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Abstract. In this paper, we proved a local arithmetic Siegel-Weil formula

for a U(1, 1)-Shimura variety at a ramified prime, a.k.a. a Kudla-Rapoport
conjecture at a ramified case. The formula needs to be modified from the

original Kudla-Rapoport conjecture. In the process, we also gives an explicit

decomposition of the special divisors of the Rapoport-Zink space of unitary
type (1, 1) (Krämer model). A key ingredient is to relate the Rapoport-Zink

space to the Drinfeld upper plane.
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1. Introduction

The Arithmetic Siegel-Weil formula is part of the Kudla program, revealing a deep
relation between the derivative of some Eisenstein series and the arithmetic degree
or intersection of arithmetic special cycles on certain Shimura varieties of unitary or
orthogonal type. It was started with Kudla’s seminal paper in 1997 ([Kud97]), and
the first two complete examples were worked out by Kudla, Rapoport, and one of
the authors (T.Y.) ([KRY99], [KRY04], and [KRY06]). Afterwards, more progress
have been made in other cases, e.g., [HY12], [Liu11], [DY19], [LZ22], [GS19], and
[BY21]. In almost all cases, the proof is via term by term comparison on T -th
Fourier coefficients. When T is non-singular, the T -th coefficient of the Eisenstein
series factors through product of local Wittaker functions while the arithmetic
intersection (degree) is often supported on a single prime. The key step is a local
identity—local arithmetic Siegel-Weil formula: a deep relation between the derivative
of the local Whittaker function and the ‘local intersection number’ at a special
point. In particular, the ‘local intersection index’ is independent of the choice of
‘special points’ (depending only on T )—an amazing phenomenon itself. At the
infinite prime, it was proved by Yifeng Liu in the unitary case ([Liu11]), inspired
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by Kudla’s original proof for Shimura curves([Kud97]). The idea does not seem
to extend to orthogonal cases. Two different proofs in the general orthogonal
case were given independently by Garcia and Sankaran [GS19] and Bruinier and
Yang ([BY21]). At a ‘good’ finite prime (everything is ‘unramified’), Kudla and
Rapoport formulated a precise local arithmetic Siegel-Weil formula, the so-called
Kudla-Rapoport conjecture. This conjecture was recently proved by Li and Zhang
([LZ22], see also [BY21] for a special case) in the unitary case. More recently, Cho
([Cho22]) considered the unitary U(n, 1) case of miniscule parahoric level over an
unramified quadratic extension E/F0 (of local p-adic fields), and made some precise
conjectural local arithmetic Siegel-Weil formula. The case n = 1 was essentially
Sankaran’s early result ([San17]). In Shi’s work ([Shi20]) and this paper, we consider
the simplest case U(1, 1) over a ramified quadratic local field extensions F/F0.
Ramification causes a lot of technical difficulty, including singularity and so on. The
resulting formula also needs modification in general. We hope to extend the result
to general U(n, 1) in a sequel. We now set up some notations and describe the main
results in some detail.

Let F = F0(π) be a ramified quadratic field extension of a p-adic field F0 with
p > 2 with π0 = π2 being a uniformizer of F0. Let k = Fq be the residue field of

F0 (also F ) with the algebraic closure k̄. We denote the Galois conjugate of a ∈ F
by ā. Let (V, ( , )) be a Hermitian space over F of dimension 2 together with an
OF -unimodular lattice L. Up to equivalence, we can describe L explicitly as follows.
Let B be a quaternion algebra over F0 together with an embedding OF ⊂ OB
(when B = M2(F0), we take OB = M2(OF0)). Choose δ ∈ OB with δx = x̄δ for all
x ∈ OF and ∆ = δ2 ∈ O×F0

. Then we can take L = OF +OF δ with zi = xi + yiδ

(z1, z2) = trF (z1z
ι
2) = x1x̄2 − y1ȳ2∆.

Here trF (x+ yδ) = x ∈ F . Notice that V = B in this case.
Recall that a strict formal OF0

-module over an OF0
-scheme S is a formal p-

divisible group X over S with an action OF0
→ End(X) such that the induced

OF0
-action on the Lie algebra LieX is via the structural morphism OF0

→ OS . Let
Y = (Y, ιY, λY) be the unique supersingular strict formal OF0 -module of dimension 1
and F0 height 2 over k̄ with an OF -action ιY and a principal polarization λY : Y→
Y∨ = Y. Let (X, ιX, λX) be a strict formal OF0 -module of dimension 2 and F0 height
4 over k̄, together with the OF -action ιX and principal polarization λX : X 7→ X∨.
Let L = HomOF (Y,X) be endowed with the Hermitian form

(1.1) h(x,y) = λ−1
Y ◦ y∨ ◦ λX ◦ x ∈ EndOF (Y)

ι−1
Y−−→
∼
OF .

The Hermitian lattice (L, h) is OF -unimodular as the polarizations are principal.
Let V = L⊗ZpQp be the associated Hermitian space. To describe the Rapoport-Zink
(RZ) space for the Shimura curve related to L, we require

(1.2) detL/detL /∈ NF/F0
F×,

i.e., V and V represent two different non-degenrate Hermitian spaces over F of
dimension 2. By [RTW14, Remark 4.2] (also see [BC91, Proposition II.5.2] and the

discussion below on the isomorphism between N and Ω̆), the determinant condition
determines X uniquely up to OF -linear quasi-isogenies that preserve the polarization,
hence determines the corresponding RZ space.
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Let F̆ be the completion of the maximal unramified extension of F with ring
of integers OF̆ , and similarly for F̆0. We also denote W = OF̆0

. Let NilpOF̆ be

the category of OF̆ -schemes S such that π · OS is a locally nilpotent ideal sheaf.
Recall the RZ-space N(1,1) over OF̆ which represents the following moduli problem
( [RTW14]): for S ∈ NilpOF̆ , N(1,1)(S) is the groupoid of isomorphism classes of

quadruples (X, ι, λ, ρ) given as follows:

(1) X is a strict formal OF0
-module over S of dimension 2 and F0 height 4;

(2) ι : OF → End(X) is an OF -action on X satisfying Kottwitz condition:

char(ι(π)|LieX) = (T − π)(T + π) = T 2 − π0;

(3) λ : X → X∨ is a principal quasi-polarization whose associated Rosati
involution induces on OF the nontrivial automorphism over F0;

(4) Finally, ρ : X ×S S̄ → X×Spec k S̄ is a OF -linear quasi-isogeny of height 0
such that λ and ρ∗(λX) differ locally on S̄ by a factor in O×F0

.

Although N(1,1) is normal and Cohen-Macaulay (see [Pap00]), it is not regular.

There is a desingularization, called the Krämer model NKra
(1,1)([Krä03]), which rep-

resents the isomorphism classes of quintuples (X, ι, λ, ρ,FX), where (X, ι, λ, ρ) ∈
N(1,1)(S), and

(1) FX is an OF ⊗ OS-submodule of Lie(X) with OS-rank 1 and is a direct
OS-summand of Lie(X);

(2) OF acts on FX via the structure morphism OF → OS and acts on
Lie(X)/FX via the Galois conjugate of the structure morphism.

By [Shi20, Proposition 2.7], NKra is the blow up of N(1,1) along its singular locus
which consists of “superspecial” points.

Let N(1,0) be the similar Rapoport-Zink space with the framing object X replaced
by Y. Then N(1,0) is smooth and has a universal strict formal OF0

-module Y over
OF̆ . For every S ∈ NilpOF̆ , we have N(1,0)(S) = {Y = YS}. The RZ-space we

considered is NKra = N(1,0) × NKra
(1,1). Adding N(1,0) enables us to define cycles

naturally. For simplicity, we often identify NKra with NKra
(1,1) in this paper (ignore

the one element formal scheme N(1,0)).

For a x ∈ V\{0}, let ZKra(x) be the closed (formal) subscheme of NKra consisting
of (Y,X) = (Y, ιY , λY , ρY , X, ιX , λX , ρX ,FX) ∈ NKra such that ρ−1

X ◦ x ◦ ρY lifts
to an OF homomorphism x : Y → X. According to [How19, Proposition 4.3]1,
ZKra(x) is a Cartier divisor. The closed formal subscheme Z(x) ⊂ N(1,0) ×N(1,1)

can be defined the same way. Notice, however, that Z(x) is not a Cartier divisor.
For a pair of independent vectors x1,x2 ∈ L, define the intersection number

(1.3) Int(Lx1,x2
) = χ(NKra,OZKra(x1) ⊗L OZKra(x2)),

which depends only on the lattice Lx1,x2
⊂ V generated by x1 and x2. Two Hermitian

matrices T1, T2 ∈ Herm2(F ) are said to be equivalent, denoted by T1 ≈ T2, if there
is a non-singular matrix g ∈ GL2(OF ) such that gtT1ḡ = T2. It is known (see [Jac62,
Proposition 4.3]) that every Hermitian matrix of order 2 is equivalent to either a

diagonal matrix or an anti-diagonal matrix of the form
(

0 πn

(−π)n 0

)
with n odd.

1[How19] deals with the case when F0 = Qp. Using the relative display theory and its
Grothendieck-Messing theory developed in [ACZ16], the results and proofs there extend word by
word to general F0.
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The first main result of this paper, together with that in [Shi20], is the following
theorem.

Theorem 1.1. For a pair of independent vectors x1,x2 ∈ V, let T (x1,x2) =
(h(xi,xj)) be the associated Gram matrix. Then Int(Lx1,x2

) depends only on the
equivalence class of T = T (x1,x2). More precisely, Int(Lx1,x2

) = 0 unless T (x1,x2)
is integral. Assume that T (x1,x2) is integral.

(1) When T ≈ diag(u1(−π0)α, u2(−π0)β) with ui ∈ O×F0
and 0 ≤ α ≤ β, we

have

Int(Lx1,x2
) =

{
α+ β − 2q(qα−1)

q−1 if V is isotropic,

2
∑α
s=0 q

s(α+ β + 1− 2s)− α− β − 2 if V is anisotropic.

(2) When T ≈
(

0 πn

(−π)n 0

)
with n odd (which occurs only when V is isotropic),

we have

Int(Lx1,x2) = − (q + 1)(q
n+1

2 − 1)

q − 1
+ n+ 1.

The case that V is anisotropic was proved by one of the authors (Y.S.) in [Shi20].
This paper was inspired by his work. A key ingredient is to understand the arithmetic
divisor ZKra(x) and in particular the contribution of the exceptional divisors, which
is new in the ramified case. In our special U(1, 1)-case, we use critically the special
facts:

(1) N(1,1) descends to a regular formal scheme N over OF̆0
;

(2) The formal scheme N is isomorphic to the RZ-space MΓ0(π0) (see [RSZ18,
Definition 8.1]) in the case V is anisotropic (i.e., the quaternion algebra B
at the beginning of the introduction is a matrix algebra), and is isomorphic

to the formal scheme M, which is represented by the formal completion Ω̆
of the Drinfeld half plane over OF̆0

in the case V is isotropic (i.e. B is a

division algebra)([Dri76]), see Section 2.

In this paper, we consider the case that V is isotropic. Using properties of Ω̆,
we can understand the special fibers of the divisors ZKra(x). Using explicit local

equations at ‘superspecial points’ of Ω̆, we obtain the following decomposition result
of independent interest. An OF -lattice Λ ⊂ V is called a vertex lattice of type t = 0
or 2 if πΛ ⊂ Λ] ⊂ Λ with [Λ : Λ]] = t. Here Λ] is the OF -dual of Λ with respect
to the Hermitian form on V. Associated to each vertex lattice Λ0 of type 0 is an
exceptional divisor ExcΛ0

⊂ NKra/k̄, and associated to each vertex lattice Λ2 of
type 2 is a vertical projective line PΛ̄2

/k̄ ⊂ NKra/k̄. Here and throughout this

paper, we write Λ̄ = Λ⊗OF k̄ for an OF -lattice Λ.

Theorem 1.2. Let x ∈ V\{0} with h(x,x) ∈ OF0
, and let T (x) be the set of vertex

lattices Λ such that Z(x)Kra(k̄) intersects with PΛ̄ or ExcΛ, depending on whether
Λ is of type 2 or 0. Then

ZKra(x) =
∑

Λ2∈T (x)

n(x,Λ2)PΛ̄2
+

∑
Λ0∈T (x)

(n(x,Λ0) + 1)ExcΛ0
+ Zh(x).

