and

a(Hy, 5. 1y i) = a(Hy 5 ) a(Hy_o; j—i> Hi2i j—i)-
Hence

Azﬁ‘,j . (HfmaHfm) _ o Z-%,j—ia —2i)

A5 a(He s H ) alHe g M i)

A€
Fix an Op-lattice L that is represented by Iy _,.. According to Lemma [6.2, to compute Ae _, we

need to count the number of lattices L’ in L such that contain L C L' and L' = =i it Wthh

is equivalent to the following condition:
izt AL I /
wL"C wL c (L) ’c L c L

Since I’ and L' determine each other, we just need to count 7L’ satisfying the above condition. We
regard mL'/mL as a (j — i)-dimensional subspace of L/w L, where L/nL is equipped with quadratic
form (x,y)/m.

Claim: The condition

L C (I))?
is equivalent to the condition that wL’'/7L is an isotropic subspace of L/mL.
Indeed, assume wL’ /7 L is an isotropic subspace of L/wL. Then (wx,my) € 7O for any x,y € L,
which is equivalent to (z,7y) € Op for any x,y € L'. The latter condition is the same as L' ¢ (L/)F.

The other direction is clear.
Therefore Ae’j is the number of (j — i)-dimensional isotropic subspaces of L/mL. According to

[LZ22D), Lemma 3.2, 2], it equals to

I(n—2i,2=2=1 5 ) if n is odd,
I(n—2i,2=20208¢ 5 ) if n is even.

O

According to Theorem [6.1] in order to solve C¢, we need to know B¢ and A¢. Here, B¢ can be
calculated by applying Corollary [5.8] and Prop031t10n 9 inductively. The following lemma can be
used to compute A€.

Lemma 6.2. Let F'/Fy be a quadratic p-adic field extension, and let L and M be two Op-Hermitian
lattices of rank n. Then % s equal to the number of lattices L' in Lp containing L and
isometric to M.

Proof. The proof is a generalization of that of Proposition 10.2 of [KR14b] and works for both inert
and ramified primes.
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Let us assume that there is an isometric embedding from L into M, otherwise both sides of the
identity in the lemma are zero. In this case, we have a fixed Lr & Mp. Let « (resp. () be a top
degree translation invariant form on L7 (resp. Herm,,(F)). Let v, = o/h*(3) where

h: % — Herm,,(F), zw~ (z,z).

Define X to be the set of F-linear isometric embeddings from L into M. By fixing a basis of L
and regarding ¢ € X as a linear isometry from Lp to itself, we identify X as a subset of L'.. By
the argument in Section 3 of [GY00] (in particular Lemma 3.4), we know that
vol(Herm,,(OF), dp)

vol((M)™, de)
For any ¢ € X regarded as a linear isometry from Lp to itself, the lattice Ly = ¢~ (M) is a lattice

containing L. Conversely, for any L' containing L and isometric to M, there is a ¢ € X such that
Ly = L'. Hence we have a partition

X = |_| Xy, Xp={pcX|Ly=1L}
LcL'

(6.5) a(M, L) = vol(X, dv,)

Since each L’ is isomorphic to M, all the X, have the same volume as that of X,;. Specializing

(6.5) to L = M, we see

(6.6) (M, M) = vol( Xy, dyy) Yot (Or), d5)

vol((M)", de)
Dividing equation (6.5 by , we prove the lemma. O

Remark 6.3. When F/Fy is unramified and M is unimodular, the lemma was proved by equation
(3.6.1.1) of [LZ22al.

Now we specialize Theorem [6.1] to the case n = 3.

Lemma 6.4. Assumen =3 and e = x(L). Then c§; = f—jq, hence
o' (134, L) ¢ a(Hzy, L)
a(l; ;) 1+qa(ly ;)
Proof. First of all, according to Theorem
(6.7) a(H5 1, HS 1) =2(1 —q 7).
By Corollary we have

a3 Hyy, X) = a(ly M, X)a(l3, 1T, ¢ X).
According to Lemmas [A-§ and [A.9]

a(I;4H, X) = B(HF H) =1 - X.

ODen(L) =2

Lemma [7.1] gives that
a(I; 415, X) =1 — ¢X.
Hence
a(ly Mgy, X) = (1 - X)(1 - qX),
and
o (I3 Hs ) =1—q.
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Combining this with (6.7]), we solve (6.2)) and obtain

Now the lemma follows from ((1.10)). O

7. LOCAL DENSITY FORMULA WHEN rank(7) < 2
The main purpose of this section is to give an explicit formula for «(l,7T,X) where I =
Diag(Im—1,v) with v € O and rank(T) < 2.

7.1. The case T = (t). In order to apply induction formulas to calculate a(I,T,X) for T" with
rank(T") = 2, we need to consider the case T' = (t) first. Write t = to(—m)¥®) for to € O, and

(7.1) I, = Diag(I,vi(—m)?, vy(—m0)?) = Diag(s1, ..., Sma2)
for integers 0 < a < b.

Lemma 7.1. Assume 0 < a <b < v(t).
(1) If m is odd, then
b -1

(Lo (1), X) = 1+ X(Ix(—m)(g—=1) D g ™5 X
s=a+1

+ X(Ia,b)X(tO)q_(m+1)v(t)+a+b_%+l xv(D+1

(2) If m is even, then
Lo, (1), X) = L+ x(I)(g—1) Y g " e ~1xe
s=1
v(?)
+ X(Iap)g™ ™ (¢—1) Z g~ (mHDst3 xs o= (mtDv(t)—1-5 xv(b)+1

s=b+1
Proof. Direct calculation gives
a(Iup, (t), X) = / dy (Y, Diag(H", I,4)[x] — t)) dx
FO O%k+m+2
k 1 m+2
= P(—=tY)dY P(Y tr(—z;y;) + Y 81212 dxidy; | | dz

=1+ / L(Y) I, , (Y)$(—tY) dY.

Here, according to [Shi22, Lemma 7.6],

k

Lo —2ks

I (Y) = /O% ¢(thr(;$iyi)) deidyi =q ",
F i=1

and
m—+2 m—+2

I[a’b(Y) = / w(y Z 812’151) Hdzl = H J(SlY),
oF*? =1 =1
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where

- N 1 if v(t) > 0,
(7.2) ) = O pltez)dz = qv(t)x(—to)g(x,w%) if v(t) <0,
and z
906va) = > (@ ()
2€0 R, /m0

is the Gauss sum. Write ¢’ =11 . Then
0

- Z/ ¢ i (=Y) ) g O ) (< (<o) Y E) dY

+ / g 2 g DI (b (=Y )R g (x, )P (— (—70) TSV E) dY.

Recall the well-known facts that
gOGv)? =x(-1) - q,

(7.3) . ((—m0)*Yt)dY = Char(r5O0F,)(t) — ¢ * Char(wg_l(’)po)(t),
/ox X(Y)¥((=m0)*YH)dY = x(~to)g~ " g(x, %) Char(m§™ OF )(1).

When m is odd, we have

b
a(lgp, (t),X) =1+ X((—l)mTﬂylv)(q - 1) Z q*mHa*mTile
s=a+1
+ X((_l)mT'HVlVQVtO)q—(m+1)(v(t)+1)+a+b+mT+lXv(t)+1‘

When m is even, we have
a(lyp, (), X)
a
=1+ x(~D)F)(g— 1) Y g MO EFLXS 4y (—1) "5 vivav)

s=1

v(t)
(q . 1) Z qf(m+1)s+a+b+%Xs _ qf(m+1)(v(t)+1)+a+b+%Xv(t)+1

s=b+1
Finally, notice that for I of rank m we have
Y(~1)" ) if m is odd,
v) if m is even.

Now the lemma is clear. O

Similarly, we have the following lemma.
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Lemma 7.2. Let I be unimodular with odd rank m. Then

1 T —(v(OFD) (A D)+ 4 v+ i < 9
au@%,<t>,x>:{ (DXt 2 i < 2v(0)

1+ x(D)x(to)g COFDm=DFEE v+ pi s 9y(p).

7.2. The case T = Diag(ui(—m0)%, u2(—m0)?). In this subsection, we compute (I, T, X) for I
unimodular of rank m > 2 and T = Diag(u(—mo)%, uz(—m0)?) with 0 < a < b. Notice that
a(l,T,X) =0 when a < 0.

Proposition 7.3. Assume T = Diag(ui(—mo)®, ua(—m)?) and that I is isotropic of even rank
m > 2, then

a(l,T,X) =(1 - X) (i(q*’”@i + %(LT,X)>
1=0

+qX (X)L = x(Dg ) A+ xD)x(T)g = (X))
+ (1= (g - DxDa ¥ ) X

a—1
. (q Z(qlmx)i +v,T,X) — X([)X(T)qg”(q2mX)a+b+1> ’
i=0

where

a

Ye(I, T, X) = x(I)q* (Z(qd — (@ X)? + x(T)g*(¢* " X)"! Z(ql‘mX)i> :
d=1 i=0

Proof. Since I is of even rank, u1-I¥] ~ Il and we may assume T is of the form Diag((—mo)?, u(—m0)?)

without loss of generality.
According to Theorem and Proposition [5.9] we have

a(Iv T7 X) = BI(L (_770)&7 X)O‘(M(l)J_v u(_ﬂ'O)b)
+qBo(1, (=m0)*, X)a(M(0)*, u(—m0)")
+ ¢ ™ X a(I, Diag((—m)* *, u(—mp)?), X)

~~ ~—

where M (1)* = Diag(H*~1, —(—mo)?, I) and

M(0)* = Diag(H*, —(-m)%,1,...,1,—v).

m—1

Continuing this process, we obtain

a(l,T,X)

= (@) (B (o), X)a(M (1) u(=m0)") + aBo(T, (~m0)', X)a(M(0)*, u(~0)"))
i=0
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By the formulas in Proposition and Lemma the above equals to
D (@ X)TH(1 - X)
i=0
S ™)) 4 DD X))

s=—1

—2

: <1 +(g—-Dx(D)g =

+q(¢® ™MX) X (1 — g 3 x(I))(1 + x(I)x(T)g~ CHDm=2+55= xb+1)

Fad (@ X) X (1= ) (g (D)

i=1
-1
m=4 — — L m=2 —
: <1+ (@—Dx(Dg T > @™ IX N +x(Dx(T)gd "2 (¢ mX)b“) :
s=—1
Now the transformation
a 7
qu QmXaH-s qu 2mX
=0 s=1 d=1 s=1
and some calculation give us the result we want. O
The case that [ is anisotropic (i.e. when m =2 and x(I) = —1) can be computed similarly and

is simpler. We omit the detail here. In particular, we may recover the following formula.
Proposition 7.4. [Shi22, Theorem 6.2(1)] Assume I = Diag(1,v), then
all, T, X)

« «

= (1= X)(1+x(I) + qx(1)) > _(¢X)* = x(T)¢* ' X1 - X)) (¢ X)°
e=0 e—0

= X(T)(1+ @) (X2 4 (D) (T)) + (L + x(1)g* T XL+ X (T) X7,
Moreover, a similar computation yields the following, and we leave the detail to reader.

Proposition 7.5. Assume that I is unimodular of odd rank m > 3. Then
a(l,T,X)
a a—1
= (1-X) (Z@Z—mxy' +901(1,T, X)) +(1-q¢ )X <q D @TX) 4 700(S, T, X >>

=0 =0

m—1

+¢X (> X)* (1 + x(L)x(u1)g 2 ) (1 — x(D)x(ug)gmb=" Xb+1) ,

where v,1(L, T, X) equals

a+b a+b+1
m—1 _ _ — 3
X(I)x(u1)g 2 ( @ - D@ X - Y (@ ’”X)Z>,
d=a+1 i=b+1

and vo0(I, T, X) equals

. a+b a+b A
X(Dx(ur)g = ( D@ @@ x) - (qQ_mX)’> .
d_



8. LOCAL DENSITY FORMULA WHEN rank(7") = 3

In this section, we always assume rank(7") = 3 and S = I X(T) " The aim of this section is to
compute dDen(T") explicitly. We treat the case v(T') < —1 in the first subsection. In the second
subsection, we deal with the case when T' = Diag(1,7T5) for 75 diagonal. In the last subsection,
instead of dDen(T’), we compute dDen(T)? for T of the form not covered by previous subsections.

