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Abstract

In this paper, we prove an intersection-theoretic result pertaining to curves in certain Hilbert
modular surfaces in positive characteristic p. Specifically, let C,D be two proper curves inside a
mod p Hilbert modular surface associated to a real quadratic field split at p. Suppose that the
curves are generically ordinary, and that at least one of them is ample. Then, the set of points
in (x, y) ∈ C × D with abelian surfaces parameterized by x and y isogenous to each other is
Zariski dense in C ×D, thereby proving a case of a just-likely intersection conjecture. We also
compute the change in Faltings height under appropriate p-power isogenies of abelian surfaces
with real multiplication over characteristic p global fields.

1 Introduction

The study of intersection theory in the context of Shimura varieties has produced several break-
throughs in arithmetic. For instance, Gross-Zagier [GZ86] prove their celebrated theorem on ranks
of elliptic curves by extensively studying the arithmetic intersection theory of Heegner points on
modular curves. This program has been generalized in various directions. For example, it has been
extended to Shimura curves ([KRY06], [YZZ13]), higher dimensional unitary Shimura varieties
([LL21]), and function field analogue of Shimura curves ([YZ17]). Arithmetic intersection theory
has been crucial to the development of this program.

In a different direction, the proof of the André-Oort conjecture heavily relies on the Average
Colmez conjecture (interesting in its own right), whose proof ([AGHMP18], [YZ18]) relies on the
Arakelov intersection theory of special cycles in orthogonal Shimura varieties.

Most relevant to our paper is the work of Charles [Cha18] proving that two elliptic curves over a
number field are isogenous modulo infinitely many primes. This is achieved by studying the arith-
metic intersection theory of the modular curve by an approach inspired by work of Chai-Oort, who
prove the analogous result over function fields [CO06, Proposition 7.3]. This work has been gener-
alized to the splitting of abelian surfaces over global fields [ST20], [SSTT22], [MST22b], (where the
authors prove that abelian surfaces over global fields are isogenous to a product of elliptic curves
modulo infinitely many primes) and to Picard-rank jumping results [SSTT22] [MST22a]. These
theorems are obtained by proving that any fixed arithmetic curve intersects the Hecke translates
of an appropriate “special divisor” at infinitely many points. These special divisors solve moduli
problems, and parameterize abelian varieties with extra endomorphisms (the interested reader may
look at [AGHMP18] or [SSTT22, Section 2.3-2.5] for precise definitions). This moduli-theoretic
interpretation of special divisors is crucial to understanding and computing local and global inter-
sections.

∗email: gasvinseeker94@gmail.com
†All authors affiliated with the University of Wisconsin-Madison.

1



Despite the proofs relying heavily on this moduli theory of special divisors, these problems can
be naturally phrased in the setting of arbitrary subvarieties of a Shimura variety of Hodge type.
Specifically, let (G,X) denote a Shimura datum of Hodge type with reflex field E. Let S/E
denote the Shimura variety of Hodge type associated to (G,X). We also work with a fixed Hodge
embedding of S into the moduli space of polarized abelian varieties. We assume the level structure
K ⊂ G(Af ) is neat, so that S carries a universal abelian scheme. Let S/OE [1/N ] denote the integral
canonical model of S as constructed by Kisin in [Kis10] where N is a sufficiently large integer. We
refer the interested reader to loc. cit. for the definition of integral canonical models and for a
precise description of N in terms of G and the level structure K. Let C,D ⊂ S be subschemes
having complementary dimension. How does the set of points on C isogenous1 to some point of D
distribute in C? In a recent AIM workshop, the participants developed a framework that makes
the following prediction.

Conjecture 1. Let S be as above, and let SFq denote the fiber of S at some prime p ⊂ OE [1/N ].
Suppose that C,D ⊂ SFq are generically ordinary subvarieties having complementary dimension.
Then, the set of points in C isogenous to some point of D is Zariski-dense in C. Further, the subset
of C ×D consisting of pairs of isogenous points is dense in C ×D.

This conjecture is inspired both by the work in [Cha18, CO06, ST20, SSTT22, MST22b] as well
as the Hecke orbit conjecture. There is also an arithmetic (i.e., number-field) analogue of this
conjecture. These conjectures have several applications. For instance, they would imply that
any abelian fourfold over a global field should be isogenous to a Jacobian modulo infinitely many
primes! This is all the more striking as the existence of abelian fourfolds over global fields not
isogenous to Jacobians has been established in [ST21] and [Tsi12]. The characteristic-zero analogue
of Conjecture 1 has been proven ([TT23, Theorem 1.22]).