Here Zh(x) is the horizontal component of ZKra(x), which is empty or non-empty
irreducible depending on h(x,x) = 0 or not. n(x,Λ) is the largest integer n such
that π−nx ∈ Λ. When h(x,x) /∈ OF0

, ZKra(x) = 0.
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The proof of this theorem occupies Section 4 with preparation in Section 3. Now
proof of Theorem 1.1 becomes explicit computation of the intersection number
among the divisors in the decomposition above. This occupies Section 5

To state the last main result of this paper—the Kudla-Rapoport formula, we need
to define the local density function. Let (L, ( , )) be an integral OF -Hermitian lattice
of rank m with a Gram matrix S, and let T ∈ Hermn(OF ). Let H = O2

F be the
Hermitian hyperbolic plane with the standard Hermitian form (x, y) = 1

π (x1ȳ2−x2ȳ1)

with Gram matrix 1
π

(
0 1
−1 0

)
. Let Lr = L⊕Hr with Gram matrix Sr. Then it can

be shown that there is a unique ‘local density polynomial’ α(L, T,X) of X = q−2r

such that

(1.4) α(L, T, q−2r) =

∫
Hermn(F )

∫
Lnr

ψ(tr(b(T (x)− T )))dx db,

where T (x) = ((xi, xj)), dx is the Haar measure on Lnr with total volume 1, db
is the Haar measures on Hermn(OF ) with total volume 1, and ψ is an additive
character of F0 with conductor OF0

. We will denote α(L, T ) = α(L, T, 1) so that
α(L, T, q−2r) = α(Lr, T ). We will also denote

(1.5) α′(L, T ) = − ∂

∂X
α(L, T,X)|X=1.

Let ∂F be the different ideal of F/F0. Define

Hermn(OF )∨ := {T = (tij) ∈ Hermn(F ) | ordπ(tii) ≥ 0, and ordπ(tij∂F ) ≥ 0}.
Notice that Hermn(OF )∨ is the dual of Hermn(OF ) under the pairing ψ(tr(XY )).
Simple calculation gives
(1.6)

α(L, T ) = q−an(2m−n)|{X ∈Mm,n(OF /(πa0 )) | XtSX̄ − T ∈ πa0 ·Hermn(OF )∨}|
for sufficiently large integer a > 0. For this reason, we will also denote α(L, T,X)
by α(S, T,X) and so on. Now we can state the Kudla-Rapoport formula at the
ramified prime as follows, which comes from the comparison between the formula in
Theorem 1.1 and the local density formulas in [Shi20] (see Section 6).

Theorem 1.3. Let L be the unimodular OF -Hermitian lattice of rank 2 as in the
beginning of the introduction with Gram matrix S, and let T = T (x1,x2) ∈ Herm2(F )
with xi ∈ V being independent. Then α(L, T ) = 0, and

Int(Lx1,x2
) = 2

α′(L, T )

α(L, S)
− 2q2

q2 − 1

α(H, T )

α(L, S)
.

Remark 1.4. The case that V is anisotropic was proved in [Shi20]. In his case,
α(H, T ) = 0.

The paper is organized as follows. In Section 2, we collect the definitions of
various relevant moduli spaces and discuss the relations among these spaces. In
Section 3, we give a description of the special fiber of the moduli spaces and special
cycles. In Section 4, we give a decomposition of the special divisor by studying
the local equations of special divisors at superspecial points, and prove Theorem
1.2. Section 5 contains a computation of the intersection number between special
divisors and the proof of Theorem 1.1. Finally in Section 6, we review Shi’s local
density formula and prove Theorem 1.3.

For the rest of this paper, we assume that V is anisotropic and V is isotropic,
i.e., the associated quaternions B being the division algebra, and B = M2(F0).
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Recall that OB = OF +OF δ with δx = x̄δ and ∆ = δ2 ∈ O×F0
. So E = F0(δ) is the

unique unramified quadratic field extension of F0 with ring of integers OE = OF0(δ),

which will be viewed as a subfield of F̆0. Let σ ∈ Gal(F̆0/F0) be the Frobennius
element lifting σ(x) = xq of Gal(k̄/k). Denote W = OF̆0

. We will also identify

(1.7) B = {
(
a bπ0

bσ aσ

)
: a, b ∈ E},

together with two embeddings

(1.8) ι : E ↪→ B, a 7→
(
a 0
0 aσ

)
, and ι : F ↪→ B, a+ bπ 7→

(
a bπ0

b a

)
.

Note that πa = aσπ for all a ∈ E.
If R is an OE-algebra, there is a ring isomorphism

(1.9) OE ⊗OF0
R ∼= R×R, a⊗ x 7→ (ax, σ(a)x).

For any OE ⊗OF0
R module M , the above ring isomorphism induces a Z/2Z-grading

(1.10) M = M0 ⊕M1.

Acknowledgment: We thank Chao Li for his help during preparation of this
work. We thank the referee for their helpful comments and suggestion.

2. Preliminary

Following [BC91] and [KR14], we briefly review several moduli functors in this
section for later use.

2.1. Framing objects and their Dieudonné modules. Throughout the paper,
by relative Dieudonné module we mean relative OF0

-Dieudonné module in the sense
of [RZ96, 3.56] or [Far06, Appendix B.8], which is a special case of the OF0

-display
studied in [ACZ16]. Let Y be the unique 1 dimensional formal OF0-module of
relative height 2 over k̄ as in the introduction. Then its relative Dieudonné module
(see page 4 of [KR14] or [RZ96, Proposition 3.56]) M(Y) is a free OF̆0

-module of

rank 2. We can choose a basis {e, f} of M(Y) such that

(2.1) Fe = f, Ff = π0e, V e = f, V f = π0e, 〈e, f〉 = δ.

With respect to this basis, we have

(2.2) End(M(Y)) ∼=
{(

a bπ0

bσ aσ

)
| a, b ∈ OE

}
= OB .

In particular

(2.3) ιY(π) =

(
0 π0

1 0

)
.

The framing object (X, ιX, λX) in the introduction can be explicitly realized as
follows. Let X = Y× Y and identify End(X) with M2(OB). Then we can define an
action of OB on X via

(2.4) ιX(b) =

(
b 0
0 πbπ−1

)
.

Finally, we identify X∨ = X and define the principal polarization

(2.5) λX = ( 0 1
1 0 ) .

Then the Rosati involution associated to λX induces the involution b 7→ b∗ = πbιπ−1

on B. This triple (X, ιX, λX) is the basic Drinfeld triple defined in [KR14, Proposition
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1.1]. We obtain the basic framing object (X, ιX, λX) from the above framing object by
restricting ιX on OF . One can check that the Hermitian form on L = HomOF (Y,X)
induced by λX is isotropic as required in this paper (see Lemma 2.2).

We choose a basis {e0, f0, e1, f1} of M(X), the relative Dieudonné module of X,
such that {ei, fi} (i = 0, 1) is the basis of M(Y) for the i-th copy of Y. Then we
have

(2.6) Fei = fi, Ffi = π0ei, V ei = fi, V fi = π0ei.

(2.7) ιX(π)ei = fi, ιX(π)fi = π0ei, ιX(δ)ei = (−1)iδei, ιX(δ)fi = (−1)i+1δfi.

Remark 2.1. In some literature (e.g. [BC91] and [RTW14]), the operator ιX(π)
is denoted as Π. In this paper, since the action of OF on the relative Dieudonné
module (later Cartier module) is unambiguous, we will mostly write ιX(a) (later
ι(a)) simply as a for a ∈ OF .

We also need to consider the OE-action on M(X) obtained by restricting ιX on
OE . The grading on M(X) as defined in (1.10) is

(2.8) M0 = M(X)0 = spanOF̆0

{e0, f1}, M1 = M(X)1 = spanOF̆0

{e1, f0}.

Let N = N(X) := M(X)⊗Q. The principal polarization λX induces an alternating
form 〈, 〉 on N such that

〈Fx, y〉 = 〈x, V y〉σ,(2.9)

〈ax, y〉 = 〈x, āy〉, a ∈ OF .

In terms of the F̆0-basis {e0, f0, e1, f1}, we have

(2.10) 〈e0, f1〉 = 〈e1, f0〉 = δ,

and all the other pairings between the basis vectors are 0. Following [KR14], we
can define a Hermitian form (, ) on N by

(2.11) (x, y) = δ[〈πx, y〉+ π〈x, y〉].
Let τ = πV −1. Then C := Nτ = spanF {e0, e1} is a Hermitian F -vector space with

C ⊗F F̆ = N . Moreover,

(2.12) (e0, e1) = −δ2, (e0, e0) = (e1, e1) = 0.

So (C, (, )) is isotropic, satisfying the assumption of this paper. There is a similarly
defined Hermitian form (, )Y on N(Y)τ given by

(2.13) (x, y)Y = δ[〈πx, y〉+ π〈x, y〉].
Here 〈e, f〉 = δ as in (2.1).

Recall L = HomOF (Y,X) ∼= HomOF (M(Y),M(X)) and V = L⊗OF F . For x ∈ L,
we will also use x to denote the corresponding homomorphism between relative
Dieudonné modules when there is no confusion. Now x(e) ∈M(X)τ since τ(e) = e
by (2.2), (2.3) and x commutes with π and V . This way, we obtain a map from L
to M(X)τ by sending x ∈ V to x(e).

Lemma 2.2. ([Shi18, Lemma 3.3]) We can identity L with M(X)τ by sending
x ∈ L to x(e). Moreover,

(2.14) h(x,x)(e, e)Y = (x(e),x(e)),

where h(, ) is defined in (1.1). According to (2.13), (e, e)Y = −δ2. In particular,
h(, ) is also isotropic since (, ) is isotropic as we showed previously.
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Because of Lemma 2.2, we will often identify V with C, and L with M(X)τ , via
x 7→ x(e). The Hermitian form is shifted by a factor −δ2.

2.2. Moduli space M. We first recall the following result of Kramer ([Krä03]).

Proposition 2.3. NKra is representable by a formal scheme over Spf OF̆ which is
regular and has semi-stable reduction. The natural forgetful map

Φ : NKra → N(1,1)

(X, ι, λ, ρ,FX) 7→ (X, ι, λ, ρ)

is an isomorphism outside the singular locus Sing of N(1,1), and Φ−1(x) for x ∈ Sing

is an exceptional divisor which is isomoprhic to the projective line P1
¯k

.

By [Shi20, Proposition 2.7], NKra is the blow up of N(1,1) along Sing.
As mentioned in the introduction, the formal scheme N(1,1) descends to a formal

scheme N over OF̆0
(since the Kottwitz determinant condition is defined over OF̆0

).

A beautiful result of Kudla and Rapoport ([KR14]) asserts that N is actually

isomorphic to the modular functor M which is represented by the base change Ω̆ of
the formal completion of the Drinfeld’s upper half plane. The observation is a key
ingredient in obtaining the main results of this paper. We now briefly review M
and Ω̆ in this subsection and next one.

A formal OB-module over an OF0
-algebra R is a formal OF0

-module X over R
with an action ιB : OB → End(X) extending the action of OF0 . X is called special
if the action of OE ⊂ OB makes LieX a free R⊗OF0

OE-module of rank one. The

R-module Lie(X) is Z/2Z-graded by the action of OE :

(LieX)0 = {x ∈ Lie(X) | ιOB (a)m = am for all a ∈ OE},
(LieX)1 = {x ∈ Lie(X) | ιOB (a)m = σ(a)m for all a ∈ OE}.

Then X is special if Lie(X)i is a free R-module of rank one. Over k̄, there is a unique
special formal OB-module up to OB-linear isogeny, which is (X, ιX) in Section 2.1.

Definition 2.4. We define a moduli functor M on NilpOF̆0

that associates S with

the set of isomorphism classes of triples (X, ιB , ρ), where

• (X, ιB) is a special formal OB-module of dimension 2 and relative height 4
over S.
• ρ is a OB-linear quasi-isogeny

ρ : X ×S S̄ → X×
Spec

¯k S̄

of height 0. Here S̄ is the special fiber of S.

The following is a result of Drinfeld that shows the automatic existence of
polarizations on special formal OB-modules (see Proposition 1.1 of [KR14]).