8.1. dDen(T") for T' with v(T") < —1.
Proposition 8.1. If v(T) < —1, then Int(7T") = 0Den(T") = 0.
Proof. If v(T) < —1, then dDen(T) = 0 since v(S¥) > —1 where S @ H*. If v(T) = —1, then T
is of the form Diag(H, (us(—mp)¢)) with x(7') = x(ug). In this case, according to Corollary
Lemmas and we have

a(S,T,X) = (1 - X)a(S, (us(—m0)%), ¢ X).
Similarly, we have

a(H ), T) = BHY 7y, H)ax(us, (us(~m0)°)

= (1= ¢ )a(us, (uz(—m)°)).
Hence, applying Lemma [7.1)to Ipo = S where I is of rank 1, we have
2
ODen(T) = 2a(S, (uz(—m)°), ¢%) + %q(l — ¢ ?)a((uz), (uz(—m)°))
(1+x(S)x(us)q) +2(¢ — 1)

Here we are using the fact x(S)x(T) = x(S5)x(usg) = —1. 0

8.2. 0Den(T') for T' = Diag(1,T») with 75 diagonal. In this subsection, we assume 7" = Diag(1, 1),
where Ty = Diag(u(—m0)%, ua(—70)?) with 0 < a < b. Let u = ujup. Also, let S = Diag(1,1,v)
and Se = Diag(1,r). We compare dDen(T") and dDen(T3) in this subsection.

Recall that

o(S,T) ¢ ami’(lT)’T)
a($.8) "1+q a(S,9)

Moreover, according to [Shi22, Theorem 1.3] and [HSY23, Theorem 1.1], the analytic side in the
case n = 2 is

ODen(T) =2

o' (S2,T») 2¢> o(H,T)

Den(715) = 2 — .
a en( 2) Oz(SQ,SQ) q2—1a(5'2,52)

Proposition 8.2.
1+230 ¢ ifx(T)=1,
1 if X(T) = —1.
Proof. Proposition implies that «(S, T, X) equals
(1 - X)a(Diag(—1,5), T5,¢*X) + ¢*(1 + ¢ 'x(8)) X(S2, Ty, X).

ODen(T) — ODen(T3) = {

Hence
(8.1) o/(8,T) = a(Diag(~1, $), To.¢*) + ¢*(1 + ¢~ x(5))a/ (52, Th).
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According to Lemma one can check that a(S,S) = B(S,S) = 2¢(¢> — 1), and a(Sy,S2) =
2(¢ — x(S2)). Then

(8 2) a/(S, T) o a/(SQ>T2) — a(Diag(_LS)aTquz)
' a(S,S) Sz, S2) a(S,S) '

Hence we just need to check that

a(Diag(fl,S),TQ,q2)+ ¢ a(’Hi’(lT),T) 2¢*> o(H,T)
a(S, S) 1+¢> «S,9) > — 1 a(Ss, S9)

42y it x(T) =1,

)1 if x(T) = —1.

By Proposition we may check that

2(2¢+2 — D2)(¢g—-1) ifx(T)=1
(83) 2a(Diag(—1,S),T2,q2) — ( q 2(Q+ ) )(q ) 1 X( ) )
2(¢—1)(¢" = 1) if x(T') = 1.
To compute %a(?—[i’(}), T), we may choose ’Hi’(lT) = Diag(H,1) when x(T') = 1. By Corollary
Proposition [7.4] and a direct calculation, we have
3,1 . .
¢ M) 1 [(g-1)a(Diag(~1,1),T5) + 2Za(H,Tr) if X(T) =1
14+q «oS,9) 2q(¢> —1) | (g —1)a(Diag(—1, —u), T5) if \(T) = —1.
Combining this with the formulas in [HSY23|, Theorem 6.1], we have
3,1 .
(8.4) & oM ) T) N 2 a(H,To) 1[4 —q?—2¢—1 ifx(T)=1
1442 S, S) P —1a(S,5) q@-1) |(@®-1) if x(T) = —1.
Now a direct computation combined with (8.3) and (8.4]) proves the proposition. ]

Corollary 8.3. Assume L is a Hermitian lattice with Gram matriz T, then
(8.5) ODen(T) — dDen(Tz) = [{V°(L)}|.

Proof. We can write L = L’ @ Opx where g(x) = 1. If L’ is non-split, then |[{V°(L)}| = 1.

If L’ is split, then [{VO(L)}| = 14+23°%_, ¢ since L£3(L) can be identified with L2 1(L), which is
a ball in £ 1 centered at a vertex lattice of type 0 with radius a (see [HSY23] for more detail). Here
L1 is the Bruhat-Tits tree associated with Ngf{a and 5271(Lb) is the subtree of L5 1 associated
with L. O

8.3. ODen(T)®?). In this subsection, we assume T = Diag(Ts, uz(—m)¢) with v(T3) > 0, and
compute dDen(T)?. Recall that dDen(T)? = dDen(L’ @ Opx)? where the Gram matrix of
L =1L"®0px is T. We consider two cases separately in Propositions and

Proposition 8.4. Let T = Diag(u1(—m0)?, ua2(—m0)°, us(—mo)¢) where 0 < a <b < c. Then
ODen(T)? =1+ x(—uguz)q®(¢* — ¢°) — ¢***.
Proof. Recall that
1 2
ODen(T)?) = o———= (25’(3, ) 4 L g3 T)(2)> .

2q(¢* — 1) 1+q X
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We compute 3'(.9, T)(2) first. According to Proposition Bo(S,Te, X) =0 and
B(S,T, X)) = Bo(8, Tz, X)a(Diag(S, —Tz), uz(—m0)°, ¢* X)
+ ¢B1(S, Ty, X)a(Diag(—v, —T5), uz(—mp)%, ¢*X)
= (1= X)(1 - ¢*X)a(Diag(8, —T5), u3(~m0)", ¢' X)
+ (¢ +1)(¢* = )X (1 — X)a(Diag(—v, —T3), us(—m)°, ¢>X).
According to Lemma [7.1}

b
a(Diag(S, —Ty), us(—m0)%, ¢ X) = 1+ x(S)x(u1)(g — 1) D> ¢*"(gX)* + x(urugugw)g* "2 X,
s=a+1

and
b

a(Diag(—v, =Ty), uz(—0)", *X) = 1+ x(S)x(w1)(g = )g* Y (aX)* + x(urugusv)q* " X+
s=a+1

The relation x(ujugusv) = x(S)x(T) = —1 and a direct calculation show that
B'(5,T2)® = 1+ x(~uzus)g*(¢" — ¢") — ¢"*".

Finally, (’Hi’(lT), 7)) = 0 by Proposition |5.10, The proposition is proved. O

0 7@

Proposition 8.5. Recall that H, = (—m) 0

>. Let T = Diag(Ha, us(—mo)¢) where a is a
positive odd integer and ¢ > 0. Then
aDen(T)(Q) _ (1 - qa) ifa < 2¢,
(1—¢**)  ifa>2c

Proof. Recall that
1
T 2(2 - 1)
We need to compute 5'(S,T)? and ﬂ(?—[i’(lT), 7).
According to Proposition Bo(S, T2, X) =0 and
B(S, T, X)? = B2(S, Ha, X)a(Diag(S, Ha), usz(—m0)°, ¢* X)
+ P15, Ha, X)o(Diag(—v, Ha), uz(—m0)°, ¢*X)
= (1= X)((1 = ¢*X)a(Diag($, Ha), us(~m0)°, ' X)

2
ODen(T)? <2B’(S, T+ B, T)(2)> .

+ (g4 1)(¢* — )X a(Diag(—v. Ha), us(~m0)", ¢°X)).
According to Lemma

1+ x(S)x(uz)®re Xt if a < 2¢,

a(Dia S, %a s Caq4 -+ X a
( 1 g( ) U3( 70) X) {1 X(S)X(“3)q26 3 yet+l if a > 20’
and

1+ x(S)x(ug)gTexett  if a < 2,
L+ x(9)x(uz)g®> 2 Xt if a > 2e.
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A short computation shows that

ﬁ/(S, T)(Q) = q(q2 — 1) . {1 + X(S)XEU?’) “ if a < 20’

q
1+ x(9)x(uz)g®>*t  if a > 2c.

Notice that x(S)x(us) = x(S)x(T) = —1. Finally, ﬁ(Hi’(lT),T)(Q) = 0 by Proposition [5.10, The

proposition is proved. O]

Part 3. Proof of the main theorem
9. REDUCED LOCUS OF SPECIAL CYCLE

As remarked in results of [RT'W14] extend to the category of strict formal Op,-modules using
relative Dieudonné theory.

9.1. The Bruhat-Tits building for n = 3. From now on we assume n = 3 and £ = L3 as in

Section 2.3

Lemma 9.1.

(1) For every Ay € V2, Ny, is isomorphic to the projective line P! over k. Its q¢ + 1 rational
points correspond to all Ay € VO contained in As.
(2) Every Ag € V° is contained in g+ 1 type 2 lattices. In other words, there are ¢+ 1 projective

lines in (N?)Pap)red passing through the superspecial point Ny, (k). Moreover

(9.1) N A =nho
A2EVa, A\gCA2

Proof. Suppose z € N (k) and M := M(z) C N is defined as in Proposition Since n = 3, by
[RTW14, Proposition 4.1] we have A(M) ®o, Op = M + 7(M).
Proof of (1): Suppose z € Ny, (k), i.e. M C Ag.

If M =7(M), then M = Ag ®0,. O for some Ag € VY contained in As.

If M # 7(M), then by taking the dual of M C Az ®0, O we have the following sequence of
inclusions

1 1
(9.2) (A2 @0, Op)f C M C M +7(M) = Ay ®0, Op.
In both cases the class of M in As ®p, Op/(A2 ®o, Op)* = k? is a line. This finishes the proof of

(1).
Proof of (2): For each Ay € V° we just need to count the number of lattices Ay € V? that contains
Ag. We have the following sequence of inclusions

2 41 1
Ao C A5 C Ag C As.
With respect to the quadratic form (,) (mod 7) on Ag/mAy, the dual lattice Ag corresponds to the

1
2-dimensional subspaces U = Ag /mAg in Ag/mAg such that U+ C U. So we just need to count the
number of isotropic lines UL. Assume that {e1,e2,e3} is a basis of Ag/mAg whose Gram matrix
with respect to the quadratic form (,)x (mod 7) is

1

€

It is easy to see that the isotropic lines are Span{e; }, Span{es} and Span{e; — %624—6163} (a € FY).
Finally, equation (9.1) can be checked directly using this basis. ([l
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It is well-known that L is a tree, see for example [Bro89, Section 3 of Chapter VI]. More specifi-
cally, the vertices of £ correspond to vertex lattices of type 2 or 0. There is an edge between A € V?
and Ag € VY if Ag C A. We give each edge length % This defines a metric d(,) on £. Recall that
we have defined £(L) in (2.6). Then the boundary of £(L) is the set
(9.3) B(L) = {A € V(L) | 3As € V? such that A C Ay, Ay ¢ L(L)}.

Recall we have the isomorphism b : V — C defined in (2.3). Recall from [KR14a] or [HSY23]
that the vertices of L1 correspond to vertex lattices of type 2, and an edge corresponds to a vertex
lattice of type 0. Each vertex of L5 is contained in ¢+ 1 edges and each edge connects exactly two
vertices. For x € V with v(x) = 0 and Spanp{x}* split, recall that L3 is the Bruhat-Tits tree
of ZPap(x) = N P3P Then x determines an embedding £o1 < L defined as follows. First we send
each vertex of [,2,1 corresponding to a vertex lattice A C Spang{b(x)}* of type 2 to the vertex of
L corresponding to the type 2 lattice A @ Span{b(x)}. An edge of L2 corresponding to a type
zero lattice Ag C Spany{b(x)}* is broken into two pieces evenly and sent to the union of the two
edges in L joining the two vertices corresponding to A @ Span{b(x)} and A’ & Span{b(x)} where A
and A’ are the two type 2 lattices containing Ag.