In [G22], the first-named author proves this conjecture in the setting of X(1)n. In this paper, we
establish this conjecture for Hilbert modular surfaces (with some mild constraints).

Theorem 1.1. Let F denote a real quadratic field, and let p denote a rational prime that splits in
F . Let H denote the mod p Hilbert modular surface associated to OF , and let C,D ⊂ H denote two
generically ordinary, proper curves in H, at least one of which is ample. Then Conjecture 1 holds
for C,D ⊂ H.

We expect this result to hold for curves that are not necessarily proper or ample. We are hopeful
that an appropriate prime-to-p Hecke translate of a fixed curve in H should be ample (but to our
knowledge, this is not yet known). Such a result would immediately reduce the non-ample case to
the ample case.

1.1 Outline of proof

Our proof is inspired by Chai-Oort’s work. Roughly speaking, we consider a sequence of Hecke
operators Tn, and consider the intersections (Tn(C).D). In order to prove our theorem, it suffices
to prove that the local contributions of any finite set of points x1 . . . xm ∈ D to the intersection
(Tn(C).D) is smaller than the global intersection number (Tn(C).D) for some n. However, we
encounter several additional difficulties that aren’t present in their work.

Firstly, their ambient space is a product of curves, and their proof makes crucial use of the product
structure. In the hitherto solved cases where the ambient space is not a product variety, either C

1The universal abelian scheme on S defines for us the notion of isogeny.
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or D is special and the local intersection numbers at any fixed point is bounded using the moduli
interpretation of the special divisor (see [SSTT22, Lemma 7.2], and [MST22b, Lemma 7.2.1]). We
overcome this first difficulty by constructing a local product structure at every closed point (see
Proposition 2.2) which is adapted to a very specific set of Hecke operators that exist only in positive
characteristic. In fact, these Hecke operators endow H with a partial Frobenius structure (see 2).
This construction allows us to control the local intersection multiplicites (see Theorem 3.1).

The second difficulty is in estimating the global intersection number. The previously known cases
(in the setting of special divisors) use earlier results establishing the modularity of sequences of
special divisors ([Bor99]) to compute the global intersection numbers. In our setting, we have no
such modularity results and we instead compute the intersections of Tn(C) with the non-ordinary
locus of H, and then use the ampleness of D to control (Tn(C).D). While doing so, we establish a
result (Theorem 4.2) pertaining to the change of Faltings height under p-power isogeny which is of
independent interest.

1.2 Change of Faltings height under p-power isogeny

The Faltings height of an abelian variety over a number field is defined to be the Arakelov degree
of the Hodge bundle. The change of the Faltings height of an Abelian variety under isogeny was a
crucial ingredient in the proof of the Mordell Conjecture by Faltings.

In the function field case, the definition of Faltings height for a proper curve is even simpler.
Suppose A/C is a family of abelian varieties over a proper curve C. Then we define the Faltings
height of A/C to just be the degree of the Hodge bundle. In our setting, this height only depends
on the image of C in H. The prime-to-p Hecke operators on H are étale, and this makes it easy
to compute the change in Faltings height under prime-to-p isogeny. The non-étaleness of p-power
Hecke operators makes computing the change-in-height a formidable prospect. Further, p-power
Hecke correspondences aren’t even separable!

Indeed, the only prior work pertaining to this that we are aware of is [GP20]. They consider
an isogeny ϕ : E1 → E2 between two elliptic curves over k(C) for C a curve over Fq and [GP20,
Theorem A] proves that

h(j(E2)) =
degins(ϕ)

degins(ϕ̂)
h(j(E1))

where h denotes the Weil height on X(1) and degins(ϕ) denotes the inseparable degree of ϕ. The
proof there proceeds by an identification of the Weil height with an intersection number: since the
Picard group of X(1) is simply Z, and the only p-power Hecke operators (mod p) are iterates of
Frobenius and Verschiebung, this lets one calculate the effect of a Hecke translation on the Picard
group simply as multiplication by an integer.

In our case, the Picard group ofH is complicated and the action of p-power Hecke correspondences
(which are not étale!) on the Picard group is not a-priori easy to compute. Nevertheless we fully
compute the change in Faltings height of an abelian surface with real multiplication by OF under
p-power isogenies that respect the OF -action.