Proposition 2.5 (Drinfeld). Let π ∈ OB be a uniformizer such that π2 = π0, and
consider the involution b → b∗ = πb′π−1 of B, where b → b′ denotes the main
involution.

(i) On X there exists a principal polarization λ0
X : X ∼−→ X∨ with associated

Rosati involution b→ b∗. Furthermore, λ0
X is unique up to a factor in O×F0

.
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(ii) Fix λ0
X as in (i). Let (X, ι, ρ) ∈ M(S), where S ∈ NilpOF̆0

. On X there

exists a unique principal polarization λ0
X : X

∼−→ X∨ making the following
diagram commutative,

X ×S S̄ X∨ ×S S̄

X×
Spec

¯k S̄ X∨ ×
Spec

¯k S̄

λ0
X

ρ

λ0
X

ρ∨

Theorem 2.6. ([KR14, Theorem 1.2]) Assume that p 6= 2. The morphism of
functors on NilpOF̆0

given by (X, ιB , ρ)→ (X, ι, λ0
X , ρ) induces an isomorphism of

formal schemes

ηF :M ∼−→ N .
Here ι is the restriction of ιB to OF and λ0

X is the principal polarization given by
Proposition 2.5.

2.3. Drinfeld upper half plane and its formal completion. For convenience
of the reader and to set up notation for the rest of the paper, we briefly review the

well-known facts about the Drinfeld upper half place Ω, its formal completion Ω̂,
and its base change Ω̆ to W = OF̆0

, following [BC91].

Recall that the Bruhat-Tits tree B(PGL2(F0)) consists of vertices and edges. The
vertices are given by the homothety classes [Λ] of OF0

-lattices in F 2
0 , and the edges

are given by pairs ([Λ], [Λ′]) of the homothety classes such that π0Λ′ ⊂ Λ ⊂ Λ′ for
suitable choices of lattices Λ and Λ′ in their homothety classes. We then say Λ and
Λ′ are adjacent. We use P[Λ] to denote the projective line over OF0 associated to Λ
depending on its homothety class. Let

Ω[Λ] = P[Λ] − P[Λ](k)

be the projective line with the q+1 rational k-points removed. When ([Λ], [Λ′]) is an
edge, Λ (mod π0) gives a k-rational point in P[Λ′]. We write P[Λ,Λ′] for the blow up
of P[Λ′] at this point, which is isomorphic to the blow up of P[Λ] at the rational point
determined by Λ′. We write Ω[Λ,Λ′] for the complement of the nonsingular rational
points of the special fiber of P[Λ,Λ′]. There is an open embedding Ω[Λ] ↪→ Ω[Λ,Λ′].

Define Ω̂[Λ] and Ω̂[Λ,Λ′] to be the formal completion of Ω[Λ] and Ω[Λ,Λ′] along their
special fibers respectively. For two different edges with a common vertex [Λ], we

can glue Ω̂[Λ,Λ′] and Ω̂[Λ,Λ′′] along Ω̂[Λ]. This gives the formal scheme Ω̂ by glueing

over B(PGL2(F0)). The generic fiber of Ω̂ is the Drinfeld p-adic half space Ω =

P1(Cp)− P1(F0), where Cp is the completion of F̄0. Define Ω̆ = Ω̂×Spf OF0
Spf OF̆0

.

Similarly define Ω̆[Λ] and Ω̆[Λ,Λ′]. Drinfeld’s well-known result (see [Dri76] and

[BC91]) asserts that M is represented by Ω̆. The following proposition will be used
in Section 4.

Proposition 2.7. (Deligne functor) ([BC91, Propositions 4.2, 4.4])

(1) Ω̂Λ represents the functor that associates an OF0
-algebra R ∈ NilpOF0

the

collection of isomorphism classes of pairs (L, α), where L is a free R-module
of rank 1 and α : Λ→ L is a homomorphism of OF0-modules satisfying the
condition:
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• for all x ∈ Spec (R/π0R), the map α(x) : Λ/π0Λ → L ⊗R k(x) is
injective.

(2) Ω̂[Λ,Λ′] represents the functor that associates an OF0-algebra R ∈ NilpOF0

the collection of isomorphism classes of commutative diagrams:

π0Λ′ Λ Λ′

L′ L L′
α′/π0 α α′

c′ c

where L and L′ are free R-modules of rank 1, α and α′ are the homo-
morphisms of OF0

-modules, c and c′ are homomorphisms of R-modules,
satisfying the conditions: for all x ∈ Spec (R/π0R), one has
• ker(α′(x): Λ′/π0Λ′ → L′ ⊗R k(x)) ⊂ Λ/π0Λ′,
• ker(α(x): Λ/π0Λ→ L⊗R k(x)) ⊂ π0Λ′/π0Λ.

We now describe the explicit equations of Ω̂[Λ] and Ω̂[Λ,Λ′]. Let {e1, e2} be a basis
of Λ. Then we have

(2.15) Ω̂[Λ] = (P[Λ] − P[Λ](k))∧ = Spf OF0
[T, (T q − T )−1]∧,

where T = X0

X1
and Xi is the coordinate of P[Λ] with respect to the basis {e1, e2}

and “hat” indicates completion along the special fiber.
Without loss of generality, we can assume Λ′ has a basis {e1, π

−1
0 e2}. Then we

have

(2.16) Ω̂[Λ,Λ′] = Spf OF0 [T0, T1, (T
q−1
0 − 1)−1, (T q−1

1 − 1)−1]∧/(T0T1 − π0).

In this case, the open immersions Ω̂[Λ] ↪→ Ω̂[Λ,Λ′] and Ω̂[Λ′] ↪→ Ω̂[Λ,Λ′] are induced by

(2.17) T0 7→ T, T1 7→ π0 · T−1,

and

(2.18) T0 7→ π0 · T−1, T1 7→ T.

3. Special fiber of special cycle

In this section, we study the support of the special cycles. Essentially we only
need the Pappas model N(1,1) (see Proposition 3.6).

3.1. Special fiber of N(1,1). Since OF /(π) = OF0
/(π0) = k, we have N(1,1)/k̄ ∼=

N/k̄. We briefly review the structure of N(1,1)/k̄ following [KR14].

Recall that C = Nτ , τ = πV −1. For an OF -lattice ΛF in C, set

Λ]F = {x ∈ C | (x,ΛF ) ⊂ OF }.
Similarly, for a lattice OF̆ -lattice M ⊂ N , set

M ] = {x ∈ N | (x,M) ⊂ OF̆ }.

Definition 3.1. For an OF -lattice Λ in C, Λ is called a vertex lattice of type t

if πΛ ⊂ Λ]
t
⊂ Λ, meaning [Λ : Λ]] = t. In our case t = 0 or 2 by Lemma 3.2 of

[RTW14].

Remark 3.2. In the rest of the paper we will often use the subscript 0 or 2 to
indicate the type of a vertex OF -lattice. For example Λ0 often stands for a vertex
lattice of type 0.
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Let B = B(PU(C)) be the Bruhat-Tits tree of PU(C)—the projective unitary
group of C. Its vertices correspond to vertex OF -lattices Λ2 of type 2, and its
edges correspond to vertex OF -lattices Λ0 of type 0. Two vertices Λ2 and Λ′2 are
connected by an edge Λ0, or adjacent, if and only if Λ2 ∩ Λ′2 = Λ0. The following
lemma is easy to check (recall that C is isotropic) and is left to the reader.

Lemma 3.3. Let Λ0 be a vertex OF -lattice of type 0. There is an OF -basis {w0, w1}
of Λ0 with Gram matrix ( 0 1

1 0 ). There are exactly two vertex OF -lattices of type 2
containing Λ0:

Λ2 = OFπ−1w0 +OFw1, and Λ′2 = OFw0 +OFπ−1w1.

There are q + 1 adjacent (type 2) vertices of Λ2 in B , and they are

Λ∞ = OFπ−2w0 +OFπw1, Λk = OFw0 +OFπ−1(kπ−1w0 + w1)

where k runs through the representatives of OF0
/(π0).

Recall the following results.

Proposition 3.4. ([RTW14, Proposition 2.2] and [KR14, Lemma 3.2]) Let L(N)
be the set of OF̆ -lattices

{M ⊂ N | π0M ⊂ VM
2
⊂M, M ] = M, dim¯k VM/(VM ∩ πM) ≤ 1, }.

Then the map

N(1,1)(k̄)→ L(N), x = (X, ι, λ, ρ) 7→M(x) := ρ(M(X)) ⊂ N
is a bijection. Moreover, for M = M(x) ∈ L(N), we have

(i) If M is τ -stable, then M is of the form M = Λ0 ⊗OF OF̆ for some vertex
OF -lattice Λ0 of type 0 in C,

(ii) If M is not τ -stable, then

M + τM = Λ2 ⊗OF OF̆
for some vertex OF -lattice Λ2 of type 2 in C.

Proposition 3.5. As in the introduction, we use PΛ̄2
to denote the projective line

over k̄ associated to Λ2 ⊗OF k̄.
(1) For every vertex OF -lattice Λ2 of type 2, there is a closed immersion over k̄

iΛ̄2
: PΛ̄2

→ N(1,1)/k̄,

which is given on k̄-points as follows: it sends a line l ⊂ Λ2 ⊗OF k̄ to its preimage
under the projection Λ2 ⊗OF̆ → (Λ2/πΛ2)⊗OF k̄. Moreover, iΛ2

(l) is τ -invariant
if and only if l is k-rational, i.e., l is the extension of a line in Λ2/πΛ2.

(2) Let PΛ̄2
denote also its image in N(1,1)/k̄ under iΛ2 . Then

N(1,1)/k̄ =
⋃
Λ2

PΛ̄2
,

where the union is over all vertex lattices of type 2. Two such lines PΛ̄2
and PΛ̄′2

intersect if and only if Λ2 and Λ′2 are connected by an edge, i.e., Λ2 ∩ Λ′2 = Λ0 is
a vertex OF -lattice of type 0. In such a case, the two projective lines intersect at
exactly one k-rational point, denoted by ptΛ0

. Such a point is called a superspecial
point in N(1,1).

(3) The singular locus Sing of N(1,1) consists of all the superspecial ptΛ0 with Λ0

running through all vertex OF -lattices of type 0.
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Proof. For the proof of (1), see [KR14, Lemma 3.3, Proposition 3.4]. For (2), if a
point x lies in the intersection between PΛ̄2

and PΛ̄′2
, then M(x) ⊂ Λ2 ⊗OF OF̆ ∩

Λ′2 ⊗OF OF̆ by the description of iΛ̄2
in (1). Together with the fact M(x) = M(x)],

this implies Λ2 ∩ Λ′2 = Λ0, where Λ0 is some vertex lattice of type 0. The converse
is straightforward. Part (3) is immediate from part (2) and the description of the
singular locus of N(1,1) by local model (see for example [Pap00, Theorem 4.5]). �

Recall that the blow up Φ : NKra → N(1,1) is an isomorphism outside the singular
locus Sing.

Proposition 3.6. (1) For a type 2 lattice Λ2, the Zariski closure of Φ−1(PΛ̄2
\Sing)

is a projective line over k̄ which we still denote by PΛ̄2
.

(2) For a vertex lattice Λ0 of type 0, Φ−1(ptΛ0
) is a projective line over k̄ which

we denote by ExcΛ0 .
(3) On the special fiber of NKra, two different lines PΛ̄2

and PΛ̄′2
never intersect,

and two different lines ExcΛ0
and ExcΛ′0

never intersect. PΛ̄2
and ExcΛ0

intersect
at one point if Λ0 ⊂ Λ2, otherwise they do not intersect.

Proof. The above facts will be clear after the discussion in Section 4.3. �

PΛ̄2

ExcΛ0

PΛ̄′2

Figure 1. Special fiber of NKra when q = 3.

A superspecial point ptΛ0
belongs to Z(x) if and only if ExcΛ0

⊆ ZKra(x). So in
the rest of the section, we only need to study Z(x).

3.2. Bruhat-Tits trees of special cycles: rank 1 case. For an x ∈ V, let T (x)
be as in Theorem 1.2. Alternatively, in terms of Z(x) (instead of ZKra(x)), we have

T (x) = {Λ2 is of type 2 | PΛ̄2
∩ Z(x) 6= ∅} ∪ {Λ0 is of type 0 | ptΛ0

∈ Z(x)}.