9.2. Rank 1 case.
Lemma 9.2. A point z € N3 *P(k) is in ZP*(x)(k) if and only if b(x) € M(z).

(1) Assume Mg € V°, then the superspecial point N, (k) is in ZF(x)(k) if and only if b(x) €
Ao.
(2) Assume Ay € V2, then

N, (k) if b(x) €
2P (x) (k) N N, (k) = { a superspecial point in Ny, (k) if b(x) € AQ\AZ,
0 if b(x) & As.

Proof. By Dieudonné theory, z € ZF%(x)(k) if and only if x(M(Y)) C M(z) if and only if b(x) €
M ((z) since e is a generator of M(Y). For z = Ny, (k) where Ag € V°, we have M(z) = Ag®0, Op.
Hence (1) immediately follows.

Now we proceed to prove (2). If b(x) € Af, then tells us that z € ZPeP(x)(k) for any 2z €
NR, (k). The fact that A% C Ag for any Ag € £° contained in Ay implies that Ny, (k) € ZF2P(x)(k).
So N, (k) C ZFeP(x) (k).

If b(x) € Ag\Ag, then Ag := AF + Span{b(x)} is a type 0 lattice contained in Ay and N, (k) €
ZP2P(x)(k). On the other hand, since 7(Ag ®0, Op) = Ag ®o, O}, equation tells us that
ZPap(x) does not contain any point in N3 (k).

If b(x) ¢ Aa, then b(x) ¢ M(2) for any z € N, (k), hence Z¥% (x)(k) N Na, (k) = 0. O

Corollary 9.3. Let L C V. Assume z € ZV®(L)(k) and z € Na(k) where A € V2. Then
Ny C ZPap(rL).

Corollary 9.4. Assume x € V and v(x) > 0. Assume N C ZF%(x),.q where A € V2, then either
Ny C ZPoP(Lx)0q or Nj N ZP2P (1) 0q is a unique superspecial point.

Lemma 9.5. For L C V a lattice of arbitrary rank, ZY2P(L),eq is connected.

Proof. Suppose ZY%(L),.q has two different connected components Uy and Us. Since SU(V) acts
transitively on £, we can find a x € V such that ZF2P(x) = ./\/'Pap (i.e. {x}*issplit) and ZF%(x)eqN
U; # 0 for i = 1,2. Hence the reduced locus of
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is not connected where L/ is the orthogonal projection of L onto {x}*. This contradicts Corollaries
3.13, 3.15 and Lemma 3.16 of [HSY23]. O

Recall that for a lattice L C V (resp. x € V), we have defined V(L) and L£(L) (resp. V(x) and
L(x)) in Section
Proposition 9.6. Assume that x € V such that h(x,x) # 0. Then we have
ZPap(x)red = U NAu
AeV(x)
where V(x) is given as follows.

(1) When v(x) = 0 and Spanp{x}* is non-split, there is a unique vertex lattice Ax € V°
containing b(x). In this case V(x) = {Ax}.
(2) When v(x) = d and Spanp{x}* is non-split, we have

V(X) = {A =% ‘ d(A7 Ax/wd) < d}

where Ny jra is as in (1).
(3) When v(x) =0 and Spanp{x}* is split, L(x) is the tree Lo .
(4) When v(x) = d and Spanp{x} is split, we have

V(x) ={AeV|dA, L(x/m) < d}

where L(x/7%) is as in (3).

(5) When h(x,x) ¢ Op,, V(x) is empty.
Proof. Proof of (1): This is a direct consequence of Proposition and the fact that N; °F has only

one reduced point, see [Shi22, Section 2] or [RSZIS, Section 8]. Alternatively since Spang{b(x)}~+
is non-split of dimension 2, it contains a unique self dual lattice A’, then Ay := Span{b(x)} & A’ is
the unique type 0 lattice containing b(x).

Proof of (3): Applying Proposition we see that ZPaP(x) = J\f; 1¥ is the Drinfeld p-adic half
space, see [KR14a] and [HSY23|. The required properties of £(x) and V(x) follow.

Proof of (2): We prove this by induction. The case d = 0 is just (1). Now we assume d > 0 and
that the statement holds for d — 1, i.e.

V(x/m) ={A €V |dA Agjra) <d -1}
Then applying Corollary [9.3| to the lattice L = Span{x/7} we have
U N € ZP% () 1ea.

AEV2, d(AA,, 4)<d

Corollary nd the induction hypothesis imply that every Ay € V?(x) satisfies d(A, A, Jra) < d.

By Lemma there is no isolated Ay € V°(x), i.e. every Ag € VO(x) is contained in some
Ao € V2(x) if v(x) > 0. This finishes the proof of (2).

Similarly we can prove (4) by an induction on d, the case d = 0 is just (3).

(5) follows directly from Lemma O

9.3. Rank 2 case.
Proposition 9.7. Assume that L* = Span{x1,x2} C V is integral of rank 2. Then
ZPap(Lb)red = U NA
AEV(LP)

is a finite union, where V(L”) is the set of vertices of the tree L(L’) described as follows.
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(1) Assume L’ = Haqy1 for some a € Zsq. Then L(L°) is a ball centered at a vertex lattice of
type 2 with radius %
(2) Assume L’ = Span{m®xy, %%} where v(x1) = 0, v(x2) > 0 and Spang{x;}* is nonsplit.
Then L(L?) is a ball centered at a vertex lattice of type 0 with radius a.
(3) Assume L’ = Span{m®x1, 7%T"x,} where x1 1xXo, v(x1) = v(x2) = 0, 7 > 0 and Spanp{x; } -
is split. Then
L) ={AeV]|dA L(x L") < a},
where
L(r™L) = {A € L(x1) | d(A, Ao) < 7},

L(x1) is described in (3) of Proposition and Ao is the unique type O wvertexr lattice
containing {x1,xa}.

Proof. As in the proof of Proposition fora A eV, Ny C Zpap(Lb)red if and only if A* contains
b(x1),b(x2).

We first prove (1) when a = 0. Suppose A € V2(L’). Extend {b(x1),b(x2)} to a basis
{b(x1),b(x2),b3} of V with Gram matrix H; ® {—€}. Choose a basis {v1,vs,v3} of AF with the
same Gram matrix H; @ {—¢}. Then b(x;) € A* (i = 1,2) by Lemma (9.2 and

b(x;) = a;1v1 + azv2 + a;3v3
where a;; € Op (j = 1,2,3). The fact that (b(x;),b(x;))1<ij<2 = T implies a;3 € 7Op for i = 1,2
and (a;j)1<i j<2 is in GLo(OF). This guarantees that L’ is a direct summand of Af by Gram-Schmit
process. Hence A? is in fact the lattice Spany, {b(x1), b(x2), bs}. The fact that all Ag € VO(LP) are

in A follows from Lemma
When a = 0, (2) follows from the fact that ZF*(x;) = N;iq (by Proposition and

Zpap(Lb)red = ZPa(x1),eq is a unique superspecial point. Similarly when a = 0, (3) follows
from the fact that ZF%(x;) = /\/’; 1P and [HSY23, Corollary 3.13].

Now we prove (1), (2) and (3) for general a. First of all, £(L’) = L(7%x;)NL(7%3) by definition.

By Corollary [9.3] we have
{AeV|dA, L(r L)) < a} C L(x%1) N L(7%%3).

Notice that for a sub-tree £’ of a tree £ and a vertex x € £\ £/, there is a unique geodesic
segment joining z with £/. Given A € L(L?) = L(7%x;) N L(7%x3), let v be the unique geodesic
segment joining A with £(7~%L?). Assume that v intersects £(7~%L") at A(L"). Since £(x L") =
L(x1)NL(x2), v necessarily intersects both £(x1) and £(x2). Without loss of generality we assume
that ~ intersects £(x;) at A(x;) first. Hence the intersection of v with £(x2) is A(L?) and

(A, A(x1)) = d(A, £(x1)) < d(A, A(L)) = d(A, L(x2)).
Now by Proposition we have
d(A, L(x1)) < a, d(A, L(x2)) < a.
Hence d(A, £L(m~*L")) < a. This shows that
{A eV |dA, L(r L") < a} = L(x%1) N L(7%s).

The general case of (1), (2) and (3) follows from the above equation and the case a = 0.
Notice that (1), (2) and (3) have covered all possibilities of L” due to the classification of Hermit-

ian lattices. Notice that in every case V(L) is finite. This finishes the proof of the proposition. [
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Definition 9.8. Assume that L’ is an integral lattice of rank 2 in V. Define S(L?), the skeleton of
L(L"), as follows. If the fundamental invariant of L’ is (2a,b) (b > 2a), define S(L?) = L(x~*L").
If the fundamental invariant of L’ is (2a + 1,2a + 1), define S(L") := 0.

Remark 9.9. The skeleton S(L°) is isomorphic to a ball in the Bruhat-Tits tree of/\/Ql?i%.

Corollary 9.10. For each Ay € V(L") not on the skeleton S(L”), one can find Ag € VO(L?) such
that Ay has the largest distance to the boundary B(L") of L(L”) among all type 2 lattices in V(L")
containing Ao.

Proof. Assmue the fundamental invariant of L is (2a,b) or (2a + 1,2a + 1). Define M® == 7—L".
Let b be the unique integer such that Ay € L(7°M®)\ L(x*~1M?). Choose any Ay € B(x’M®) such
that Ag C A. Then by Proposition Ag satisfies the assumption of the corollary. O

9.4. The Kramer model. For A € V2, let N be the strict transform of Ay under the blow-up
NEra o APap - Gince the strict transform of a regular curve along any of its closed point is an
isomorphism, we know N = P!.

Lemma 9.11. For A # A € V2, Ny and Ny do not intersect.

Proof. It Ny and N, do not intersect in AP?P, then obviously Ny and Ny do not intersect.
Without loss of generality we can assume A = Span{ei, ez, e3} and A’ = Span{n—lej, mes, e3}
where the Gram matrix of {e1, ez, e3} is Diag(H,€). Take xg = e3. Then by Proposition both
N and Ny are in Z(xq) = ./\/'QKfZ’L Now by [HSY23, Lemma 5.3], N, and Ny do not intersect. [

Lemma 9.12. Let A € V2 and Ag € V°. When Ay C A, Ny intersects properly with Excp, and
(9.4) XWVE?, O © Okgey,) = 1.
When Ag is not contained in A, NA does not intersect with Excyp,,.

Proof. First assume Ag C A. Since A} is a strict transformation of a curve, it intersects the
exceptional divisor properly. Let x¢ be as in the proof of Lemma Then Ny is in Z(x¢) & NQKfa

K K
X(N ra’ O/\?A ® OEXCAO) = X(N ra’ O/VA ®Oé(xo) Oz(xo) ® OEXCAO)
= X(Z(x0), O, ®05 . Opxer)-
Here Exc’ 2 P} is the exceptional divisor on Z(xq) corresponding to the rank 2 self-dual lattice
A = {’U € Ao ’ 'ULX[)}.

By [HSY23, Lemma 5.2(a)], we know x(Z(xq), Ox, B0 0, Ogpyxe’) = 1. When Ay is not contained
in A, the superspecial point Ny, (k) is not contained in Ny, hence N does not intersect with

Excp,. U

10. INTERSECTION OF VERTICAL COMPONENTS AND SPECIAL DIVISORS

In this section we study the intersection of Ay and special divisors. The main result is Theorem
To proceed we first study the decomposition of “Z¥ (L") when v(L”) = 0. Since n is odd, we
can without loss of generality assume that x(V) = x(C) = 1. In the rest of the paper, we identify
V with C by the isomorphism b defined in .
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10.1. Decomposition of “ZK2(L?). Let L’ = Span{x;,xs} where x1,x5 € V are linearly inde-
pendent and the Hermitian form restricted to L is non-degenerate.