Suppose C is a proper curve and A/C is a generically ordinary abelian surface with endomor-
phisms by OF (with F a real quadratic field as in Theorem 1.1) so that the image of C under the
corresponding map C → H is an ample divisor of H. Suppose moreover that An/C is another
abelian surface, also having endomorphisms by OF , isogenous to A/C by a purely inseparable
isogeny ϕ : A′ → A which respects the OF -actions, whose kernel is cyclic of size pn (indeed, this
is the hardest case to treat, and the general case can be deduced from this case). Let hF (A/C)
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denote the Faltings height of the abelian variety A/C, which is defined to be the degree of the
Hodge bundle ω of H restricted to C. Then, the height of An/C grows exponentially in n.

In fact, we prove an exact formula for the change of height under inseparable isogenies (Theorem
4.2) but for simplicity of notation, we will be content with the version above for the introduction.
We prove this result by comparing the Hodge bundle to the class of the Hasse invariant, and using
our computation of the intersection of Hecke orbits of C with the non-ordinary locus, and the
product structure that we construct.
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2 Background material

We provide some background (and standardize notation) on Hilbert modular surfaces in this section,
define the notion of a partial Frobenius structure and prove a theorem about curves parametrizing
abelian varieties without extra endomorphisms.

Let F be a real quadratic field, OF its ring of integers, p = P1P2 a prime that splits in OF and
a a fractional ideal of OF . One can define a moduli space parametrizing Abelian surfaces with
endomorphisms by OF :

Definition 1. Let Ha
n be the moduli functor that associates to a Fp-scheme S the groupoid of

tuples (A, ι, λ, η) where:

1. A→ S is an abelian surface;

2. ι : OF → EndS(A) is a ring homomorphism ;

3. λ : a → HomSym
OF (A,A∨) is an OF -linear homomorphism such that λ(a) is an OF -linear

polarization of A for every totally positive a ∈ a, and the homomorphism A ⊗OF a
∼→ A∨

induced by λ is an isomorphism of abelian surfaces;

4. η : (OF /nOF )2
S → A[n] is an OF -linear isomorphism from the constant group scheme

(OF /nOF )2
S to A[n].

It is known that Ha
n is represented by a Deligne-Mumford stack over Fp and when n ≥ 3, it is

even represented by a scheme (see [Gor02, Section 5 of Chapter 3]). From now on, we fix some
n ≥ 3 that is prime to p, a polarization a and denote the representing scheme by H. We note that
H is smooth (see [Pap95, Theorem 2.1.2]).

We now set up some notation. Let A/H denote the universal Abelian surface over H, and let
G denote its p-divisible group. We have that End(A) = OF , and as p splits in F , we have that
End(G) = OF ⊗ Zp = Zp × Zp. This implies that G = G1 × G2. At any point x ∈ H, let Ax and
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Gi,x denote the pullback of A and Gi to x. Note that both factors Gi are one-dimensional and have
height 2.

Lemma 2.1. Let x ∈ H(Fp) and let the deformation space of Gi be Spf Fp[[ti]]2. Then Ĥx is
canonically isomorphic to Spf Fp[[t1]]× Spf Fp[[t2]].

Proof. The formal neighbourhood Ĥx parameterizes formal deformations of Ax which admit an
action of OF (compatible with the action of OF on Ax). By the Serre-Tate lifting theorem, we have
that this is the same as formal deformations of Gx which admit an action of OF ⊗ Zp – but this is
the same as pairs of p-divisible groups which lift the pair (G1,x,G2,x). The lemma follows.

Henceforth, we will refer to the decomposition above as the product structure on Ĥx.

2.1 Partial Frobenius structure and coordinates

For ease of exposition, we henceforth assume that P1 (and therefore P2) are trivial in the narrow
class group of OK . Otherwise, the analysis below will go through identically, except we work with
pa (and Frobpa) in place of p (and Frobp), where a is the order of Pi in the narrow class group.

Definition 2. We say a surface X over Fp has partial Frobenius structure if there is a factorization

Frobp = π1π2,

where πi : X → X are maps which satisfy the following condition:

For any q = pr a power of p, locally around any x ∈ X(Fq), we can find coordinates t1, t2 such that:

(πri )
∗(tj) =

{
tqj if i = j,

tj otherwise .
(1)

A product of curves over Fp is one example of a variety that has a partial Frobenius structure
(where the π1, π2 are induced from each factor independently), and there is an obvious choice of
coordinates as in (1). In particular, the product of modular curves will be a very pertinent example.