We will also view a lattice in T (x) as a vertex or an edge in B depending on whether
it is of type 2 or 0. We will see that T (x) is a tree by Corollaries 3.12 and 3.14.
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Lemma 3.7. Let x ∈ V. Then

Z(x)(k̄) ∩ PΛ̄2
(k̄) =

 PΛ̄2
(k̄), if x(e) ∈ πΛ2,

a single point, if x(e) ∈ Λ2 \ πΛ2,
∅, if x(e) /∈ Λ2.

In particular, Λ2 ∈ T (x) if and only if x(e) ∈ Λ2.

Proof. Let x = (X, ι, λ, ρ) ∈ N(1,1)(k̄), let M(x) = ρ(M(X)) ⊂ N as in Proposition
3.4. Then

x ∈ Z(x)(k̄) ⇐⇒ x(M(Y)) ⊂M(x)

⇐⇒ x(e) ∈M(x), x(f) ∈M(x)

⇐⇒ x(e) ∈M(x)

since x(e) ∈M(x) implies x(f) = x(V e) ∈ VM(x) ⊂M(x).
On the other hand,

x ∈ PΛ̄2
(k̄) ⇐⇒ πΛ2 ⊗OF OF̆ ⊂M(x) ⊂ Λ2 ⊗OF OF̆ .

If x(e) ∈ πΛ2, then x(e) ∈ M(x) for any x such that πΛ2 ⊂ M(x) ⊂ Λ2. This
implies PΛ̄2

(k̄) ⊂ Z(x)(k̄).

If x(e) ∈ Λ2 \ πΛ2, then the image of x(e) is contained in exactly one line in Λ̄F,2
and thus gives a single point in P1

Λ̄2
(k̄).

Finally, if x(e) 6∈ Λ2, it can not lie in any sub-lattice of Λ2 ⊗OF OF̆ .
�

From now on, fix 0 6= x ∈ V, and let b = x(e), q(b) = (b, b) = −δ2h(x,x).

Lemma 3.8. Assume q(b) 6= 0. Then there exist a unique vertex OF -lattice Λb of
type 0 such that π− ordπ0

(q(b))b ∈ Λb \ πΛb.

Proof. Replacing b by π− ordπ0
(q(b))b if necessary, we may assume ordπ0

(q(b)) = 0,
i.e., (b, b) = u0 ∈ O×F0

. Write (Fb)⊥ = Fc, then C = Fb ⊕ Fc. Since q(b) is a
unit, by [Jac62, Proposition 4.2], every vertex lattice of type 0 containing b has the
orthogonal decomposition

Λ = OF b+ Λ1, Λ1 = Λ ∩ Fc = OF b′

for some b′ = rc. Λ is a vertex lattice of type 0 if and only if q(b′) = rr̄q(c) is a unit.
Such an r exists and is unique up to a unit in O×F . So the vertex OF -lattice Λb of
type 0 such that b ∈ Λb \ πΛb exists and is unique.

�

Definition 3.9. Assume that each edge in B has length 1. Let Λ and Λ′ be two
vertex OF -lattices. The distance d(Λ,Λ′) is defined to be

(1) the distance between the two vertices in B if both are of type 2,
(2) the distance between the vertex Λ and the midpoint of the edge Λ′ in B if Λ

is of type 2 and Λ′ is of type 0,
(3) the distance between the midpoints of the edges Λ and Λ′ in B if both are of

type 0.

For a vertex lattice Λ, we define

(3.1) n(b,Λ) := max{n ∈ Z | π−nb ∈ Λ}.
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It is easy to check that for Λ2 ∩ Λ′2 = Λ0,

(3.2) n(b,Λ0) = min(n(b,Λ2), n(b,Λ′2)).

We have the following reformulation of Lemma 3.7.

Lemma 3.10. If b = x(e), n(b,Λ) ≥ 0 if and only if Λ ∈ T (x) .

Lemma 3.11. Assume q(b) 6= 0.

(1) If Λ is a vertex OF -lattice of type 2, then

n(b,Λ) = ordπ0
(q(b))− d(Λ,Λb) +

1

2
.

(2) If Λ is a vertex OF -lattice of type 0, then

n(b,Λ) = ordπ0
(q(b))− d(Λ,Λb).

Proof. Claim (2) follows from Claim (1) and (3.2). Now we prove Claim (1). Without
lost of generality we can assume ordπ0(q(b)) = 0. We prove the lemma by induction
on d(Λ,Λb). Let us treat the case d(Λ,Λb) = 1

2 first, i.e. Λb ⊂ Λ. We have by
Lemma 3.3

Λb = OFw0 +OFw1, Λ = OFπ−1w0 +OFw1.

Write b = xw0 + yw1 with q(b) = xȳ + yx̄ ∈ O×F0
. Then x, y ∈ O×F , and b ∈ Λ \ πΛ.

Hence n(b,Λ) = 0.
Now we assume the assertion holds for all Λ such that 1

2 ≤ d(Λ,Λb) ≤ d+ 1
2 . For

a Λ such that d(Λ,Λb) = d+ 1
2 6=

1
2 , which satisfies the formula n := n(b,Λ) = −d,

it suffices to show that all its adjacent vertices also satisfy the formula in the lemma.
Choose a basis {v0, v1} = {π−1w0, w1} of Λ with Gram matrix π−1

(
0 1
−1 0

)
. By

Lemma 3.3, the q + 1 neighbors of Λ in the Bruhat-Tits tree are

Λ∞ = spanOF {π
−1v0, πv1}, Λk = spanOF {πv0, π

−1(kv0 + v1)},
where k runs through the representatives of OF0

/(π0). We want to show the claim
holds for all the neighbors. One of the neighbors will be closer to Λb than other
neighbors. Without loss of generality, we can assume Λ∞ is closer to Λb than all
the other Λk. By induction, we know

n(b,Λ∞) = n+ 1.

By the definition of n(b,Λ), we can write

b = πn(a0v0 + a1v1) = πn+1(π−1a0v0 + π−1a1v1),

where ordπ(ai) ≥ 0 and min{ordπ(a0), ordπ(a1)} = 0. Since n(b,Λ∞) = n + 1,
π−1a0v0 + π−1a1v1 ∈ Λ∞ implies ordπ(a1) ≥ 2. Hence ordπ(a0) = 0. Claim:

ordπ(a1) ≥ 2 and ordπ(a0) = 0 =⇒ a0v0 + a1v1 6∈ Λk.

To prove this, assume a0v0 + a1v1 ∈ Λk which implies that we can find a′0, a
′
1 ∈ OF

such that

a0v0 + a1v1 = a′0πv0 + a′1π
−1(kv0 + v1) = (a′0π + a′1π

−1k)v0 + a′1π
−1v1.

As a result,

ordπ(a′0π + a′1π
−1k) = ordπ(a′0π + a1k) ≥ min{ordπ(a′0π), ordπ(a1)} ≥ 1.

But then a′0π + a′1π
−1k can not equal to a0 since we know ordπ(a0) = 0, which is a

contradiction.
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The claim gives us that n(b,Λk) ≤ n−1. we can easily check π(a0v0 +a1v1) ∈ Λk.
Therefore n(b,Λk) = n− 1 as claimed. �

Combining Lemma 3.10 with Lemma 3.11, we have the following:

Corollary 3.12. Assume q(b) 6= 0, T (x) is a ball centered at the midpoint of Λb
with radius ordπ0(q(b)) + 1

2 . In particular, T (x) is empty if and only q(b) /∈ OF0 .

Lemma 3.13. Assume that b 6= 0 and q(b) = 0. Let Λ be a vertex lattice of type 2
and assume n(b,Λ) = n. Then there exists a unique type 2 adjacent lattice Λ+ of Λ
such that n(b,Λ+) = n+ 1. For any other type 2 adjacent vertex lattice Λ′ of Λ, we
have n(b,Λ′) = n− 1.

Proof. By scaling b by a power of π we can assume that n = 0. By Lemma 3.3, the

lattice Λ ≈ H with Gram matrix
(

0 π−1

−π−1 0

)
(as in the introduction). So there

is some b1 ∈ Λ such that (b, b1) = π−1. Define b′ = b1 + πab where a = 1
2 (b1, b1).

Since (b1, b1) ∈ π−1OF0 , then {b, b′} is a basis of Λ with Gram matrix π−1
(

0 1
−1 0

)
.

The adjacent type 2 vertex lattices of Λ are

Λ∞ = spanOF {π
−1b, πb′}, Λk = spanOF {πb, π

−1(kb+ b′)},

where k runs through the representatives of OF0
/(π0). Then it is obvious that

n(b,Λ∞) = 1 and n(b,Λk) = −1 for any k. The lemma follows. �

Corollary 3.14. Assume that b 6= 0 and q(b) = 0. Then T (x) is a cone with the
boundary consisting of vertex lattices Λ of type 2 with n(b,Λ) = 0. Starting with such
a vertex Λ, there is a unique (half) geodesic such that the number n(b,Λ) increases
along the geodesic. We call such a geodesic an ascending geodesic starting with
Λ. Any two ascending geodesics coincide after finitely many steps. An ascending
geodesic can be thought of as an ‘axis’ of the cone T (x).

3.3. Bruhat-Tits trees of special cycles: rank 2 case. The following is an
analogue of Lemma 2.11 from [San17].

Lemma 3.15. Let x1,x2 ∈ V, bi = xi(e), ni = ordπ0(q(bi)) and assume q(bi) 6= 0,
for i ∈ {1, 2}. Assume n1 ≤ n2. Suppose that T (x1) ∩ T (x2) 6= ∅. Let Λb1,b2 be the
vertex lattice such that

d(Λb1 ,Λb1,b2) = n1 +
1

2
− r and d(Λb1 ,Λb1,b2) + d(Λb2 ,Λb1,b2) = d(Λb1 ,Λb2).

Here

r = min(
n1 + n2 + 1− d(Λb,Λb′)

2
, n1 +

1

2
).

Then T (x1) ∩ T (x2) ⊂ B is the ball of radius r centered at either the vertex Λb1,b2
or the midpoint of the edge Λb1,b2 , depending on whether r is an integer or not.

Proof. It follows from Corollary 3.12 and the fact that B is a tree. �

Lemma 3.16. For x1,x2 ∈ V, let b1 = x1(e), b2 = x2(e). Assume

T =

(
(b1, b1) (b1, b2)
(b2, b1) (b2, b2)

)
=

(
0 πn

(−π)n 0

)
, n ≥ 0.

Then T (x1) ∩ T (x2) is a ball with center Λ = spanOF {π
−rb1, π

−rb2} and radius r,

where r = [n+1
2 ] is the integral part of n+1

2 .
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Proof. We assume that n = 2r − 1 (r ≥ 1) is odd, the case n is even can be proved
similarly. Write bi = πrvi for i = 1, 2. Define

Λk,0 = spanOF {π
−kv1, π

k+1v2}, Λk,2 = spanOF {π
−kv1, π

kv2}, k ∈ Z.
Then Λk,0 are vertex lattices of type 0 and Λk,2 are vertex lattices of type 2. It is
easy to check that

n(b1,Λk,0) = r + k, n(b1,Λk,2) = r + k,

n(b2,Λk,0) = r − k − 1, n(b2,Λk,2) = r − k.
So {Λk,0,Λk,2 | k ≥ −r} is the ascending geodesic associated to b1 starting at Λ−r,2
and {Λk,0 | k ≤ r − 1} ∪ {Λk,2 | k ≤ r} is (the inverse of) the ascending geodesic
associated to b2 ending at Λr,2. Let C be the intersection of the above two half
geodesics, namely, the line segment joining Λ−r,2 and Λr,2. By Lemma 3.13, both
n(b1,Λ) and n(b2,Λ) are decreasing along a half geodesic starting from any vertex on
C other than C itself. Combine the above facts, it is easy to see that T (x1) ∩ T (x2)
is a ball centered at Λ0,2 with radius r. �

The following lemma is an analogue of [San17, Lemma 2.15]. Recall that wo
Hermitian matrices T1, T2 ∈ Herm2(OF ) are said to be equivalent, denoted by
T1 ≈ T2 if there is a non-singular matrix g ∈ GL2(OF ) such that gtT1ḡ = T2.