Lemma 10.1. L2Kra(1%) = [OZKra(xl)®]L O zxra(xy)] € Ko(NK2) s in fact in F2Ko(NK™). More-

X2
ra(rbh
over we have the decomposition in GrQKOZK (& )(NKra)
(101) ]LZKra(Lb) — ZKra(Lb)h _’_LZKra(Lb)U.

where ZX72(L),, is described in Theorem and “ZX2(L), € GrQKOZKm(U)”(NKra).
Proof. By Lemma ZKra([12) is Noetherian and has a decomposition
ZKra(p) = ZKra(rp), ) ZKm(rp),
Expressing Z(x;) (i = 1,2) asin and applying Propositions and Lemma L zKra(1p)

equals
[O20) @ O] T D (2mng (1) (x2) + mag (1) + ma, (x2)) Ha,-
Ao€VO(LP)

2ZKra(1p), is contained in Z(x;) N Z(x2) and has dimension 1 by Theorem @ Z(x1) N Z(x2)y
also has dimension 1 as it is supported on the reduced locus of NX™ by Lemma [2.11{ and does not
contain any exceptional divisor Excy,. Hence

(102) [Oé(xl) ®]L OZ(XQ)] = [OZ(Xl)ﬂé(xg)] E FQKO(NKYB‘),

see for example [Zha2l, Lemma B.2]. Hence we know that 12X (%) ¢ F2Ky(NK™®). The desired
decomposition then follows from Theorem [£.2] O

By Lemma and (2.9) we know that “ZKr2(L?), € K} (V) where we can take Y to be the re-

duced locus of N, By the Bruhat-Tits stratification of N and the fact that GrlK(I;] o (\Kray o
CH!(Excy,) is generated by Hy,, we have the following decomposition in Gr? Ko(ANKr2):

(10'3) ]LZKra(Lb)v — Z m(A2>Lb)[O/\7A2] + Z m(AO,Lb)HAO-
Aa€V2(LP) Ap€EVO(LP)
We will determine the multiplicities m(Ag, L?) and m(Ag, L?) when v(L?) = 0 in this section and
deal with the general case in Section
Now assume L’ = Span{xi,xs} with Gram matrix Diag(uy, us(—m0)") with uy,us € Op,- Ap-
plying Proposition to ZKr2(xy), we find

bzRe(r)) = [O2%(x1) R O zxra ey + Z [OExen, @ Ozkra(xy)]-
ApeVO(x1)

By Proposition we know the intersection Z (x1) N ZK78(x,) is proper and is isomorphic to
Zf;a 1)(X2). Combining this with Corollary |3.5/ we obtain

) (u
(10.4) R =i (M 25, (x2) = D Ha,
Ao€VO(LP)
where i, is the map Gr' Ky (N;;?ul)) — Gr’Ko(N57?) induced by the closed immersion i : Nzlf;?ul) —

foa Equation (10.4)) reduces the problem of decomposing “ZX(L?) in this case to [Shi22, The-
orem 4.5] and [HSY23| Theorem 4.1]. We do not make the effort to write the complete result down,

but instead look at two basic examples.
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Let us begin by the case when L” is unimodular. By (10.4) and either [Shi22 Theorem 4.5] or
[HSY23, Theorem 4.1], we have

(10.5) FZR(L) = [O(1090]

in the notation of Theorem [£.2]
Next consider L’ = Span{xj,xs} with Gram matrix Diag(1, —um) where u € Of,- Then

Span{x;}t is split and Z(x;) = N3$2. By Proposition (3), V2(L") consists of two adjacent
lattices A and A’. Moreover by [HSY23, Theorem 4.1] and ((10.4)), we have

(10.6) FERR(L), = [0, ]+ (O ]+ Hanw

10.2. The intersection number. Assume A € V2. For x € V\{0}, define
(10.7) Inta(x) == x(N, O, @ O zxra())-
In this subsection we prove the following theorem.
Theorem 10.2. Let A € V? and x € V\{0}. Then
Intp (x) = 1A(x)
where 15 is the characteristic function of A C V.

Corollary 10.3. Assume that Ay € Lo and A € Lo such that Ao C A. Then for any yo € Ao \ Ty
such that yoL 1s nonsplit, we have
X(NKra, O/VA ®1L Oé(yo)) = 0.
Proof. By Proposition we know
Z87%(yo) = Z(yo) + Exca,.

Now the corollary follows immediately from Theorem [10.2] and Lemma [9.12] O
Proof of Theorem :~We consider three different cases. First if x ¢ A or v(x) < 0, then by
Lemma ZKra(x) N Ny = () hence Inty(x) = 0. From now on we assume z € A and v(x) > 0.
Write x = xon™ with xg € A\7A and n > 0.

Case 1: First we assume xo € A\A%. Choose a basis {¢], €y, €5} of A with Gram matrix H3
such that

X0 = ze| + yey + zef.
Then one of z and y is in O} as A" = Span{me), me}, e3}. Apparently the equation
2u —vo = h(Xo, Xo)

has a solution (u,v) € O%O with u € (”);0. Now according to Lemma we can find a matrix
g € U(H3,)(OR,) such that

x U
gl v |=1{ 1
z v
Now replace the basis {€], €}, e5} by {e1,e2,e3} = {€}, eh, e5} g™, we have
Xg = Tuel + eg + ves
where u € O, v € OF.
Define
1 _
(10.8) fi= pl leg, fo=rmuer, f3 = es.
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Then {f1, fo, f3} has also Gram matrix 7-[},)71 and A’ := Span{fi, f2, f3} is a type 2 lattice adjacent
to A with A, = AN A’ = Span{mey, ez, e3} is a type 0 lattice. Now in terms of the basis {f1, fo, f3}
we have

x = 1" (mufi + fo+vf3).
Define 6 € U(V) by taking the basis {e1, e, e3} to {f1, fo, f3}. Then

O(x)=x, 6O(A)=AN.
In particular 0(2X(x)) = 2K (x) and
(10.9) Intp/(x) = Intp (x).
Now let
yo=e3, y1=m(—mues + ez),
L= Span{yo,y1}, and L = Span{yo,y1,x}. Then by and Theorem we have
(10.10) FER(L) = [0, ]+ (O )+ Ha. +[Oz00)].
where Z (M b) is the quasi canonical-lifting cycle of the lattice
M’ := Span{es, —mue; + ea}.

Combining with , we have
(10.11) Int(L) = 2 It (x) + X (A 2% (x) - Ha ) + x (V2,2 25%(%) - [0 ])-
Let x' = 7" (mue; + e2) = x — "ves. Then we have

Int(L) = y(NKr2 LzKra(yoy LgKra(y) L zKia(y )

— (WK LgKia(y oy Lgrany LzKiaiy )

= XS, 0540y @ Ozicea () @ Ozicinyy))
+

Z X(NKra, OEXCAO ®L OZKra(x/) ®L OZKra(yl))
Ao€VO(L)

where we have used linear invariance ([How19, Corollary D]) and Proposition Notice that the
Gram matrix of {x/,y1} is Diag(2u(—m)", —2umg). By Proposition and [HSY23|, Theorem 1.1],

1 if n=0,

Kr L L =
X(NETE, Oé(yo) ®" O zkraxry ® OZK“(Yl)) - {1 +n—2q ifn>1.

By Corollary and [HSY23| Lemma 3.15], we know that

1 ifn=20
D XV, Opsey, 85 Oz @ Ozrcngyy)) = V(L) = { Y
Ao€VO(L) ’ 2¢g+1 ifn>1.

Combining the above two equations we know that
(WK L zKra gy ]LZKra(LIJ)) —n4+2
On the other hand, by Corollary [3.8]
YNVER B LgKragy) = 1,
By [Gro86l, Proposition 3.3]

X(NKra7 Oé(Mb) ®]L OzKra(x)) =n-+ 1.
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Hence we obtain by (10.11))
(10.12) Intp(x) = 1.

Case 2: Now we Assume xg € A¥\mA. As in the proof of the previous case, we can find a basis
{e1,e2,e3} of A with Gram matrix ’Hé}l by Lemma such that

x = " (uesg + mweq).
where u € (’)}X,O. Define
1
A = Span{mey, —eg,e3}, Ae =ANA,
T

then xo € A/\A’%. Also define
Yo = ez, y1 = m(—me1 + e2),
and L’ := Span{yg,y1}. Then by Theorem and (10.6) we have

(10.13) LR (L) = (O, ] + (O, ] + Ha. + [O50):
where Z(M?) is the quasi-canonical lifting cycle of the lattice
M° = Span{es, —mwe; + ea}.
Let x' := 7"*le; = x — 7" ues, then we have
YNE L zKia(yy Lgha by —y (\Kra, Oz 2L O 2K (1 L Ozxray,))
+ )XWV, Opyey, @ Ogicnagrey @ Oziciayy))-
AoeVO(L)

Notice that the Gram matrix of {x’,y1} is equivalent to H; when n = 0, and to Diag(ujn{}, uamo)
for some uy,us € (9;0 when n > 1. Hence by Proposition and [HSY23, Theorem 1.1], we know
that

—(g—1) ifn=0,

1+n—2q ifn>1.

By Corollary and Lemmas 3.15 and 3.16 of [HSY23], we know that

XN, Oy @ Oty @ Oty = {

Z X(NKra, OEXCAO ®L OZKTa(x’) ®]L OZKra(y1)) = |VO(L)‘ =

{q +1 ifn=0,
ApeVO(L)

2q+1 ifn>1.
Hence we know that

N(NE LzKragyy Lzkaphyy — ) 4o
On the other hand, by Corollary [3.8]

VKR By LzKraggy =

By [Gro86l, Proposition 3.3]

XN 0201y @ Ozxra(y) =1+ 1.
Since x € A’\A’%, by the previous case we also have

Inty/(x) = 1.

Combining all above, we have by
(10.14) Inta(x) = 1.

This finishes the proof of Theorem U
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11. PROOF OF THE MODIFIED KUDLA-RAPOPORT CONJECTURE: THREE DIMENSION CASE
In this section, we will prove Theorem We need some preparation.

Proposition 11.1. Assume that L C V has a Gram matriz T = Diag(u1, ua(—m0)°, uz(—m0)¢) with
u; € (’);0 and 0 < b <ec¢. Then

Int(L) = 0Den(L).
Moreover, for every decomposition L = L’ & Span{x}, we have
Int(L)? = dDen(L)?.

Proof. Fix a basis {x1,X2,x3} of L such that the Gram matrix of {x1,x2,x3} is T' = Diag(u1, T»)
where u; € O;O and Ty € Hermy(Op). Let ul_l - L be a lattice represented by ul_l -T. Since
Int(u;'-L) = Int(L) and Den(u;'-L) = 0Den(L), we may assume u; = 1. Let L’ = Span{xa, x3}.
According to Propositions and Corollary we have

(11'1) Int(L) _ Int(Lb) _ X(NKra, ]LZKra<X1> . ]LZKra(Lb)) _ X(NKra7 ILE(XI) . LZKra(Lb>)

_ Z X(NKra, [OEXCAO] . LZKra(Lb))
AoeVO(L)
= [V (D)}

Now the result we want follows by comparing (11.1]) with (8.5), and the identity Int(L?) = dDen(L’)
proved in [Shi22] Theorem 1.3] and [HSY23, Theorem 1.3]. (2) follows from (1) and Theorem

(2). O
Proof of Theorem Under the assumption v(L?) > 0, we can decompose D(L?) in Gr? Ko(NKr)
as
(11.2) D)= Y  mDIL),M)Og 1+ Y. m(D(L),Ao)Hy,,

A2€V(LP) Ao€V(LP)

by (10.3)) and Proposition
Claim 1: m(D(L), Ag) = 0 unless L’ C Ag. In such a case,

g+1 if Ag € V(I°)\ B(L),

(11.3) (D), Bo) = {1 if Ao € B(L).

Indeed, since Ag is of type 0, we may choose a yo € V'\ L'}; such that Span{yo}* is non-split and
yo € Ao \ mAo. In this case, Proposition Corollaries and imply that
XS Ha - [O54,0))) = 1.
So by (11.2)), Corollaries and we have
m(D(L’), Ao) = x(N**, D(L’) - [0 5,,)))-

Let (2a,2b) (b > a) be the fundamental invariant of the projection of L’ onto Span{yo}*. Let ¢
be the natural quotient map Ay — Ag/mAg and define
m = diqugo(Lb) <2.