The key assumption that p splits in OF results in a partial Frobenius structure on H. In this case,
we may define the maps πi using our moduli interpretation. Suppose S is an arbitrary Fp-scheme
and A/S is an abelian surface corresponding to a point x ∈ H(S). Define π1(x) to be the point y
corresponding to the abelian scheme A/G1, where G1 ⊂ G1,x is the kernel of Frobenius. According
to Section 2.2 of [Pap95], A 7→ A/G1 defines a morphism Ha → HP1a. As P1 is trivial in the
narrow class group, we have indeed obtained a morphism π1 : Ha → Ha.

We define π2(x) analogously. Clearly, Frobp = π1π2. Given this description, we see that for
any x ∈ H(Fq), πr1 induces the qth-power map on the deformation space of G1,x and leaves the
deformation space of G2,x unchanged. We therefore have the following proposition:

Proposition 2.2. H has a partial Frobenius structure, with Frob = π1π2. Furthermore, at every
point x ∈ H(Fp), the coordinates t1, t2 are just the coordinates induced by the product structure as
in Lemma 2.1.

2Implicit here is that the deformation space of a p-divisible group having height 2 and dimension 1 is one-
dimensional and smooth.
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Let x ∈ Z(Fq) be a point, where Z ⊂ H is the non-ordinary locus. Then according to the

discussion above, the formal completion Ĥx = Spf Fq[[t1, t2]], where ti controls the deformation
theory of Gx,i and leaves Gx,i+1 constant (here, the indices are read modulo 2). Therefore, if Gx,1
is ordinary and Gx,2 is supersingular, the local equation of Z at x is just t1 = 0; if G2,x is ordinary
and G1,x is supersingular, then the local equation is t2 = 0; and if x itself is supersingular, then the
local equation is t1t2 = 0.

We also recall the global geometry of Z ⊂ H, following [BG99, §4, Theorem 4.2] and relate it with
the local geometry of Z just discussed. The non-ordinary locus is a union of smooth irreducible
curves which intersect transversally at supersingular points. There are two ‘types’ of curves –
curves of type 1 and curves of type 2. Every non-supersingular point x on curves of type 1 has the
property that G1,x is ordinary while every non-supersingular point y on curves of type 2 has the
property that G2,y is ordinary. Curves of type 1 never intersect (and neither do curves of type 2)
while every supersingular point has exactly one curve of type 1 and one curve of type 2 passing
through it. Finally, the local equations of these curves are precisely as described in the paragraph
just above.

We will use the following lemma in the proof of the theorem immediately after.

Lemma 2.3. Assume K is a global function field, and Kv is a completion of K at some place v.
Let G/K be an ordinary p-divisible group over K with height 2 and dimension 1, and GKv be its base
change to Kv. If the connected-étale exact sequence for GKv splits then the connected-étale exact
sequence for G splits over K.

Proof. Jiang proves a more general result in [Jia], but we include a different proof here for complete-
ness. For any n, the connected-étale exact sequence of G/Kv [pn] splits over some finite extension
Ln/K. We will prove that Ln can be chosen to be a subfield of Kv.

In order to show that we can choose Ln ⊂ Kv, we use the representability of Homgp sch(H,G) for
any finite flat group schemes H,G. In general, HomS(X,Y ) is representable if X,Y are finite type
schemes over S and moreover, X is flat, projective and Y is quasi-projective over S [§4c, [Gro60]]
and the conditions for being a homomorphism of groups defines a closed subscheme. Splittings of
the connected étale sequence

0→ Gn,conn → Gn
π→ Gn,ét → 0

can be identified with the closed subset of points of f ∈ Homgp sch(Gn,ét, Gn) such that f ◦ π = id.
In particular, they are parametrized by a scheme which we call Split / SpecK.

We therefore have a splitting over Kv, Ln, i.e., Kv, Ln valued points of Split. We now consider
Kv, Ln ⊂M for some algebraically closed field M . Let α ∈ Split(M) be defined over some subfield
L. Since any two splittings over M differ by an automorphism of Gn,conn ×Gn,ét defined over M ,
and every one of these automorphisms is already defined over the ground field K, we have that
every element of Split(M) is defined over L. Therefore,

Split(Kv) = Split(M) = Split(Ln) =⇒ Split(Kv) = Split(Ln ∩Kv).