Lemma 3.17. Let

T =

(
(b1, b1) (b1, b2)
(b2, b1) (b2, b2)

)
where bi = xi(e) for xi ∈ V. Assume q(bi) 6= 0, i ∈ {1, 2}, and T is non-singular.
Let ni = ordπ0

(q(bi)) and assume n1 ≤ n2. Set d = d(Λb1 ,Λb2), then

(a) If T (x1) ⊂ T (x2) and Λb1 6= Λb2 , then T ≈
(
u1(−π0)α 0

0 u2(−π0)β

)
where

u1, u2 ∈ O×F0
and −u1u2 ∈ Nm(F×) with

α = n1, β = n2 − d.

(b) If T (x1) 6⊂ T (x2) , and T (x1)∩T (x2) 6= ∅, then T ≈
(

0 πα

(−π)α 0

)
with

α = n1 + n2 − d.

(c) If Λb1 = Λb2 , then T ≈
(
u1(−π0)α 0

0 u2(−π0)β

)
. Here u1, u2 satisfy the

same conditions as in (a) and

α = n1, β = n2 + 2 ordπ((c2, c
′
1)),

where ci = π−nibi, and c′1 ∈ Λb1 \ πΛb1 such that (c1, c
′
1) = 0.

Proof. If n1 < 0, the lemma holds trivially. So we assume n1 ≥ 0.
We treat the case Λb1 6= Λb2 first. Assume Λ ∩ Λ′ = Λb1 where Λ and Λ′ are vertex
lattices of type 2. We pick a basis {v0, v1} of Λ such that(

(v0, v0) (v0, v1)
(v1, v0) (v1, v1)

)
=

(
0 π−1

−π−1 0

)
.

Without loss of generality, we can assume

Λ′ = spanOF {π
−1v0, πv1}, hence Λb1 = spanOF {v0, πv1}.



THE KUDLA-RAPOPORT CONJECTURE AT A RAMIFIED PRIME FOR U(1, 1) 17

By the symmetry of B, we can also assume

Λb2 = spanOF {π
−dv0, π

d+1v1} where d = d(Λb1 ,Λb2).

By Lemma 3.11, we can write

b1 = πn1(α0v0 + α1(πv1)), b2 = πn2(α′0(π−dv0) + α′1(πd+1v1)), αi, α
′
i ∈ OF .

Note that (b1, b1) = (−π0)n1(−α0ᾱ1 − α1ᾱ0). Since ordπ(−α0ᾱ1 − α1ᾱ0) = 0, we
conclude that ordπ(α0) = ordπ(α1) = 0. Similarly, ordπ(α′0) = ordπ(α′1) = 0. Then
a short computation shows:

T =

(
(b1, b1) (b1, b2)
(b2, b1) (b2, b2)

)
=

(
π2n1 · (unit) πn1+n2−d · (unit)

(−π)n1+n2−d · (unit) π2n2 · (unit)

)
.

Note that

T (x1) ⊂ T (x2) ⇐⇒ n1 ≤ n2 − d ⇐⇒ n1 ≤
n1 + n2 − d

2
.

Now for the proof of (a), observe that if T (x1) ⊂ T (x2) then 2n1 = min{ordπ(Tij)}.
This implies

T ≈
(
u1(−π0)n1 0

0 u2(−π0)n2−d

)
.

For (b), the assumption implies that n1 > n2 − d. Then n1 + n2 − d =
min{ordπ(Tij)}, which implies

T ≈
(

0 πn1+n2−d

(−π)n1+n2−d 0

)
.

The proof for the case Λb1 = Λb2 is essentially the same as the proof in [San17,
Lemma 2.15], and is left to the reader. �

Corollary 3.18. Let x = (x1,x2) ∈ V2 and bi = xi(e) for i = 1, 2. Assume that x1

and x2 are linearly independent. Then the naive intersection Z(x) = Z(x1) ∩Z(x2)
(resp. ZKra(x) ) is supported in finitely many irreducible components of the special
fiber of N(1,1) (resp. NKra).

Proof. This follows easily from Lemma 3.15 and Lemma 3.16. �

4. Decomposition of special divisors in the Krämer model

This section is dedicated to the proof of the following theorem, which is slight
refinement of Theorem 1.2 with x replaced by its image b = x(e) in C.

Theorem 4.1. For a vector x ∈ V \ {0}, set b = x(e) as before. Then ZKra(x) = 0
unless q(b) ∈ OF0 .

(1) If q(b) 6= 0 and q(b) ∈ OF0 , then we have the following decomposition of
special divisor

(4.1) ZKra(x) =
∑

Λ2∈T (x)

n(b,Λ2)PΛ̄2
+

∑
Λ0∈T (x)

(n(b,Λ0) + 1)ExcΛ0 + Zh(x),

where the two summations are over type 2 and type 0 vertex lattices respec-
tively and Zh(x) ∼= SpfOF is a horizontal divisor meeting the special fiber
at ExcΛb . Recall that Λb is the unique vertex lattice of type 0 such that
π− ordπ0 (q(b))b ∈ Λb \ πΛb.
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(2) If q(b) = 0, then we have the following decomposition of special divisor

(4.2) ZKra(x) =
∑

Λ2∈T (x)

n(b,Λ2)PΛ̄2
+

∑
Λ0∈T (x)

(n(b,Λ0) + 1)ExcΛ0
,

where the two summations are over type 2 and type 0 vertex lattices respec-
tively.

4.1. The Horizontal Component. We say a formal scheme over Spf OF̆ is hori-

zontal if π is not locally nilpotent in its structure sheaf. We say a divisor in NKra is
irreducible if it is connected and is an irreducible Cartier divisor in every local ring
of NKra. Let Ys be the quasi-canonical lifting of Y of level s over OF̆0

considered

by [Gro86] (with Os = OF̆0
+ πsOF̆ action). In particular, Y = Y0 is the canonical

lifting. We show that all horizontal cycles in ZKra(x) comes from canonical lifting.

Theorem 4.2. Let Z be an irreducible horizontal component of Z(x), then Z ∼=
Spf OF̆ . Moreover Z intersects with the special fiber of N(1,1) at a superspecial point.

Proof. By assumption Z = Spf R where R is a finite extension of OF̆0
. Let X be

the strict formal OF0
-module over Z that is the pullback from the universal strict

formal OF0 -module over N(1,1) which by Theorem 2.6 carries an OB action ιB . By
the definition of Z(x), x lifts to a homomorphism x : Y → X. We now define a
morphism φ : Y ⊕ Y → X by

φ(p1, p2) = x(p1) + ιB(δ) ◦ x(p2),

where p1, p2 ∈ Y(S) for an R-algebra S. We give Y ⊕ Y an OB action ι : OB →
EndOF0

(Y ⊕ Y) ∼= M2×2(OF ) defined by

(4.3) ι(π) =

(
π 0
0 −π

)
, ι(δ) =

(
0 1
δ2 0

)
.

Then φ becomes an OB-linear homomorphism.
We claim that φ is an isogeny. By [Tat67, Proposition 1], the category of

connected OF modules and the category of divisible commutative formal Lie groups
with OF action are equivalent. Let A = R[[T1, T2]] considered as the structure ring
of Y ⊕Y and B be the structure ring of X. It suffices to show that the induced map
φ] : B → A is injective. If I = Ker(φ]) is nontrivial, then φ factors through the sub
formal group scheme X ′ = Spf B/I of X. Since A has characteristic zero, so does
B/I. By base change to the fraction field F (R) of R we can apply a theorem of
Cariter [Car62] and conclude that X ′⊗RF (R) is a one dimensional formal group law
over F (R). But by assumption, X ′ ⊗R F (R) has an OB action which is impossible.
Hence I = {0}. This proves the claim.

Our goal is to show that X is in fact isomorphic to Y ⊕ Y. We define the Tate
module for a OF -module G by

T (G) = lim←−
n

G[πn].

We can identify T = T (Y ⊕ Y) with (OF )2 and further with OB using the OB
action on T (Y ⊕ Y). To be more specific the element t =

(
1
0

)
∈ T is a generator

of T under the OB action given by (4.3). Then the set of OB-linear isogenies
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φ : Y ⊕ Y → X has a one-to-one correspondence with OB stable lattices T ′ such
that

(4.4) T ⊆ T ′ ⊂ T 0 = T ⊗OF F.

Since T is a free OB module of rank 1, T ′ must be of the form π−n · T for some
n ≥ 0. This shows that X is in fact isomorphic to Y⊕Y . Identifying X = Y⊕Y , we
see from (4.3) that j = diag(π, π) ∈ EndOB (X). Since trF/F0

tr j = 0, this implies
that X ∈ Z(j) ⊂ M—the special divisor defined in [KR00, Definition 2.1]. So
Z ⊂ Z(j) under the isomorphism N ∼= M. Now we conclude from case (iii) of
[KR00, Proposition 4.5] that Z ∼= Spf OF̆ .

By construction we know that the relative Dieudonné module M(X̄) = M(Y)⊕
M(Y) is fixed by τ = πV −1 where X̄ = X⊗ k̄. By [KR14, Lemma 3.2], Z intersects
with the special fiber of N(1,1) at a superspecial point. �

4.2. Hodge filtration and equation of special cycles in N(1,1). Now we begin
to study the equations of special divisors at a superspecial point. We will use
Grothendieck-Messing theory to determine the equations, which in turn requires a
description of the Hodge filtrations of the relevant relative Dieudonné crystals. In
the following we use the Deligne functor to obtain such a description.

In the rest of this section, for x = (X, ι, λ, ρ) ∈ N(1,1)(k̄), we denote ρ(M(X)) ⊂
N by M(x). Then identification N(1,1)/k̄ ∼= M/k̄ induces an OB and thus an
OE-action on M(x). This makes M(x) an OE ⊗OF0

OF̆0
-module and induces a

Z/2Z grading (see (1.10))

M(x) = M(x)0 ⊕M(x)1.

Now let x be a superspecial point ptΛ0
of N(1,1), which implies that M(x) is

τ -invariant and that Λ0 = M(x)τ is a vertex OF -lattice of type 0 with M(x) =
Λ0 ⊗OF OF̆ . As explained in Section 2.1 we can choose an OF0

-basis {e0, f1} for
M0(x)τ and {f0, e1} for M1(x)τ such that

(4.5) πei = fi, πfi = π0ei, V ei = fi, V fi = π0ei, i = 0, 1.

and

(4.6) (e0, e0) = (e1, e1) = 0, (e0, e1) = −δ2.

Then Λ0 = SpanOF {e0, e1}, and the vertex lattices of type 2 containing Λ0 are

Λ2 = SpanOF {π
−1e0, e1}, Λ′2 = SpanOF {e0, π

−1e1}.(4.7)

Therefore, x ∈ PΛ̄2
∩PΛ̄′2

. SinceN ∼=M, we haveN(1,1)(k̄) =M(k̄) and there should

exist homothety classes of rank 2 OF0
-lattices [Λ] and [Λ′] such that x ∈ P[Λ] ∩ P[Λ′].

By [San13, Remark 3.4], we can take

Λ = M0(x)τ = spanOF0
{e0, f1},

Λ′ = π−1M1(x)τ = spanOF0
{π−1f0, π

−1e1} = spanOF0
{e0, π

−1
0 f1}.

Another way to relate these different types of lattices are the following equations

(4.8) Λ = ((Λ2 ⊗OF0
OE)0)τ , Λ′ = ((Λ′2 ⊗OF0

OE)0)τ .

In particular we can identify P[Λ](k̄) with PΛ̄2
(k̄) and P[Λ′](k̄) with PΛ̄′2

(k̄).
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Consider the Deligne functor F[Λ,Λ′] (see [BC91]):

π0Λ′ Λ Λ′

L′ L L′.

α′/π0 α α′

c′ c

For an OF̆0
-algebra R ∈ NilpOF̆0

, the conditions of α and α′ in Proposition 2.7

imply that α(e0) generates L and α′(π−1e1) generates L′. We identify L and L′
with R by setting

α(e0) = 1, and α′(π−1e1) = α′(π−1
0 f1) = 1.

Let

t0 = α(f1) ∈ L = R, and t1 = α′(e0) = α′(π−1f0) ∈ L′ = R.

Then c is simply the multiplication by t0 and c′ is the multiplication by t1. So by
commutativity of the above diagram, we have

(4.9) t0t1 = π0.