Equation (9.1)) implies that m = 0 if and only if Ag € £(L?)\ B(L?). First assume m = 0, in other
words, L’ C wAg so b > a > 1. By the definition of D(L’) and [Shi22, Theorem 1.2], we have

m(D(Lb)>A0) = M(a? b) - QM(G - 17b) - :u(aab - 1) + q:u(a -1,b— 1) =q+1,
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as claimed where

= Z 2 aﬁ 8G+b—|—1—2 —a—-5b—2 ifa>0
/J(CL, b) = X(NKra’ . Kra(l b) . [O ~(y0)]) = { 2570 q ( S) a I a

0 if a < 0.

Now assume m = 1, then o(L’) is a line ¢ and b > 1. By the assumption that yo ¢ L%, we know
¢ is not in Span{(yo)}, hence the projection of £ onto ¢(yo)* is nonzero. Since ¢(yo)* is nonsplit,
we must have a = 0. Hence by the definition of D(L?) and (11.4), we have

m(D(L?), Ag) = 1(0,8) — qu(~1,) — (0,5 — 1) + gu(~1,b— 1) = 1

as claimed. Finally, m = 2 is impossible since v(L”) > 0. This finshes the proof of Claim 1.

Claim 2: m(D(L"), Ay) = 2 for any Ay € V2(L?).

Indeed, according to Lemma we have y(NK2 D(L?) - [Okxcy,]) = 0. On the other hand,
Corollary [3.7] and Lemma imply that
(11.5) XNE®D(L) - [Opxey ) = Y m(D(L’), Ag) — 2m(D(L’), Ao).

AoCA2

Combining the above with Claim 1, we have

(11.6)
0= X(NKra,D(Lb) . [OEXC ]) _ {ZAOCA2 m(D(Lb), AQ) - 2(q + 1) if Ag € L:(Lb) \B(Lb)v

> aoca; M(D(L"), Ag) — 2 if Ag € B(L?).

Recall S(L°) in Definition [9.8] First assume Ay € L£(L’) \ S(L°). If d(A2, B(L")) equals to 3,
choose Ag € B(Lb) such that Ag C Ag, then As is the unique lattice in V2(L?) that contains Ag,
hence (I1.6) implies that m(D(L’), A2) = 2 in this case. Now Corollary allows us to show
m(D(L’), A2) = 2 by induction on the distance d(Ag, B(L®)) for any Ay € L(L”)\ S(L).

Similarly for Ay € S(L?), we can show m(D(L"), Ay) = 2 by induction on its distance to S(L”) N
B(L"). This finishes the proof of Claim 2.

Notice that for Ag € V(L")

_Ja+1 iAo e V() )\ B(L),
2 2 1_{1 if Ay € B(L)).

Aa€V2(LP) AoCA2

This finishes the proof of Theorem O
In the following discussion we freely use Theorem and Corollary without explicitly
referring to them.

Proposition 11.2. Assume L = L’ @ Span{x} with Gram matriz
T = Diag(?—[a, U3(—7TQ)C)
where a is a positive odd integer, and ¢ > 0. Then

1—4qg° if a < 2¢,

11.7 Int(L)® = dDen(L)? =
(11.7) nt(L) en(L) 1— g%t ifa>2c.

Proof. By Proposition it suffices to prove the identity for Int(L)®.

Now we compute Int(L)?). We may take L° = Span{ﬂaTHel, ﬂ'aT_HBQ}, where the Gram matrix of
{e1,e2} is H. Let e3 = 7~°x. Then £(L") is centered at Span{ey, 2, e3} of radius & by Proposition
9.7
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Assume a < 2c first. In this case, £(I’) C L(x). As a result, we have Intp,(x) = 1 and
Inty,(x) = —1 for any Ay € V2(L’) and Ay € V°(L"). Hence by Theorem we have

(11.8) mt(L)? = > WK 204 1+ Y Ha,) - 25%(x))
As€L(LP) 2 ASCAs
= (1—q){A2 | Az € L(L)}]
=1-9U+0+q+ 1+ ++(1+9q"?)
=1-4q",

as claimed. ~
Now we assume a > 2c. We consider the case ¢ = 0 first. Recall that Z(e3) ~ NZI,{fa, hence

L(L") N L(e3) is a ball of radius ¢ in the Bruhat-Tits tree Lo; of ./\/'213721lp centerd at the vertex lattice

corresponding to =5 L?, within which a vertex lattice Ag of type 0 is contained in two vertex
lattices of type 2, and a vertex lattice A of type 2 contains g + 1 vertex lattice of type 0. Hence

[{Ao | Ao € (L(L)\BL?) N Les)} =1+ q+(1+q)g+ -+ (1+a)g%
and
[{Ao | Ao € BL') N L(es)}] = (1+4)q "7 -
Moreover, notice that if e3 € Ag, then Intp,(e3) = 1 for any As such that Ag C Aa. As a result,
XN D(LY) - 259 (e3)) = 2(1 4 ¢ - [{Ag | Ao € (L(L) \ B(L’)) N L(e3)}])
= (g+ DI{Ao | Ao € (L) \ B(L)) N L(es)}
— [{Ao | Ao € B(L) N L(e3)}|
=2+ (¢~ D(I+g+ 1+ g+ +1+0)eT )~ (1+a)qT
=1-gq,
which is compatible with .

Next we show
XWED(LY) - (28 (mez) — 28 (e3))) = g — ¢*.
According to Proposition V(mes) = {A | d(A, L(e3)) < 1}. Hence, around each Ay € (£(L?)\
B(L"))N L(e3), there will be ¢(q — 1) many new vertex lattices of type 0 in £(L”) N L(mez) \ L(L’)N
L(e3). Hence,

XN D(LY) - (2% (meg) — 2579 (e3)))
a—1__
=2¢-q(q— D)0 +g+(1+qa+ 1+ + - +(1+qg 7 2
a=1_
—qlg- D@+ D)0 +q+(1+9g+1+a)+ -+ (1+q)q 2 2
a—1
—qlg—1)(1+q)q =
=q¢-¢"
Continuing in this way, we can show
X(NKra,D(Lb) X (ZKra(ﬂ_ieg) _ ZKra(ﬂ_i—leg))) — q2i—1 _ q2i+1
for 2i < a. So
Int(L)? = D(L") - 252 (n¢%;3) = 1 — ¢>**T = dDen® (L)
as claimed. 0
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Proposition 11.3. Assume L = L’ @ Span{x} with Gram matriz
T = Diag(u1(—m0)*, ug(—m0)", us(—m0)°)
where 0 < a < b < ¢, then
Int(L)® = 0Den(L)® = 1 + y(—uzu3)q®(¢" — ¢*) — ¢**".
Proof. By Proposition [8.4], it suffices to show
(11.9) Int(L)® =1+ x(—uou3)q*(¢* — ¢*) — ¢**.

Notice that since a < b < ¢, we have £(L?) C £(x) by Propositions and
First, we assume x(—ugus) = —1, then (11.9) specializes to

dDen(T)?) =1 — ¢
On the other hand, £(L”) is a ball centered at a vertex lattice of type 0 with radius a in this case.

One can show Int(L)?) =1 — ¢?* exactly as in (11.8).
Now we assume x(—ugus) = 1. In this case, (11.9)) specializes to

dDen(L)? =1+ g% — 24,

Let 7 = b—a, and L = Span{z,zo}. Then £(7~®L’) is a ball centered at a vertex lattice of type
0 with radius 7 in the Bruhat-Tits tree Lo ;. Hence,

L") ={A|AeLs, d(A,L(x L)) < a}.

When a = 1, V(7' L?) = VO(L*) \ B(L?). Then combining with Theorem [1.4} it is not hard to
see

t(L)? =2(q+14+q-2(q+¢* +---+4¢") = (g + DV (L) \ B(L’)| - [B(L)]
14+ — 29",
where we use the fact
VL) =14 2(¢+ ¢+ +d),
and
BL)| = (¢ = a1 +2(g+¢*+-+4"")) +2¢
Now assume a > 1. Let T be the Hermitian matrix associated with L’ @ Span{x}, then
dDen(rL’ & Span{x})® — dDen(L’ & Span{x})?
— 1 RO 9gr a2 (1 4 g2a _ ggrtRay
= (¢ = 1)(1 —¢*")
= ¢ (8Den(Lb @ Span{x})? — dDen(r 'L’ & Span{x})@)) ,
and
Int(rL’> @ Span{x})® — Int(L’ & Span{x})®
=2¢|B(L)| - q|B(L’)| — |B(xL)]
= (29— g )|B(L)|
=q (Int(Lb @ Span{x})? — Int(7 'L’ @ Span{x})(2)> ,
where we use the fact |B(rL’ @ Span{x})| = ¢?|B(L?)|. Since r is arbitrary, an induction on a gives

the result we want. OJ
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Proof of Theorem The case v(L) < 0 follows from Proposition and the fact that
Int(L) = 0 under this condition. Assume v(L) > 0. There are three cases.

Case 1: When L has a Gram matrix Diag(u1, ua(—m0)?, uz(—m0)¢) as in Proposition it is
proved by Proposition [11.1

Case 2: When L has a basis {x1,x2,x3} whose Gram matrix is 7' = Diag(H,, u3(—mp)), take
L’ = Span(x1,x5) and x = x3. By Propositions [11.1] [11.2] and [11.3] we have

Int(L"' @ Span{x})® = dDen(L"’ & Span{x})®

for any L’ c L* C L% (direct sums in the above identity are actually orthogonal direct sums).
Thus we have by Theorem (1)

Int(L) = 0Den(L).
Case 3: When L has a Gram matrix Diag(u1(—m)?, ua(—m0)?, ug(—m0)¢) with 0 < a < b < ¢),

the same argument as Case 2 gives Int(L) = dDen(L). This finishes the proof of the theorem. [J
Theorem and Theorem [5.6] imply the following corollary.

Corollary 11.4. For any lattice L = L ® Opx C V of rank 3, we have
Int(L)? = dDen(L)®.

12. GLOBAL APPLICATIONS

In this section we assume that F' is an imaginary quadratic field with discriminant dg. Denote
by a — a the complex conjugation on F. The result in this section can be easily extended to CM
number fields and more general level structures at split places, see [LZ22a] and [HLSY22]. We
restrict to the imaginary quadratic fields to make the exposition as simple as possible.

12.1. Unitary Shimura varieties and special cycles. In this subsection, we briefly review the
definition of an integral model of Shimura variety defined in [BHK™20| over Spec Of . Let

/\/l{{f:fl_l) — Spec Op

be the algebraic stack which assigns to each Op-scheme S the groupoid of isomorphism classes of
quadruples (A, ¢, \, F4) where
(1) A — S is an abelian scheme of relative dimension n;
(2) ¢: O — End(A) is an action satisfying the following determinant condition (the Kottwitz
condition of signature (1,n — 1))

char(T — o(a) | Lie A) = (T — s(a))(T — s(a))"* € Og[T),

for all @ € O where s: Op — Og is the structure morphism;
(3) A: A — AV is a principal polarization whose Rosati involution satisfies ¢(«)* = (@) for all
a € Op;
(4) F4 C Lie A is an Op-stable Og-module local direct summand of rank n — 1 satisfying the
Kramer condition: Op acts on Lie A/F4 by the structure map s : Op — Og and acts on
F4 by the complex conjugate of the structure map.
Two objects (A,t, A\, Fa) and (A, ¢/, N, Far) in Mgfz_l)(S) are isomorphic if there is an Op-linear
isomorphism f : A — A’ of abelian schemes such that f*(\) = X and f.(Fa) = Fa. The stack
M?ﬁiq) is flat of dimension n—1 over Spec Op. It is smooth over Spec O p[é] and has semi-stable
reduction over primes of F' dividing dp. This is indicated by the corresponding behaviour of its
local model studied in [Krid03]. Analogously one can define M ;) — OF be the algebraic stack
which assigns to each Op-scheme S the groupoid of isomorphism classes of triples (E, 1o, Ag) where
(1) E — S is an abelian scheme of relative dimension 1;
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(2) vo : O — End(F) is an action such that its induced action on Lie F' agrees with the
complex conjugate of the structural map s: Op — Og.