Therefore, we can replace Ln by Ln ∩Kv to assume that Ln ⊂ Kv.

We now claim that Ln/K is separable. Indeed, being a one-parameter function field, K admits a
unique degree p inseparable extension necessarily containing all p-th roots of K, and which therefore
contains the p-th root of a uniformizer of K at v, which therefore can’t be contained in Kv. It
follows that Ln/K is indeed separable.
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The splitting behaviour of the connected-étale exact sequence for any p-divisible group is insen-
sitive to separable extensions, and therefore the connected-étale exact sequenc for G[pn] splits over
K for all n. The result follows.

Theorem 2.4. Let D ⊂ H be a generically ordinary, reduced, irreducible curve such that the generic
abelian variety A/K(D) does not have an extra endomorphism3. We identify ÔH,x with Fp[[t1, t2]] as

in Lemma 2.1. Let ÔH,x/(fD,x) be the formal completion of the local ring of D at x. Then ti does
not divide fD,x for any i.

Remark 1. As an analogous situation to the above lemma, consider X = X(1)×X(1), then locally
around x, we may choose ti to be the corresponding coordinate of the i-th X(1) ∼= P1.

Proof. Without loss of generality, we may replace D with its normalization, and pull back the
universal abelian surface to D. Therefore, we may assume that D is smooth - however, the map
D → H need no longer be an embedding. Nevertheless, given any point x ∈ D, we obtain a map
of formal schemes ψ : D̂x → Ĥx (we abuse notation by letting x denote both the point of D and
its image in H). Let fD,x ∈ ÔHx denote the defining equation of the image of D̂x.

It suffices to prove that if ti divides fD,x for i = 1 or 2, then either D is not generically ordinary,
or A/K(D) has extra endomorphisms. Without loss of generality, assume t1 | fD,x. If Gx,1 is
supersingular, then by the description of the non-ordinary locus following Proposition 2.2, we see
that A/D must be non-ordinary. Therefore, we suppose that Gx,1 is ordinary. The inclusion of the
divisor corresponds to

D̂x
∼= SpecFp[[u]]→ Ĥd,x ∼= Spec ÔH,x;

t1
ψ→ 0,

t2
ψ→ t̄2 ∈ Fp[[u]].

Here, D̂x is the formal completion of D at x. As in Lemma 2.1, we know ÔH,x is the product of

the deformation spaces of Gi,x. Notice that ψ(t1) = 0 implies that Gx,1 remains constant along D̂x.
In other words,

G
D̂x

= (Gx,1 × D̂x)× G
D̂x,2

.

The connected-étale exact sequence of Gx,1 splits since it is over a perfect field and hence, so does
the connected-étale exact sequence of AD̂x [p∞]1. By Lemma 2.3, this implies that the connected-
étale exact sequence for G1 already splits over K(D). Consequently, End(GD,1) = Zp ⊕ Zp, whence
End(GD) is strictly larger than Zp⊗OF . Applying the crystalline Tate conjecture for endomorphisms
of abelian varieties ([dJ98, Theorem 2.6]) implies AD has endomorphism ring larger than OF , as
required.

3 Local intersection on varieties with a split Frobenius

In this section, we assume that X is a surface over Fp with a partial Frobenius structure. Through-
out this section, we fix such a system of coordinates around each point as in (1). As in Section

3i.e., the ring of endomorphisms is OF .

7



2, Hilbert modular surfaces where p = P1P2 with Pi trivial in the narrow class group of OF are
examples of such surfaces. As noted in Section 2, as long as p splits completely in OF , H will admit
a partial pa-Frobenius structure where a is the order of P1 in the narrow class group.

Note that the Frobenius (and hence the πi) are universal homeomorphisms, i.e., they induce
homeomorphisms on the underlying topological space. In particular, the preimage of any point
under the πi is also exactly one point.

The results in this section will be purely local around a point x ∈ X(Fq). Note that π1 need not
fix x but some power of it will so we may assume that X = SpecR with R = Fq[[t1, t2]] and x is the
origin given by the vanishing of t1, t2. In local coordinates (a power of) πi corresponds to (a power
of) Frobenius along the ti coordinates. For a point x ∈ X, we define r(x) as the smallest value so

that π
r(x)
1 (x) = π

r(x)
2 (x) = x.