Consider

α⊗ 1 : Λ⊗OF0
R→ L and α′ ⊗ 1 : Λ′ ⊗OF0

R→ L′.(4.10)

We have

kernel of α⊗ 1 = spanR{f1 ⊗ 1− e0 ⊗ t0},(4.11)

kernel of α′ ⊗ 1 = spanR{π−1f0 ⊗ 1− π−1e1 ⊗ t1}.(4.12)

For a strict formal OF0
-module X over R, let D(X/R) be its relative (to OF0

)
Dieudonné crystal with Hodge filtration FilD(X/R), see for example [ACZ16, Section
3]). Then we have the exact sequence:

(4.13) 0→ FilD(X/R)→ D(X/R)→ Lie(X/R)→ 0.

Proposition 4.3. Let x = ptΛ0
be a superspecial point. For an ON(1,1),x-algebra

R ∈ NilpOF̆0

where ON(1,1),x is the local ring of N(1,1) at x, let t0, t1 ∈ R be the

image of T0, T1 under the structure morphism, and Xt0,t1 be the corresponding strict
OF0 module over R. Then we have the following identifications

D(Xt0,t1/R)0 = spanOF0
{e0, f1}⊗OF0

R, FilD(Xt0,t1/R)0 = spanR{f1⊗1−e0⊗t0},

and

D(Xt0,t1/R)1 = spanOF0
{e1, f0}⊗OF0

R, FilD(Xt0,t1/R)1 = spanR{f0⊗1−e1⊗t1}.

Proof. Since x is a superspecial point, both 0 and 1 are critical indices. Hence M(x)
is τ invariant and M(x)τ = spanOF0

{e0, f0, e1, f1}. According to the constructions

in [BC91], especially how Deligne’s functor is related with the moduli funtor of
special formal OB-module, we know that

D(Xt0,t1/R)0 = M0(x)τ ⊗OF0
R = spanOF0

{e0, f1} ⊗OF0
R,

D(Xt0,t1/R)1 = M1(x)τ ⊗OF0
R = spanOF0

{e1, f0} ⊗OF0
R.

Under these identifications, the map α⊗ 1 in ((4.10)) is the natural quotient map
from D(Xt0,t1/R)0 to Lie(Xt0,t1)0, and the maps πα′ ⊗ 1 is the natural quotient
map from D(Xt0,t1/R)1 to Lie(Xt0,t1)1. Hence FilD(Xt0,t1/R)0 is the kernel of α⊗1
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and FilD(Xt0,t1/R)1 is the kernel of πα′ ⊗ 1. By (4.11) and (4.12), we obtain the
proposition. �

Similarly for the universal object Y over N(1,0) and an OF̆ -algebra R ∈ NilpOF̆ ,

it is easy to see that

(4.14) D(YR) = SpanR{e⊗ 1, f ⊗ 1}, FilD(YR) = SpanR{f ⊗ 1− e⊗ π},
since the OF -action coincides with the structure action OF → R on Lie(YR):
πe⊗ 1 = e⊗ π. Here the tensor is over OF0 .

Proposition 4.4. Let x ∈ Z(x)(k̄) be a superspecial point ptΛ0 . Choose a basis
{e0, e1} of Λ0 such that (4.5) and (4.6) are satisfied. Assume b = x(e) = α0e0 +
α1e1 ∈ Λ0 where αi ∈ OF . Recall a neighborhood of x in N(1,1) is

(4.15) Ω̆[Λ,Λ′],F̆ = Spf(OF̆ [T0, T1, (T
q−1
0 − 1)−1, (T q−1

1 − 1)−1]/(T0T1 − π0))∧.

Then the equations for Z(x) in the local ring ON(1,1),x are given by (here ᾱ stands

for the Galois conjugate of α):

ᾱ1T0 − πᾱ0 = 0, and ᾱ0T1 − πᾱ1 = 0.(4.16)

Proof. First, Lemma 3.7 implies b = x(e) ∈ Λ0. Let

b′ := x(f) = πx(e) = α0f0 + α1f1.

for some αi ∈ OF . Consider the local ring A := ON(1,1),x. Let I denote the ideal

corresponding to Z(x). Set

An := A/πnA, In := (I + πnA)/πnA ⊂ An.
Since A is Noetherian, I is π-adic complete. Hence to prove the proposition, we just
need to prove In are generated by the images of ᾱ1T0 − πᾱ0 and ᾱ0T1 − πᾱ1 in An
for all n. Let mn denote the maximal ideal of An. Set

B := An/mnIn, B′ := An/In.

Let J := In/mnIn, which is the kernel of of the projection B → B′. Note that
J2 = 0, so it has a PD structure. By Nakayama’s lemma, it suffices to show J is
generated by images of ᾱ1T0 − πᾱ0 and ᾱ0T1 − πᾱ1 in B.

Let X be the universal strict formal OF0-module over N(1,1). The natural map

OΩ̆[Λ,Λ′],F̆
→ A→ An → B → B′ → k̄

induces the strict formal OF0 -modules XB , XB′ and X¯k = X with X being associated

to x ∈ Z(x)(k̄). Since I is the definition ideal of Z(x), B′ is a quotient of A/I, the
quasi-morphism

ρ−1 ◦ x : Y→ X

lifts to a morphism

xB′ : YB′ → XB′ .
The associated morphism D(x′B) lifts to a morphism

D(xR) : D(YR)→ D(XR)

for any ring R = B/b with b ⊂ J , i.e., B � R� B′ as J2 = 0. By Grothebdieck-
Messing theory, x lifts to a momorphism

(4.17) xR : YR → XR
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if and only if

D(xR)(f ⊗ 1− e⊗ π) = b′ ⊗ 1− b⊗ π ∈ FilD(XR).

Write α0 = a0 + b0π, α1 = a1 + b1π. Then

b′ ⊗ 1− b⊗ π
= (α0f0 + α1f1)⊗ 1− (α0e0 + α1e1)⊗ π
= ((a0 + b0π)f0 + (a1 + b1π)f1)⊗ 1− ((a0 + b0π)e0 + (a1 + b1π)e1)⊗ π
= (a0f0 + b0π0e0 + a1f1 + b1π0e1)⊗ 1− (a0e0 + b0f0 + a1e1 + b1f1)⊗ π
= f1 ⊗ (a1 − πb1)− e0 ⊗ π(a0 − πb0) + f0 ⊗ (a0 − πb0)− e1 ⊗ π(a1 − πb1)

= f1 ⊗ ᾱ1 − e0 ⊗ πᾱ0 + f0 ⊗ ᾱ0 − e1 ⊗ πᾱ1.

Combining this with Proposition 4.3, we see that the lifting (4.17) exists if and only
if

ᾱ1T0 − πᾱ0 = 0, and ᾱ0T1 − πᾱ1 = 0 in R,

i.e.,

ᾱ1T0 − πᾱ0, and ᾱ0T1 − πᾱ1 ∈ b.

Here we identify Ti with their images in R via A → An → B → R. Since I is
the ideal of Z(x), the lifting (4.17) exists only when b = J . So J is generated by
ᾱ1T0 − πᾱ0 and ᾱ0T1 − πᾱ1 as claimed.

�

4.3. Local coordinate charts in the Krämer model. Now we describe the local
equation of a special divisor in the Krämer model and use it to give a decomposition of
special divisor. Locally around the superspecial point x ∈ N(1,1)(k̄) corresponding to
Λ0 = Λ2∩Λ′2, we have (4.15) and x corresponds to the maximal ideal mx = (T0, T1, π).
We need to blow it up to get the exceptional divisor of NKra = NKra

(1,1).

For simplicity, consider (ignoring the other unimportant restrictions of Ω̆[Λ,Λ′],F )

D := Spf(OF̆ [T0, T1]/(T0T1 − π0))∧.

Let BlxD denote the blow-up of D at mx, which has three charts. Over the first
chart D1, we have

πST0
π

= T0, πST1
π

= T1,(4.18)

where we regard S x
π

as element in Frac(OF̆ [T0, T1]) and

D1 = SpfOF̆ ([T0, T1, ST0
π
, ST1

π
]/(πST0

π
− T0, πST1

π
− T1, ST0

π
ST1
π
− 1))∧

= SpfOF̆ ([ST0
π
, ST1

π
]/(ST0

π
ST1
π
− 1))∧.(4.19)

Over the second chart D2, we have:

T0ST1
T0

= T1, T0S π
T0

= π,(4.20)

and

D2 = SpfOF̆ ([T0, S π
T0

]/(T0S π
T0
− π))∧.(4.21)

Over the third chart D3, we have:

T1ST0
T1

= T0, T1S π
T1

= π,(4.22)
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and

D3 = SpfOF̆ ([T1, S π
T1

]/(T1S π
T1
− π))∧(4.23)

by symmetry. D1, D2 and D3 are glued in the obvious way, and it is easy to see
that D1, D2 and D3 are all regular. Let Exc denote the exceptional divisor of NKra,
then

Exc ∩D1 = Spfk̄([ST0
π
, ST1

π
]/(ST0

π
ST1
π
− 1))∧,

Exc ∩D2 = SpfOF̆ ([T0, S π
T0

]/(T0, T0S π
T0
− π))∧ = Spfk̄([S π

T0
])∧,(4.24)

Exc ∩D3 = SpfOF̆ ([T1, S π
T1

]/(T1, T1S π
T1
− π))∧ = Spfk̄([S π

T1
])∧.

Exc ∩D2 glues with Exc ∩D3 over Exc ∩D1 by S π
T0

= 1
S π
T1

, so Exc is isomorphic

to P1
¯k
. The projective line PΛ̄2

only intersects the second chart and is defined by

the equation

(4.25) S π
T0

= 0.

Similarly PΛ̄′2
only intersects the third chart and is defined by the equation

(4.26) S π
T1

= 0.

We refer to Example 8.3.53 of [Liu06] for more details about the blow up considered
here.

Now we explain how the coordinates of blow up are related with the moduli
problem locally around a superspecial point x. Since blow up commutes with flat
base change, we have

NKra
x := BlxD ×N(1,1)

Spf ON(1,1),x = BlxSpf ON(1,1),x,(4.27)

and let Di,x, i = 1, 2, 3 be the three charts for NKra
x coming from Di.

Let R ∈ NilpOF̆0

be an OD1,x
-algebra, and sT0

π
, sT1

π
∈ R be the image of ST0

π
, ST1

π

under the structure morphism, and let t0 and t1 be given by (4.18). Then R
determines a point (Xt0,t1 ,F) ∈ D1,x(R) where Xt0,t1 is described in Proposition
4.3, and F = SpanR{e0 ⊗ 1 + e1 ⊗ sT1

π
} ⊂ Lie(Xt0,t1) is the filtration of the Krämer

moduli problem.
Let R ∈ NilpOF̆0

be an OD2,x
-algebra, and t0, s π

T0
∈ R be the image of T0, S π

T0

under the structure morphism, and let t1 be given by (4.20). Then R determines a
point (Xt0,t1 ,F) ∈ D2,x(R) where Xt0,t1 is as before and F = SpanR{e0 ⊗ 1 + e1 ⊗
s π
T0
} ⊂ Lie(Xt0,t1). The corresponding description for an OD3,x -algebra is similar.

4.4. Proof of Theorem 4.1.

Proof of Theorem 4.1. In the following, we use m(ZKra(x),Z) to denote the multi-
plicity of Z in ZKra(x), where Z is an irreducible component of ZKra(x). According
to Theorem 4.2, the horizontal component of Z(x) intersects with the special fiber
of N(1,1) at some superspecial points. Moreover, each irreducible component of the
special fiber of N(1,1) also passes through some superspecial points. Therefore to
determine the multiplicity of each irreducible component, it is enough to consider
the equations of special divisors at superspecial points and their pullbacks to the
Krämer model.
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Write b = α0e0 + α1e1 as in Proposition 4.4. As before we fix a superspecial
point x = ptΛ0 ∈ N(1,1) for a vertex lattice Λ0 of type 0. Recall that the equations
of Z(x) in ON(1,1),x are:

ᾱ1T0 − πᾱ0 = 0, ᾱ0T1 − πᾱ1 = 0, αi ∈ OF .(4.28)

When ordπ(α0) > ordπ(α1), the equations of ZKra(x) in NKra
x are


ᾱ1π(ST0

π
− ᾱ0

α1
) = 0, ᾱ1π( ᾱ0

α1
ST1
π
− 1) = 0, in the first chart,

ᾱ1T0(1− ᾱ0

ᾱ1
S π
T0

) = 0, ᾱ1T0S π
T0

( ᾱ0

ᾱ1
S π
T0
− 1) = 0, in the second chart,

ᾱ1T1S
2
π
T1

(1− ᾱ0

ᾱ1

1
S π
T1

) = 0, ᾱ1T1S π
T1

( ᾱ0

ᾱ1

1
S π
T1

− 1) = 0, in the third chart.