(3) Ao : E — EV is a principal polarization whose Rosati involution satisfies to(a)* = 1o(@) for
all « € Op.

The stack Mg 1) is smooth of relative dimension 0 over Spec OF, see for example [How15, Propo-
sition 2.1.2].
Assume that F is an algebraically closed field of characteristic p over Op. Let

(E07 Lo, )\07 Aa Ly )\a fA) € (M(O,l) X M{{ﬁz—l))(spec F)
For any prime number ¢ # p, we can define a hermitian form h(z,y) on the Tate module
(12.1) Ti(Eo, A) == Homo,. (Te(Eo), Ty (A))

as in [KR14b, Section 2.3] using the polarizations Ag, A and Weil pairings on Ep, A.
Fix a hermitian space W over F of signature (1,n — 1) that contains a self-dual lattice a and a
hermitian space Wy over F' of signature (0, 1) that contains a self-dual lattice ag. Define

(12.2) V := Homp(Wy, W), L :=Homp,(aop,a).

Here V and L are equipped with hermitian forms coming from the ones on Wy and W. Define
G :=U(W). Also define the group scheme GU(W) over Q by

GU(W)(R) ={g € GLr(W ® R) | (gv, gw) = c(g)(v,w),Yv,w € W ® R}
where R is any Q-algebra. Also define Z := Resp /G = GU(Wp) and

(12.3) G = Z xg, GU(W)

where the maps from the factors on the right hand side to Gy, are Nmp/g and the similitude
character ¢(g) respectively. We have an isomorphism of group schemes

(12.4) G = ZxUW),(z,9) — (2,2 1g).

Let K¢ be the compact subgroup of G(Ay) that stabilizes the lattice a®@Zand Ky = 2% C Z(Ay).
Under the isomorphism ([12.4)), define

(12.5) K = Ky x K.
Now define M C Mg 1) x Mﬁfifl) to be the open and closed substack such that
(Eo, to, Ao, A, 1, N, Fa) € M(S)
if and only if there is an isomorphism of hermitian Or ® Zy,-modules
(12.6) T)(Eos, As) = L@ Zy

for any geometric point s € S and prime £ that is not the same as the characteristic of s. Then M
is an integral model of the Shimura variety associated to the group G with level structure defined
by K.

Now we review the definition of special cycles. For (E, 1, Ao, 4, t, A, Fa) € M(S) where S is an
Op-scheme, consider the projective Op-module of finite rank

V'(E,A) = Homp, (E, A).
On this module there is a hermitian form h’(z,y) defined by
(12.7) W (x,y) =15 (Ng oy’ oXox),

where y" is the dual homomorphism of y. It is proved in [KR14D, Lemma 2.7] that A'(z,y) is
positive semi-definite. The following is [KR14b, Definition 2.8].
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Definition 12.1. For T' € Herm,,,(Z)~0, the special cycle Z(T) is the stack of collections (E, ¢, Ao, 4, t, A, F4,X)
where

(E, L0,>\0,A, L,)\,J—"A) S M(S)
and x = (21,...,%y) € Home, (E, A)™ such that
B (x,x) = (W' (z;,z5)) = T.

When t € Z~g, each component of Z(t) is a divisor by [How15, Proposition 3.2.3]. In general,
Z(T') does not necessarily have the expected codimension which is the rank of 7T'.

Let C = {Cp} be a incoherent collection of local Hermitian spaces of rank n such that C, = V; for
all finite ¢ and Co, is positive definite. For a nonsingular Hermitian matrix 7" of rank n with values
in O, Let V; be the Hermitian space with gram matrix 7. Define

(12.8) Diff (T, C) = {p a place of Q | C, is not isomorphic to (Vr),}.

Then Diff (T, C) is a finite set consisting of places of Q inert or ramified in F'. By [KR14bl, Proposition
2.22], Z(T) is empty if |Diff(T,C)| > 1. If Diff(T,C) = {p} for a finite prime p inert or ramified in
F, it is proved in loc.cit. that the support of Z(T) is on the supersingular locus of M over Spec F -
Let e be the ramification index of F},/Q,. Define the arithmetic degree

(12.9) degy = X(Z(T), Oz(1,) & Oz & Oz(,)) - log p?'*,

where @ stands for derived tensor product on the category of coherent sheaves on M, y is Euler-
characteristic and ¢; (1 < i < n) are the diagonal entries of 7. When Diff(T,C) = {0}, Z(T)
is empty ([KR14b, Lemma 2.7]) and the arithmetic degree (Te\gT(v) is the integration of a green
current G(T,v) (v > 0 is a positive definite Hermitian matrix of order n) defined by Liu ([Liulll)
and Garcia-Sankaran ([GS19]), see for example [LZ22al, Equation (15.3.0.2)].

12.2. Eisenstein series. On the analytic side, let x : A/Q* — C* be the quadratic character
associated to the extension F//Q. Fix a character n : Ay, — C* such that n|yx = x™. We consider
an incoherent Eisenstein series E(z, s, ®) associated to a section ® = ®@®,, in a degenerate principal
series representation (s, n) of U(n,n)(A) (see [LZ22a] §12] or [KR14b]), where 7 € H, (see (L.18)),
s € C and @, is given as follows. The section ®, is the standard weight n section. When p < oo is
unramified in F', ®, is the standard section associated to the characteristic function of L} via the
map A : S(Cp) — 1(0,7):

Ap)(g) = w(g)¢(0),

where w is the Weil representation of U(n,n) associated to the character y. When p is ramified in

F', define

5]
(12.10) O, =)+ > AL (s)- Db
i=1
Here @2 is the standard section associated to the characteristic function Ly, <I>; is the standard
section associated to the characteristic function of (H;, ;)" at p with € = —x, (L), and
- d g ()
(12.11) A, (0) =0, £A;\5:0 = Cni - logp,

where ¢f, ; are as in (1.9). Let ¢ be the standard additive character of A/Q, ie.,

(12.12) Yoo(x) = exp(2miz), y(x) = exp(—2miA(x)),
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where X is the canonical map Qy — Q¢/Z; — Q/Z. Let Ep(r,s,®) (resp. Ef(7,®)) be the T-th
Fourier coefficient of E(r, s, ®) (resp. E'(,0,®)) with respect to . Then for s > 0 we have the
following product formula (see for example [LZ22al §12.4])

(12.13) ET(Tvsa (I)) = Coo * H WT,P(lvsv(I)P) 'qT’

p<oo

where ¢ is a constant independent of 7' calculated in [Liulll, Proposition 4.5], and Wr (1, s, ®,)
is the local Whittaker integral defined in [KR14bl Equation (10.2)].

12.3. An equivalent form of Conjecture In this subsection we assume p is a prime of Q
ramified in F. Let |- |, be the nonarchimedean valuation on F, normalized so that |/dp|, = %.
For e = +1, let V' be the (unique up to isomorphism) F},/Q,-Hermitian space of dimension n and
sign e. For any lattice M, of rank n in V, let @y, € I,(s,7,) be the standard section associated

to the characteristic function of M;’. By [Shi22 Proposition 9.7], we have
(12.14) Wrp(1,7, @ar,) = (V)" - | det(Myp)[y - |dpl) - aw (M, L, X)| x—p2r,

where [ = %n2 + %n(n — 1), ap(+,+, X) is the local density polynomial defined in (5.1)) at the place
p and ,(V;) is an 8-th root of unity defined in [KR14b, Equation (10.3)]. By loc. cit., we know

(12.15) ’Yp(vpe) = _'YP(VXE)-

For T' € Herm,,(F), choose a lattice Ly in the Hermitian space V,*""’ with Gram matrix 7. Then
equations ((12.14)) and (12.15]) imply that Conjecture|l.1{at the place p is equivalent to the following
conjecture.

(T)

Conjecture 12.2. Let'V be the space of special quasi-homomorphisms as in such that x,(V) =
€. Let T € Herm, (F') such that x,(T) = € and Lt be a lattice of rank n in V with Gram matriz T .
Then

W:’F,p(l, 0,%,)

Wy, (1,0,8,)’

Int(Lr) - logp =

where ®,, is defined in (12.10)).

12.4. (Global) Arithmetic Siegel-Weil formula. Similar to [LZ22al, Theorem 1.3.1], we have
the following theorem.

Theorem 12.3. (Arithmetic Siegel-Weil formula for non-singular coefficients) Assume that the
fundamental discriminant of F' is dp =1 (mod 8) and that Congecture holds for every F), with
pldr. For any non-singular Hermitian matriz T with values in Of of size n, we have

E%(Tu 07 (I)) =C- d/e\gT<v) ' qu qT = eXp(QWitI'(TT)),

where C is an explicit constant that only depends on F and L, d/eTgT(v) = d/e\gT for positive definite
T, and T = u + iv. In particular, the arithmetic Siegel-Weil formula holds for n = 2,3 for non-
singular T.

Proof. We sketch the main idea of the proof. When |Diff(7,C)| > 1, both sides are zero. When

Diff(T,C) = {p} for a finite prime p # 2 (as dp = 1 (mod 8)), then T is positive definite and

the support of Z(T) is on the supersingular locus of M over SpecF » although it has higher than

expected dimension and needs ‘derivation’ to make it correct dimensional cycle (we skip it here and

just define its degree below). When p is inert in F', the theorem is proved in [LZ22a, Theorem 1.3.1].

When p is ramified in F', the theorem can be proved in a similar fashion assuming Conjecture [1.1
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The key is that by the p-adic uniformization theorem (IRZ96l, Chapter 6]), for each component Z
of Z(T)(FF,), the arithmetic degree of Z(T") supported on Z

(12.16) X(Z,0z4,) @ Oz(1,) ®" Oz,,)) - logp,

is the same as Int(L)logp (L has gram matrix T') in Conjecture In particular this number
is independent of the choice of Z and depends only on 7. Assuming Conjecture (or rather
its equivalent form , this is then equal to cp,1W7’w,p(1,O, ®,,) for some constant ¢, 1 # 0. So

—

degy is this number times the number of components of Z(T)(F,), which can be counted via the
Siegel-Weil formula. Combining these results together with (12.13)), we can prove

Cp - degy - q" = Efp(7,0,®)

for come explicit constant C), independent of T'. Similar argument holds when Diff(T',C) = {oo} in
which case the theorem is proved in [Liull] and [GS19]. Finally, one checks that C), is independent
of the choice of p. O

APPENDIX A. CALCULATION OF PRIMITIVE LOCAL DENSITY

In this appendix, we provide the proofs of Propositions [5.9] and [5.10} Throughout this section,
M is unimodular of rank m > 2 unless clearly stated otherwise. Let {v1, -+, vor, Vog11, ", Voktm}
be a basis of M¥ = H*@ M with Gram matrix Hk@Diag(Im_l, v). Let L be a Hermitian lattice of
rank n with Gram matrix 7. An isometric embedding ¢ : L — M is called primitive if its image in
M /7 M has dimension rankep, (L). We call a vector v primitive in M if 7 v & M, or equivalently
the natural embedding ¢ : Spanp,{v} < M is primitive. For a v € M we let Pry(w;) be the
projection of w; to HF.

A.1. Proof of Proposition [5.9, The main purpose of this subsection is to prove the first four
parts of Proposition Part (5) of this proposition follows from Proposition and Corollaries
[A10 and [A 12

Proof. For (1), choose M (1) = Zvy + vy € M* with ¢(M (1)) = ¢. Then

—tm
(A.1) M)t = SpanOF{Tvl + V2, V3, .0y U2y U2kt 15+ * 5 V2ktm }

which is represented by Diag(—t, H*~1,S). It is easy to check
(MW ML) @ ML) M) M(1)| = [tr] pltr|z! = 1.