Notice that ( ᾱ0

ᾱ1
ST1
π
− 1) and (1− ᾱ0

ᾱ1
S π
T0

) are units in coordinate ring of D1,x and

coordinate ring of D2,x. In the third chart, we have T1S π
T1

= π, which implies that

ᾱ0

ᾱ1

1

S π
T1

− 1 = αT1 − 1

is a unit in D3,x with α = ᾱ0

ᾱ1π
∈ OF . So the above equations simplify to

πordπ(α1)+1 = 0, in the first chart,

πordπ(α1)T0 = T
ordπ(α1)+1
0 (S π

T0
)ordπ(α1) = 0, in the second chart,

πordπ(α1)+1 = T
ordπ(α1)+1
1 (S π

T1
)ordπ(α1)+1 = 0, in the third chart.

Therefore, it has no horizonal component, and we have by (4.24), (4.25) and (4.26)

m(ZKra(x),PΛ̄2
) = ordπ(α1),

m(ZKra(x),PΛ̄′2
) = ordπ(α1) + 1,(4.29)

m(ZKra(x),ExcΛ0
) = ordπ(α1) + 1.

Similarly if ordπ(α0) < ordπ(α1), ZKra(x) has no horizonal component, and

m(ZKra(x),PΛ̄2
) = ordπ(α0) + 1,

m(ZKra(x),PΛ̄′2
) = ordπ(α0),(4.30)

m(ZKra(x),ExcΛ0
) = ordπ(α0) + 1.

When ordπ(α0) = ordπ(α1)(possible only when q(b) 6= 0), the equations of ZKra(x)
in NKra

x are
πordπ(α0)+1(ST1

π
− ᾱ1

ᾱ0
) = 0, in the first chart,

T
ordπ(α0)+1
0 (S π

T0
)ordπ(α0)(S π

T0
− ᾱ1

ᾱ0
) = 0, in the second chart,

T
ordπ(α0)+1
1 (S π

T1
)ordπ(α0)(S π

T1
− ᾱ0

ᾱ1
) = 0, in the third chart,

which implies by (4.24), (4.25) and (4.26)

m(ZKra(x),PΛ̄2
) = ordπ(α0),

m(ZKra(x),PΛ̄′2
) = ordπ(α0),(4.31)

m(ZKra(x),ExcΛ0
) = ordπ(α0) + 1.
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In addition, it has a horizontal component given by
ST1
π
− ᾱ1

ᾱ0
= 0, in the first chart,

S π
T0
− ᾱ1

ᾱ0
= 0, in the second chart,

S π
T1
− ᾱ0

ᾱ1
= 0, in the third chart.

(4.32)

This is the local equation of Zh(x) along the superspecial point x = ptΛ0
. In this

case, one has to have Λ0 = Λb. From the equation, one can also see that the
horizontal component is irreducible when q(b) 6= 0, and it intersects with ExcΛb at
one point (e.g., the image of ST1

π
= ᾱ1

ᾱ0
in k̄ via the first chart).

Recall b = x(e). Let n = n(b,Λ0) = min{ordπ(α0), ordπ(α1)}. Note that

n(b,Λ2) =

{
n+ 1, ordπ(α1) > ordπ(α0),
n, otherwise,

and

n(b,Λ′2) =

{
n+ 1, ordπ(α1) < ordπ(α0),
n, otherwise.

Hence in all three cases we have

m(ZKra(x),PΛ̄2
) = n(b,Λ2),

m(ZKra(x),PΛ̄′2
) = n(b,Λ′2),(4.33)

m(ZKra(x),ExcΛ0
) = n(b,Λ0) + 1.

The above discussion holds for any Λ ∈ T (x). So we have

(4.34) ZKra(x) =
∑

Λ2∈T (x)

n(b,Λ2)PΛ̄2
+

∑
Λ0∈T (x)

(n(b,Λ0) + 1)ExcΛ0
+ δbZh(x),

where δb = 0 or 1 depends on whether q(b) = 0 or not. In the latter case,
Zh(x) ∼= Spf OF̆ is a horizontal divisor meeting the special fiber at ExcΛb . �

The proof (in particular (4.32)) gives the following corollary, which will be used
in next section.

Corollary 4.5. Let 0 6= x ∈ V and b = x(e). When q(x) = 0, Zh(x) is empty.
When q(x) 6= 0 with b ∈ Λb, Zh(x) = Spf OF̆ is irreducible, and intersects with the

special fiber of NKra at one point on the exceptional divisor ExcΛb and is given by
image of (4.32) modulo π. More precisely, write

π− ordπ0 q(b)b = α0e0 + α1e1,

where {e0, e1} is a basis of Λb given in Proposition 4.4. Then α0, α1 ∈ O×F , and the

intersection point of Zh(x) and NKra/k̄ is ST1
π

= ᾱ1

ᾱ0
(mod π) in the first affine

chart of the neighborhood of NKra
x where x = ptΛb .

5. Intersection between special divisors

In this section we establish a series of lemmas and prove Theorems 5.7 and 5.9,
which are reformulation of Theorem 1.1.

First of all, for two divisors Z1 and Z2 of NKra such that Z1 ∩ Z2 is supported
on finitely many irrreducible components of the special fiber of NKra, we define
their intersection number to be

(5.1) Z1 · Z2 := χ(NKra,OZ1
⊗L OZ2

),
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where OZi is the structure sheaf of Zi, ⊗L is the derived tensor product on the
coherent sheaves on NKra and χ is the Euler-Poincaré characteristic.

For a full rank lattice Lx1,x2 ⊂ V with a basis {x1,x2}, let

Int(Lx1,x2) = Z(x1) · Z(x2).

According to [How19, Corollary D], this intersection number does not depend on
the choice of the basis {x1,x2}. First, we recall the following well-known fact.

Proposition 5.1. ([Liu06, Proposition 9.1.21]) Assume that X is a regular scheme
of dimension 2, S is a Dedekind scheme of dimension 1 and we have a flat proper
morphism X → S. Let s ∈ S be a closed point. The following properties are true:

(a) For any E ∈ Divs(X), we have E ·Xs=0. Here Divs(X) is the set of Cartier
divisors of X supported on the special fiber Xs.

(b) Let Γ1, ...Γr be the irreducible components of Xs of respective multiplicities
d1, ..., dr. Then for any i ≤ r, we have

Γ2
i = − 1

di

∑
j 6=i

djΓj · Γi.

Lemma 5.2. Let Λ0 be a fixed vertex OF -lattice of type 0. Then

(a) ExcΛ0
· PΛ̄2

=

{
1, if Λ0 ⊂ Λ2,
0, otherwise.

(b) ExcΛ0
· ExcΛ′0

= −2δΛ0,Λ′0
for any type 0 vertex lattice Λ′0.

(c) ExcΛ0
· Zh(x) = δΛ0,Λb = 1 or 0 depending on whether Λ0 = Λb or not.

Proof. By (4.24), (4.25) and (4.26), we can see that

(5.2) ExcΛ0
· PΛ̄2

= ExcΛ0
· PΛ̄′2

= 1

if Λ0 = Λ2 ∩ Λ′2. For a Λ′′2 s.t. Λ0 6⊂ Λ′′2 , then clearly ExcΛ0
∩ PΛ̄′′2

= ∅. Hence (a) is

proved. Part (b) follows from Proposition 5.1 and part (a). Part (c) follows from
Theorem 4.2 and (4.32). �

Lemma 5.3. Let Λ2 be a fixed vertex OF -lattice of type 2. Then

(a) PΛ̄2
· PΛ̄′2

=

{
−(q + 1), if Λ2 = Λ′2,

0, otherwise.

(b) PΛ̄2
· Zh(x) = 0.

Proof. Note that PΛ̄2
∩ PΛ̄′2

= ∅ if Λ2 6= Λ′2. Moreover, there are q + 1 exceptional

divisors intersecting with PΛ̄2
. Then part (b) of Proposition 5.1 and equation (5.2)

imply that PΛ̄2
·PΛ̄2

+ (q+ 1) = 0. So part (a) follows. It is clear from (4.24), (4.25)

and (4.32) that PΛ̄2
and Zh(x) do not intersect. Hence part (b) follows. �

Lemma 5.4. PΛ̄2
· ZKra(x) =

{
1, if Λ2 ∈ T (x),
0, otherwise.
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Proof. When Λ2 6∈ T (x), the intersection number is obviously 0. When Λ2 ∈ T (x).
We have by Theorem 4.1, Lemma 5.2 and 5.3,

PΛ̄2
· ZKra(x) =PΛ̄2

· [
∑

Λ′2∈T (x)

n(b,Λ′2)PΛ̄′2
+

∑
Λ0∈T (x)

(n(b,Λ0) + 1)ExcΛ0
]

= −(q + 1)n(b,Λ2) +
∑

Λ0⊂Λ2

(n(b,Λ0) + 1)

=
∑

Λ0⊂Λ2

(n(b,Λ0) + 1− n(b,Λ2)).

Now combining the information from (3.2) with Lemmas 3.11 and 3.13 we see that
there is exactly one vertex lattice Λ′ of type 0 in Λ2 such that n(b,Λ′) = n(b,Λ2)
and for any other vertex lattice Λ of type 0 in Λ2 we have n(b,Λ) = n(b,Λ2)− 1.
Hence we have ∑

Λ0⊂Λ2

(n(b,Λ0) + 1− n(b,Λ2)) = 1.

The lemma follows. �

Lemma 5.5. ExcΛ0
· ZKra(x) =

{
−1, Λ0 ∈ T (x),
0, otherwise.

Proof. Assume Λ2 and Λ′2 are the two vertex lattices of type 2 that contain Λ0. We
treat the cases Λ0 6= Λb first. According to (3.2), Lemma 3.11 and 3.13, we can
without loss of generality assume that

n(b,Λ2) = n(b,Λ0) + 1, and n(b,Λ′2) = n(b,Λ0).

Then by Theorem 4.1 and Lemma 5.2, we have

ExcΛ0
· ZKra(x) =ExcΛ0

· [
∑

Λ2∈T (x)

n(b,Λ2)PΛ̄2
+

∑
Λ′0∈T (x)

(n(b,Λ′0) + 1)ExcΛ′0
]

=n(b,Λ2)ExcΛ0
· PΛ̄2

+ n(b,Λ′2)ExcΛ0
· PΛ̄′2

+ (n(b,Λ0) + 1)ExcΛ0
· ExcΛ0

=(n(b,Λ0) + 1) + n(b,Λ0)− 2(n(b,Λ0) + 1)

=− 1.

Now assume Λ0 = Λb, which occurs only when q(b) 6= 0. Then notice that n(b,Λ2) =
n(b,Λ′2) = n(b,Λ0), and ExcΛ0

· Zh(x) = 1. The rest of the proof is the same as the
previous case. �

Lemma 5.6. Write bi = xi(e), and assume that (b1, b2) = 0 and q(bi) 6= 0. Then
Zh(x1) · Zh(x2) = 0, and

Zh(x1) · ZKra(x2) = n(b2,Λb1) + 1.

Proof. Define βi = π− ordπ0
q(bi)bi for i = 1, 2. The assumption implies

Λb1 = Λb2 = OFβ1 +OFβ2,

and the Gram matrix of {β1, β2} is diagonal with diagonal entries in O×F0
. Let

{e0, e1} be an OF -basis of Λb1 as in Proposition 4.4 and write

β1 = α0e0 + α1e1, and β2 = α′0e0 + α′1e1.
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By comparing the determinants of the Gram matrices of {e0, e1} and {β1, β2}, we

know that the transition matrix

(
α0 α1

α′0 α′1

)
has determinant α0α

′
1 − α1α

′
0 = u ∈

O×F .
On the other hand, if Zh(x1) and Zh(x2) intersect, the intersection points would

be in the special fiber. By Corollary 4.5, they intersect at one point, which is also the
intersection between them and the exceptional divisor ExcΛbi

. The same corollary

asserts that the point is given by (say in first Chart)

ᾱ1

ᾱ0
≡ ᾱ′1
ᾱ′0

(mod π).

This implies α0α
′
1 − α1α

′
0 ∈ πOF , a contradiction. So Zh(x1) · Zh(x2) = 0. Now

we have by Theorem 4.1, Lemmas 5.2 and 5.3,

Zh(x1) · ZKra(x2) = Zh(x1) · (n(b2,Λb1) + 1)ExcΛb1

= n(b2,Λb1) + 1.

�

Theorem 5.7. Let {x1,x2} be a basis of a full rank lattice Lx1,x2
⊂ V, and

b1 = x1(e), b2 = x2(e) as before. Assume

T =

(
(b1, b1) (b1, b2)
(b2, b1) (b2, b2)

)
≈
(
u1(−π0)α 0

0 u2(−π0)β

)
where α ≤ β, u1, u2 ∈ O×F0

and −u1u2 ∈ Nm(F×). When α ≥ 0, we have

Int(Lx1,x2
) = α+ β − 2q(qα − 1)

q − 1
.

When α < 0, we have Int(Lx1,x2
) = 0.

Proof. We may assume T = Diag(u1(−π0)α, u2(−π0)β). In such a case, we see that
spanOF {π

−αx1(e), π−βx2(e)} = Λb1 = Λb2 . Moreover T (x1) ⊂ T (x2) and T (x1) is

a ball of radius α+ 1
2 centered at Λb1 by Corollary 3.12. We have by Theorem 1.2

and Lemmas 5.4, 5.5, 5.6, and 3.11,

ZKra(x1) · ZKra(x2)

=
∑

Λ2∈T (x1)

n(b1,Λ2)PΛ̄2
· ZKra(x2) +

∑
Λ0∈T (x1)

(n(b1,Λ0) + 1)ExcΛ0 · ZKra(x2)

+ Zh(x1) · ZKra(x2)

=
∑

Λ2∈T (x1)

n(b1,Λ2)−
∑

Λ0∈T (x1)

(n(b1,Λ0) + 1) + (n(b2,Λb1) + 1)

=2(

α∑
i=0

(α− i)qi)− (α+ 1 + 2(

α∑
i=1

(α+ 1− i)qi)) + (β + 1)

=α+ β − 2

α∑
i=1

qi

=α+ β − 2q(qα − 1)

q − 1
.

�
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Remark 5.8. As we mentioned before, there is a similar result for intersection
product between special divisors on a similarly defined RZ space NE obtained by
Sankaran in [San17]. Here E is an unramified quadratic field extension of F0.

Theorem 5.9. For x1,x2 ∈ V, let b1 = x1(e), b2 = x2(e) as before. Assume

T =

(
(b1, b1) (b1, b2)
(b2, b1) (b2, b2)

)
≈
(

0 πn

(−π)n 0

)
,

with n odd. Write r = n+1
2 . Then Int(Lx1,x2

) = 0 unless n ≥ 0. In such a case,

Int(Lx1,x2) = − (q + 1)(qr − 1)

q − 1
+ 2r.

Proof. We may assume that T =
(

0 πn

(−π)n 0

)
. By Lemmas 5.4, 5.5 and Theorem

4.1, we have

ZKra(x1) · ZKra(x2)

=
∑

Λ2∈T (x1)

n(b1,Λ2)PΛ̄2
· ZKra(x2) +

∑
Λ0∈T (x1)

(n(b1,Λ0) + 1)ExcΛ0
· ZKra(x2)

=
∑

Λ2∈T (x)

n(b1,Λ2)−
∑

Λ0∈T (x)

(n(b1,Λ0) + 1),

where T (x) = T (x1) ∩ T (x2).
Write bi = πrvi for i = 1, 2. Define

Λk,2 = spanOF {π
−kv1, π

kv2}, Λk,0 = spanOF {π
−kv1, π

k+1v2}, k ∈ Z.
where Λk,2 is a vertex lattice of type 2 and Λk,0 is a vertex lattice of type 0. It is
immediate that

n(b1,Λk,0) = n(b1,Λk,2) = r + k.

By Lemma 3.16, T (x) is a ball of radius r centered at Λ0,2. We define C =
C(Λ0,2,Λr,2) to be the geodesic segment joining Λ0,2 and Λr,2.

Now we divide T (x) into r + 1 parts Lk using C as follows: for 0 ≤ k ≤ r, let Lk
be the part of T (x) such that Λ ∈ Lk if and only if Λk,2 is the first vertex lattice
of type 2 that the geodesic from Λ to Λ0,2 encounters on C. In other words, if we
set L′k to be the subtree of T (x) \ C that starts from Λk,2. Then Lk = L′k ∪ Λk,0 if
Λk,0 ∈ T (x). In particular, Lr = {Λr,2}. Then we have

ZKra(x1) · ZKra(x2) =

r∑
k=0

(S(k)− S′(k))

where

S(k) =
∑

Λ2∈Lk

n(b1,Λ2), and S′(k) =
∑

Λ0∈Lk

(n(b1,Λ0) + 1)

For k = 0 we have

S(0) =

r∑
i=0

(r − i)qi, S′(0) =

r∑
i=0

(r + 1− i)qi.

For 1 ≤ k ≤ r − 1 we have

S(k) = r + k +

r−k−1∑
i=0

(r + k − i− 1)(q − 1)qi,
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S′(k) = r + k + 1 +

r−k−1∑
i=0

(r + k − i)(q − 1)qi.

For k = r we have
S(r) = 2r, S′(r) = 0.

Summing these terms up, we obtain

ZKra(x1) · ZKra(x2) =(S(0)− S′(0)) +

r−1∑
k=1

(S(k)− S′(k)) + S(r)

=−
r∑
i=0

qi −
r−1∑
k=1

qr−k + 2r

=− qr+1 − 1

q − 1
− q(qr−1 − 1)

q − 1
+ 2r

=− (q + 1)(qr − 1)

q − 1
+ 2r.

as claimed.
�

By Theorems 5.7 and 5.9, we see that Int(Lx1,x2) depends only on the Gram
matrix T (b1, b2) = −δ2T (x1,x2). Since −δ2 ∈ O×F0

, we see that the formulas in
both theorems are not affected when we change T (b1, b2) to T (x1,x2). This proves
Theorem 1.1.

6. Local densities and the Kudla-Rapoport Conjecture

In this section we record basic results on local density and prove Theorem 1.3. Let
L be an integral OF -lattice with Gram matrix S (unique up to equivalence), and let
T be an n×n invertible Hermitan matrix over T . Recall the local density polynomial
α(L, T,X) = α(S, T,X) defined in the introduction. the following explicit formulas
are special cases considered in ([Shi20]).

Theorem 6.1. ([Shi20, Theorem 6.2]) Let L be an OF Hermitian lattice with Gram
matrix S = diag(v, 1) with v ∈ O×F0

, and let H be the Hermitian hyperbolic OF -plane
defined in the introduction. Set ε2 = χ(−v), where χ be the quadratic character of
F×0 associated to the extension of F/F0.

(1) Assume that T ≈
(
u1(−π0)α 0

0 u2(−π0)β

)
with α ≤ β and ui ∈ O×F0

. Set

ε1 = χ(−u1u2). Then α(L, T,X) = α(H, T,X) = 0 unless α ≥ 0. Assume
α ≥ 0, we have

α(L, T,X) =(1−X)(1 + ε2 + qε2)

α∑
e=0

(qX)e − ε1qα+1Xβ+1(1−X)

α∑
e=0

(q−1X)e

−ε1(1 + q)(Xα+β+2 + ε1ε2) + (1 + ε2)qα+1Xα+1(1 + ε1X
β−α),

and

α(H, T,X) =
(
1− q−2X

)
(

α∑
e=0

(qX)e + ε1

α+β+1∑
e=β+1

qα+β+1−eXe)
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In particular,

α(L, T ) = −ε1(1 + ε1ε2)(1 + q) + (1 + ε1)(1 + ε2)qα+1,

which is zero if and only if ε1ε2 = −1. Similarly

α(H, T ) = (1 + ε1)(1 + q−1)(qα − q−1),

which is zero if and only if ε1 = −1.

(2) Assume that T =

(
0 πn

(−π)n 0

)
where n is odd. Then α(L, T,X) =

α(H, T,X) = 0 unless n ≥ −1. When n ≥ −1, we have

α(L, T,X) =− qn+2(1−X)

n+1∑
e=n+1

2 +1

(q−1X)e + (1−X)(1 + ε2 + ε2q)

n+1
2∑
e=0

(qX)e

− (q + 1)(ε2 +Xn+2) + (1 + ε2)(q + 1)q
n+1

2 X
n+1

2 +1,

and

α(H, T,X) =
(
1− q−2X

)
(

n+1
2∑
e=0

(qX)e +

n+1∑
n+3

2

qn+1−eXe).

In particular,

α(L, T ) = −(1 + ε2)(q + 1)(1− q
n+1

2 ),

which is zero if and only if ε2 = −1. Finally,

α(H, T ) =
1 + q

q2

[
−2 + (1 + q)q

n+1
2

]
6= 0.

Proof of Theorem 1.3. First notice that the Gram matrix of L can be chosen to
be of the form S = diag(v, 1) with v ∈ O×F0

and that the Gram matrix of H is S′.
Let T = T (x1,x2). As L and Lx1,x2

represent two different Hermitian spaces of
dimension 2, we have to have ε1ε2 = −1 when T can be diagonalized, and ε2 = −1
when T is anti-diagonal. The case that L is isotropic is proved in [Shi20]. Now we
assume L is anisotropic, i.e, ε2 = −1. There are two cases.

Case 1: We first assume that T ≈ diag(u1(−π0)α, u2(−π0)β) with α ≤ β. In
this case ε1 = 1. When α < 0, both sides of the identity are automatically zero. So
we assume α ≥ 0. Theorem 6.1 implies that

α(L, T,X)

=− q(1−X)

α∑
e=0

(qX)e − qα+1Xβ+1(1−X)

α∑
e=0

(q−1X)e − (q + 1)(Xα+β+2 − 1).

So

−α′(L, T ) =
∂

∂X
α(L, T,X)|X=1

=q

α∑
e=0

qe + qα+1
α∑
e=0

q−e − (q + 1)(α+ β + 2)

=2

α+1∑
e=1

qe − (q + 1)(α+ β + 2).
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Theorem 6.1(1) also implies

(6.1) α(L, S) = 2(1 + q),

and

α(H, T ) = 2(1 + q−1)(qα − q−1).

Hence the right hand side of the formula in Theorem 1.3 is

2

α(L, S)
[α′(L, T )− q2

q2 − 1
α(H, T )]

=
1

q + 1
[−2

α+1∑
e=1

qe + (q + 1)(α+ β + 2) +
2

q − 1
− 2qα+1

q − 1
]

=α+ β + 2− 2

α∑
e=0

qe = Int(Lx1,x2
)

as claimed by Theorem 1.1.
Case 2: Now we treat the anti-diagonal case

T ≈
(

0 πn

(−π)n 0

)
, n odd.

The case n < −1 is trivial as both sides are clearly zero.
When n ≥ −1, and let r = n+1

2 . we have by Theorem 6.1

α′(L, T ) = − ∂

∂X
α(L, T,X)|X=1

= 1− (q + 1)

r∑
e=0

qe + (q + 1)(n+ 2).

Combining this with Theorem 6.1 (2), we see that the right hand side of Theorem
1.3 is

2

α(L, S)
[α′(L, T )− q2

q2 − 1
α(H, T )]

=
1

q + 1
−

r∑
e=0

qe + 2r + 1− qr

q − 1
+

2

(q − 1)(q + 1)

=Int(Lx1,x2
)

as claimed by Theorem 1.3.
�

References

[ACZ16] Tobias Ahsendorf, Chuangxun Cheng, and Thomas Zink. O-displays and π-divisible
formal O-modules. Journal of Algebra, 457:129–193, 2016.

[BC91] J-F Boutot and Henri Carayol. Uniformisation p-adique des courbes de Shimura: les
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