For (2) and (3), assume first that M is isotropic (and unimodular). In this case, we may
choose a basis {vy, 1, -+, V5, } of M with Gram matrix Diag(Ho, 1,...,1,~v). Choose M(0) =
Svhy i + Vo with (M (0)) = ¢. Then

t
M(O)L = Span{vl, Tty U2k, _ivék—i-l + Uék+27 Uék—i—?ﬁ T 7’Uék+m}
= H" © Span{uvgys, - s Vaprm} © ().
as claimed. Moreover
|ME M (0) @ M(0)*H 1M (0)Y : M(0)| = [t]pltx|z" = g.

Next, assume that M is anisotropic. In this case, M has rank 2 and has Gram matrix Diag(1, v)
with x(M) = x(—v) = —1. In this case, F = Fy(y/—v) is a unramified quadratic field extension
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of Fy, and Ng p,Op = Of,. When v(t) = 0, t € Ng/p,OF, ie., t = aa + bbv. Take M(0) =
avok+1 + buggyo. Then q(M(0)) = t, and
M(O)L = Span{vy, -+ , Vg, —VbUog41 + QU2 } = HF @ (tv),
and
MW 21(0) © M(0)H|7HM(0)Y - M(0)] = |x[3" = g.
When v(t) > 0, t ¢ Ng/g,Op. So there is no primitive M(0) € M with ¢(M(0)) = t. This proves
(1)—(3) of Proposition

The proof of (4) follows from the following 4 lemmas.

Lemma A.1l. For primitive vectors wy, wy € H; with q(w1) = q(wz), we can find an element
g € U(H;) such that g(wy) = wa.

Proof. We treat the case 7 is odd first. Assume v = a;v1 + asvs. Then v is primitive implies that
a1 or ag is a unit. Without loss of generality, we assume as is a unit and we can further assume

az = 1 by the action of <a2 91> Now notice that q(v) = (v,v) = (a1 — a@;)7'. Hence we can

0 ay
1
0

()"

write a1 = a + qT, where a € Op,. Now let g = < —104)’ and it is straightforward to check

that g € U(H,;) and g(v) = %ﬁvl + va.
Now we deal with the case i is even. Again, we can assume v = ajv;+ve. Then q(v) = (a;+a)7'.

1 —fBn o
0 1 ), and it is

straightforward to check that g € U(H;) and g(v) = %ﬂ_ivl + vg. O

Hence we can write a1 = @ﬂ_i + fBm, where 8 € Op,. Now let g = <

Lemma A.2. Assume M is any lattice such that v(M) > i. For wy, wg € Hf S M, if Pry(wr)
and Pry i (w2) are primitive and g(w1) = g(ws), then there exists g € U(HF @ M) with g(w;) = ws.

Proof. Choose a basis {v1,...,vo,} of H¥ such that the associated Gram matrix is H¥. We also

choose a basis {vog41, ..., Voktm} of M. Write w; = fofm a;v;. Since Pryx(wy) is primitive,

a; is a unit for some i € {1,...,2k}. Without loss of generality, we may assume a; = 1. Let

(=D)"*g(w)n"
2

w' =w; + va, then

(=)™ g(wy)r’ (=)™ g(w)m’
2 2

and (w',v2) = (v1,v2). As a result, My = Spangy,_ {w1,v2} = Spang, {w’,v2} is isometric to H;.

Notice that val;(g(w1)) > ¢ is guaranteed by the assumption v(M) > i.

Similarly, we can show ws € Ms for some My that is isometric to H;. However, the assumption
v(M) > i and [Jac62, Proposition 4.2] imply that there exist g € U(H¥@ M) such that g(M;) = M.
In particular, g(wy) € M. Since both g(wq) and we are in My, the problem is reduced to Lemma
]

’U2)+(

q(w') = q(wr) + (w1, v, wy) = 0,

Lemma A.3. For primitive vectors wi, wy € M with q(wi) = q(wz), we can find an element
g € U(M) such that g(w1) = wo.
Proof. Since M is unimodular, we can decompose
M=HEa M,
where M’ = 0 or an anisotropic unimodular Hermiatian lattice of rank 1 or 2. If Pry (w1) and

Pry (w2) are primitive, this is Lemma If Pry (w1) is not primitive, then Pry; (wq) is primitive
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and thus ¢(Pry(w1)) € OF. This implies that q(ws) = g(w1) is a unit, and M = Opw; & (Opw;)*.
Therefore there is some g € U(M) with g(w;) = ws. O

Lemma A.4. Assume that w1, we € M are primitive and that Pryx(w1) and Pryk(w2) are not

primitive. Then we can find g € UMW) such that g(wy) = wo.

Proof. Let {v1, ..., vop+m} be a basis of H¥ @ M, whose Gram matrix is H* @ Diag(1, ..., v) where
v is a unit. Assume v € MM is primitive and Pryx(v) is not primitive, then we can write v =
Z?ﬁl Ta;v; + Z?fg,ﬁl a;jv;, where some a; is a unit for 2k + 1 < j < 2k + m. Again, without loss
of generality, we may assume aog4,, = 1. For i < k, we set

—a2;—1

a9;
/ 1 /
Vg, | = V2i—1 + 7U2k+m7 Vg; = V2 + V2k+m-

Let M, = Spang,, {v,...,v5}. Then it is easy to check that M, is perpendicular to v. More-
over, M, is isometric to H¥ since val,((vh;_1,v};)) = —1 and 0 < valr((vj,v})) for other 1 <
1,7 < 2k. Hence we can find g, € U(M[k]) such that g,(M,) = Spanpg{v1,...,ver}, and g,(v) €
Spaneg {vak+1 --s Voktm } = M.

Applying the above to w; and wy, we can find gu,, gu, € UMW) such that gy, (w1), guw,(ws) €
M. Now the problem is reduced to Lemma and the lemma is proved. O

According to Lemma @ and Lemma a primitive vector v € Ml is either in the same
orbit of a vector M (1) € H" or a vector M(0) € M. Lemma implies that primitive vectors
M(1), M'(1) € HF with ¢(M(1)) = ¢(M’(1)) lie in the same orbit. Lemma implies the similar
result for primitive M (0), M'(0) € M with ¢(M(0)) = g(M'(0)). A combination of the above proves
Part (4) of Proposition O

A.2. Proof of Proposition In this subsection, we prove the first part of Proposition
which we restate as follows for the convenience of the reader.

Proposition A.5. Let L be a Hermitian Op-lattice of rank 2 and v(L) > 0. Let ¢ : L — Ml be
a primitive isometric embedding. Let d(y) be the dimension of the image of the map

Pryrop: L — HE
in H*/mHF. Then
o(L)*t = (=L) @ 149 @ M)

where M) is unimodular of rank equal to (rank(M)—2(2—d(y))) and det M(4(¥) = (—1)4#)det M.
In particular, if d(¢) =1 then rank(M) > 2, and if d(p) = 0 then rank(M) > 4.

Proof. This proposition follows from Lemmas and [A-7] below. O
Lemma A.6. Let the notation be as in Proposition . If rank(M¥) < 4, then

p(L)*" ~ —L.
In particular, such an ¢ does not exist if x(M™) = —1 or rank(M®¥) < 4.

Proof. First, assume M* = %2 and L ~ H; where i > 0. Let (L) = Spanp, {w, ws} such that
the Gram matrix of {wi,wy} is H;. By Lemma we may assume wi = v;. Then we may write
we = avy + vy + agvs + aqvy, and min{vy(a3),vy(as)} = 0 by assumption. Without loss of
generality, we may assume a3 = 1. Now a direct calculation shows that

(L) = Spanp, {v1 + (=) oy, v3 + dgvs}.
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Its Gram matrix is

< 7(; (a4 (—_gzl))i7T - >

(¢ e )~ (% 75)

hence

Now we treat the case M¥ = H? and L ~ Diag(u1(—n8), uz(—m0)?) where 0 < a < b. Again,
let ¢(L) = Spang, {w1, w2} such that the Gram matrix of {w1,ws} is Diag(ui(—73),uz(—m0)?),

and we can assume w; = V] — Wﬂg without loss of generality. Then we may write wy =

ay(vy + W’UQ) + agvs + aqvg, hence min{vy(as),vr(as)} = 0 by assumption again. We may
assume ag = 1 and a direct calculation shows that

(p(L)J' — SpanoF{U1 + Q(wl)ﬂ-

vg — a1q(w1) T4, V3 + G404}

Set v = vy + @vg — a1q(w1) Ty and v} = a1v} +v3 + a4vs. Then (L) = Spanp, {v}, v} } and
the Gram matrix of {vj, v}} is

<—q§)w1) ararq(wy) — (a(;a4 — a3a4)7r1> = <_q%w1) _q?w2)> :

Now assume M ¥ = HE M, where M is unimodular of rank 2. We only treat the case L ~ H; in
detail, and the argument for L represented by a diagonal matrix is similar. We assume that M has
a basis {v1, ..., v4} with Gram matrix H®Diag(1, v) where v is a unit. Let ¢(L) = Spanp, {w1, w2}
where the Gram matrix of {wi,ws} is H;. Then one can check that at least one of w; and ws is
primitive in H. By Lemma we can assume that

wy = p(my) = v1,wy = p(my) = a1vy + 7 vy + azvs + agvy
and
(A.2) (we,wy) = a1t — aymt + asas + aqdar = 0.
By our assumption we know that min{v,(as),vr(as)} = 0. Since we assume i > 1, (|A.2) implies
that both a3 and ay are in O . This in turn implies that —v € Nm, I (Of) = O%,. Hence
MW ~ H & Hy and we can instead assume that {v1,v2,v3,v4} has Gram matrix H & Hy. We can
furthur assume that
wy = V1, W2 = a1v1 + 7Ti+1v2 + v3 + aqvy
with
(wg,wg) = a17ri — dlﬂ'i + a4 +aq = 0.

By direct calculation, it is easy to see that
¢(L)*+ = Spangp, {v1 — (—7)"v4, v3 — @av4}.

Its Gram matrix is

(4 )= ()= (% )

Finally, assume M is unimodular of rank 4. We treat the case L ~ H, in detail, and the other
cases follow from a similar argument. Let ¢(L) = Spanp, {wi, w2} such that the Gram matrix of

{wy,ws} is H;. Apparently Ml contains a #y. We can assume that M¥] has a basis {v1, va, v3, v4}
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with Gram matrix Ho © diag{1, e} where € € O}X«“O‘ By Lemma we can assume that w; = vy.

Then we have
4

w9 = a1v1 + 77%2 + Z a;Vj,
7j=3
and
(A.3) (we,wy) = al(—Tr)i + a1 + asas + asase = 0.

By our assumption we know that min{v,(as),vr(as)} = 0. Since we assume i > 1, ({A.3]) implies
that both a3 and a4 are in Op, . This in turn implies that —e € NmF/FOx (OF) = Of,. Hence

MHE = HZ and we can instead assume that {v,vq,v3,v4} has Gram matrix Ho @& Ho. We can
furthur assume that

w1 = V1, Wy = a1v] + T2 + V3 + a4v4
with
_ i P =
(we,wy) = ai(—m)" + a7 + ag + ag = 0.

By a direct calculation, it is easy to see that
@(L)" = Spang, {v1 — (—7)"v4, v3 — @gvs}.

Its Gram matrix is

< *(372' _a(4_7r)c_ti4 > N < *(371' a1(_7f();7jr);17ri ) ~ ( jri _(Bﬂ)i >

Notice that, as a byproduct of the above argument, we actually also proved that if rank(M [k]) <4
or M is not split, then no such ¢ exists. The lemma is proved.
O

Lemma A.7. Assume v(L) > 0. Let ¢ : L — M be a primitive isometric embedding. Let d(y)
be the dimension of Pryx(p(L)) @0, Fy in HF /mHE. Then there exist a g € UMW) such that

9(p(L)) C HID @Iy gy € MW,
where 14_s4(,) 15 a unimodular sublattice of M with rank 4 — 2d(p).

Proof. We prove the case for L ~ H; in detail, and the other cases are similar. Let {v1, ..., voptm}
be a basis of M* whose Gram matrix is H* @ diag{1,...,1,v} where v is a unit. Set (L) =

Spanpg {w1, wa}.
Assume d(p) = 2. If i = —1, then there is nothing to prove. Therefore, we may assume i > —1.
By Lemma without loss of generality, we can assume that w; = v1. Then

2k+m
wy = ai1v1 + ﬂ'l—HUQ + E a;v;.
Jj=3

By the assumption that d(¢) = 2, we know that
min{vy(a;) | 3 <j <2k} =0.
Hence applying Lemma to HF1@ M, we can find a g € U(M™) such that
guwi =v1, gws €H’

where H?2 refers to the first direct summand in the decomposition HF¥ & M = H> O HF 2 @ M.
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When d(¢) = 1, without loss of generality, we can assume Pry(wy) is primitive. By Lemma
we can assume that w; = v;. Then

2k+m
wo = a1v1 + 7T1+12)2 + E a;v;.
Jj=3

By the assumption that d(¢) = 1, we know that
min{vy(a;) | 3 <j <2k} > 1.
Since we assume ¢ is primitive, we know that
min{vy(a;) |2k +1<j <2k +7r} =0.

Then we are done by applying Lemma to HF-1 @ M.

When d(¢) = 0, without loss of generality, we may assume wj = vog4+1 + vopt2 by Lemma
Here, we pick vy, so that the corresponding Gram matrix is Diag(1, —1,1,..., —v) (this is possible
since we assume m > 4). Since ¢ is primitive with d(¢) = 0, then

2k 2k+m
wo = Zﬂaivi + Z a;v;,
i=1 i=2k—+1
and
min{vy(a;) | 2k+3 <j <2k +r} =0.
We are done by applying Lemma to H* @ Spanpy {var+3, - - -, Voktm }- O

A.3. Calculation of primitive local density. In this subsection, we compute primitive local
density polynomials and prove the formulas in Propositions and Assume L is represented
by a nonsingular Hermitian matrix 71" of rank n < 2. We let © denote the image of v in M ¥ @ g
Let

(MFY () = {(vj) € M,:L’(n) | Spang, {Pryx(v;), 1 < j < n} has rank i}
where M™(") is as in (5.5)), and
(A.4) Bi(M, L, X) ::/ dy (Y, T(x) — T))dx.
Herm,, (F) (MEDn(4)
Notice that

(A.5) > Bi(M, L, X) = B(M,L,X)™
1=0

is the primitive local density defined earlier, and we will shorten it as 3(M, L, X). Notice that if L
is of the form H’, then S(M, L, X) = p,(M, L, X).
First, by a variant of [CY20], Chao Li and Yifeng Liu obtained the following formula of 3(H¥, L).

Lemma A.8. [L122, Lemma 2.16] Let by < --- < by, be the unique integers such that LV /L =~
Or/(7") @ - ® Op/(x"). Let t,(L) be the number of nonzero entries in (by,--- ,b,). Then

st L= I a-4a).
k-t <ic
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Lemma A.9. Assume L is of rank n, then
Bu(M,L,q %) = B(H",L).
In particular, if L is of the form H?, then
B(M, L, q=**) = Bu(M, L,q*") = B(H", L).

Proof. Recall that T(x) = (x,x) is the moment matrix of x € (M*)". For a x5 € M™, let
T'(x2) =T — T(x2). Then

—2k\ _ t _
st = [ av [ ] TG - T

= / dY/ / 1/}(<Y, T(Xl) + T(Xg) — T>)dX1dX2
Herm,, (F) n S (Hk)n(n)

- \/Hermn(F) dY/ n /(’Hk)n,(n) ¢(<Y; T(Xl) -T (X2)>)dX1dX2

Notice that if L and L' are two Hermitian Op-lattices with moment matrix 7' and 7" such that
T — T’ € Herm,,(Op,), then t,(L) = t,(L"). Hence, for any xo € M™, we have by Lemma

BHF, T (x2)) = / ay B((Y, T(x1) — T'(x2)))dxy

Herm,, (F) (HF)n(n)

- [ ar BV, T(x1) — T))dxy
Hermy, (F) (HF)n(n)

= B(HF,T).

Therefore
B(M, L, q~%*) = vol(M™, dx») - / ay BV, T(xr) — TY)dxy
Herm,, (F) (HF)n: ()

_ / ay P, T(x1) — T))dxy
Hermy, (F) (HF)m ()

= B(H*, L).

Combining the above two lemmas, we have the following.

Corollary A.10.
(1) If L is of rank 1, then we have

Bi(M,L,X)=1—X.
(2) If L is of rank 2, then we have

(1-X) ifL="H,

B2(M, L, X) = {(1 - X)(1— qu) otherwise.

Lemma A.11. For an Op-Hermitian lattice, let L= L/7L be its reduction modulo m with resulting
quadratic form. Let r(M, L) to be the number of isometries from L to M. Then

Bo(M,L,X) = X"B(M,L) = g™+ r(3M,L)X".
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Proof. The second identity follows from the same proof of [CY20, Theorem 3.12]. Then a similar
argument as in the proof of Lemma [A.9] gives the first identity. In this case, we need to replace
M@ (HF)™(™ in the proof of Lemmwith M™ ™ @ (mHF)". The factor X™ shows up because
vol((mH*)™) = (¢2*)". We leave the details to the reader. O

Notice that [LZ22b, Lemma 3.2.1] provides a uniform formula for |r(M,L)|. As a result, we
obtain the following corollaries.
Corollary A.12. Assume L = Opx is of rank 1 (we allow q(x) =0).
(1) If v(L) = 0, then
1
1+x(M)x(L)g” 2 )X if m is odd,

)X if m is even.
(2) If v(L) > 0, then

(1—-q¢'"™X if m is odd,

Bo(M,L,X) = {(1 — "+ x(M)(q—1)g"2)X  if m is even.

Corollary A.13. Assume L is of rank 2. When t(L) = 1, we assume that L has gram matric
T = Diag(u1, ua(—m0)®) with b > 0.

(1) If m is odd, then

q(1 —¢'™)X? if t(L) =0,
Bo(M, L, X) = < q(1+ x(M)x(u ) 7”1)(1*611"”))(2 ift(L) =1,
g1 =g ™)1 =g m) X2 ift(L) =2

(2) If m is even, then

q(1 = x(L)g" ™™ + x(L)x(M)(q — x(L))g~2)X* if t(L) =0,
Bo(M,L,X) =4 q(1 —x(M)g~2)(1 — ¢*™)X? if t(L) =1,
q(1 =™ +x(M)(¢? = 1)g 2 )(1 — ¢* ™) X2 ift(L) =2

Finally, we calculate 81 (M, L, X).

m
2

Proposition A.14. Assume L is as in Corollary . Let 6.(m) =1 or 0 depending on whether
m is even or odd.

(1) If t(L) = 2, then
Bi(M, L, X) =q(qg+1)((1 —¢"™) + de(m)x(M)(q — 1)q~
(2) If t(L) =1, then

)X (1 - X).

Bi(M, L, X) = {Q(l +q-— (Jim + X(M)X_%)QT)XU - X) zfm z:s odd,
q1+q—q¢ ™™ —xM)g 2)X(1-X) if m is even.
(3) If t(L) =0 and x(L) =1, i.e. L= Hy, then
Br(M, L, X) = q(q+1—2¢"" + de(m)x(M)(q — 1)q~
(4) If t(L) =0 and x(L) = —1, then

Bi(M, L, X) = q(q+1)(1 = be(m)x(M)q~
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Proof. First we assume L = H;. We claim that

ﬂmﬂm?u,xv::{qu'_xj<2@“AL0“X)+§3me%mmmx5M“L<—2“%X”> o

Here a(M,0,X) = a(M,Opx, X) with ¢(x) = 0 and x # 0. Assuming the claim, the proposition
for L = H; follows from Corollary

To prove the claim, it suffices to show the identity for X = ¢~2* for sufficiently many k& > 0.
Recall

I(M™¥, L, d) = {¢ €Homo,.(L/m{L, MM /xdrr) |
((x),¢(y)) = (z,y) mod 7**~", Va,y € L}.
Let
J(MWM L, d) = {¢ € (MW, L,d) | dimg,Pry(¢(L)) = dimp,Prar(¢(L)) = 1}
Then

Bl (M,L, q—2k:) — dli{glo q_(4(2k+m)_4)d|J(M[k],L,d)|.

Let {l1,l5} be a basis of L with Gram matrix ;. For ¢ € J(M®* L, d), it will be determined by w; =
#(l;). Let w;p = Pryu(w;), and w; pr = Prag(w;). Since rankp, Pryx (¢(L)) = 1, rankp, Pror(w;) =
lfori=1or2.

Now we define a partition of J(M, L, d). Assume o € Op,. Let

Jo(ME L d) = {¢ e I(M¥ L d) | rankp, Wy 3 = 1, Woy = oWy}, and
Joo(M[k]aL’d) ={¢c I(M[k},L,d) | rankp, Wa 3 = 1, w13 = 0}.
Then it is easy to verify
JMW Lay= | Ja(MW,L,d)U J(MW, L, d).
a€0F,/(mo)

Now we compute |J, (M), L, d)|. To determine a ¢ € Jo(MW), L, d), we choose wi = ¢(1y) first.
By definition, we have

(A.6) dlim g =Nd 10y e MW /7 ML | w4 is primitive, and g(w1) = 0 mod nd}
—r 00
=B (MM, 0)=1-¢%*.

Given such a wy, now we find the number of wy = ¢(I3) such that ¢ lies in Jo (MW, L,d). By
Lemma we may assume wq,s = 0. Let wo = wa pr + awy + mwy, where wy € H*. Then the
corresponding ¢ lies in J, (M, L, d) if and only if

7 = (w1, wy) = (w1, 7wy) mod 7241
and
0 = q(w2) = tr((qwr, mwy)) — moq(wy) + q(wa,nr)
= atr(n?) — moq(wy) + q(wany) mod 72471,
First,
(A7) dlij& q 2R gy, € HY /ndHE | (w1, mwy) = 7' mod 72071} = ¢,
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Second, for each fixed mwy we have

(A.8)

dlim ¢ 2 VAL Ly o € M/mEM | wo py primitive, q(ws pr) = —atr(n?) 4+ moq(wy) mod 72471}
— 00

= B(M, (~atr(r') + mog(wy)))

B, (—2q)) ifi=0,
| B(M,0) if i > 0.

By symmetry, |Joo(M™ L, d)| = |Jo(M* L,d)|. Now a combination of (A.6), (A.7) and (A.S)
implies that

BiU(M, Hi,q ) = lim (1RO N g (MM L d)| + [Joo (MM, L, d))|

d—ro0
a€0F, /(o)
_ q(l - X) <250(Ma Oa q_2k) + Zaé@;ﬁo/(ﬁo) /BO(Ma —QOZ, q—2k,‘)> ifi = 07
q(q+1)(1 — X)Bo(M,0,q72F) ifi>1,

as claimed.
Next, we assume L has a basis {l1,l2} whose Gram matrix is Diag(u(—m0)%, uz(—m0)®) with
0 <a <b. Let w; = ¢(l;) as before. Then the number of possible choices for w; is given by

g PERHm=Dd g, (M (ug (—m0)), g~ 2F)

for sufficiently large d. We may assume wi = w; 3 without loss of generality. Let wy = wo s +
ow + mwy as before. Then ¢ lies in J,(M®¥, L, d) if and only if

0 = (w1, ws2) = (w1, 0wy) + (wy, Twy) mod 72471
and
uz(—ﬂo)b = q(wz) = (w2,m + awy + Twyy, wo)
= q(wa,nr) — a2q(w1) — moq(wy) mod p2d—1,
Now
dli_)nolo T Ly € HY Jmd 1P | (wy, mwy) = — (w1, 0w) mod 72471} = ¢t 2F,

and for a fixed mwy we have

(—2m+1

dlim q )d#{wZM € Lg/mlLs | wo ) primitive,
—00

q(wa ) = uz(—m)" + a?q(wr) + mog(wy) mod 72471}
= B(M, (uz(—m0)" + aq(w1) + moq(wy))).

Now this proposition follows from a similar argument as before, and we leave the details to the
reader. 0
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