Now, let C,D ⊂ X be two curves and x ∈ C ∩D and define Cn = (πn1 )−1(C) to be the pullback
of C under πn1 , where n satisfies πn1 (x) = x. In this section, we prove results about the intersection
numbers Cn ·D. Theorem 3.1 (1) owes its inspiration to [CO06, Proposition 7.3].

Theorem 3.1. Let C = V (f), D = V (g) locally around x ∈ H and n = mr(x) → ∞ be part of a
sequence of integers divisible by r(x) and increasing without bound. Suppose moreover that t1, t2 - f
and t1 - g.

1. Suppose t2 - g. Then, the local intersection number (Cn ·D)x is bounded as n→∞.

2. Suppose t2 | g. Then, the local intersection number (Cn ·D)x →∞ as n→∞.

The analogous result holds with the roles of π1, π2 (and t1, t2) reversed.

Proof. In order to compute intersection numbers, we can replace D by its normalization and con-
sider each component separately [Ful13, Example A.3.1]. We therefore have ÔD,x = Fp[[u]] and we
suppose that the morphism D → H is locally around x given by

Fp[[t1, t2]]→ Fp[[u]]

ti → αi.

For the first part of the theorem, α1, α2 6= 0 since t1, t2 - g. We therefore define αi = aiu
ki with ai

a unit and ki ≥ 1. Since x ∈ C and r(x)|n, we have x ∈ Cn. As C is defined by f(t1, t2), Cn is
defined by f(tp

n

1 , t2) so that

(Cn.D)x = dimFp
Fp[[u]]

f(αp
n

1 , α2)
.

By assumption, t1 - f so that we can write f(t1, t2) = te2f̃(t2) + t1h(t1, t2) for e ≥ 1 and f̃(t2) a
unit. Therefore,

f(αp
n

1 , α2) = αe2f̃(α2) + αp
n

1 h(αp
n

1 , α2)

= ae2u
k2ef̃(a2u

k2) + ap
n

1 up
nk1h(ap

n

1 up
nk1 , a2u

k2).

For n large enough, the u-adic valuation of the second term is larger than the u-adic valuation of
the first term since f̃ is a unit. Consequently (for n large enough), f(αp

n

1 , α2) is divisible by exactly
uek2 which proves that (Cn.D)x = ek2 which is independent of n.

8



In the second case, α2 = 0. Let f(t1, 0) = td1w(t1) with d ≥ 1 and w(t1) a unit. We then have
(with k1 as in the first part)

(Cn.D)x = dimFp
Fp[[u]]

f(αp
n

1 , 0)
= dk1p

n (2)

which proves that (Cn.D)x →∞ as n→∞.

We have the following corollary.

Corollary 3.2. Let C be as above, and suppose now that Zi ⊂ Ĥx are the formal curves defined
by ti = 0 for i = 1, 2. Then, (Cn.Z1)x = (C.Z1)x and (Cn.Z2)x = pn(C.Z2)x.

Proof. The first equality follows by inspection and the second from Equation (2).

4 Change of height under p-power isogenies

In this section, we will describe some instances in which we can describe how the height of a
generically ordinary proper curve C ⊂ H changes under isogenies induced by the πi. The idea is
to use the fact that the Faltings height equals (up to a scaling factor of 1

p−1) the intersection of C
with the non-ordinary locus.

4.1 The non-ordinary locus.

Let Z be the non-ordinary locus. We recall the following description of Z given in §2. The non-
ordinary locus is a union of smooth irreducible curves which intersect transversally at supersingular
points. There are two ‘types’ of such curves – curves of type 1 and curves of type 2 (coming from
the local splitting of the Frobenius). Every non-supersingular point x on curves of type 1 has the
property that G1,x is ordinary while every non-supersingular point y on curves of type 2 has the
property that G2,y is ordinary. Curves of type 1 never intersect (and neither do curves of type 2)
while every supersingular point has exactly one curve of type 1 and one curve of type 2 passing
through it. Finally, the local equations of these curves are precisely as described in the paragraph
following Proposition 2.2.

For brevity, we write Z = Z1 ∪ Z2, where Zi is the union of curves of type i. The main result of
this section is the following:

Theorem 4.1. Let C/ ⊂ H denote a proper generically ordinary curve defined over Fq′, and suppose
that all the non-ordinary points of C are contained in C(Fq) for some q = pn0. Then as n goes to
infinity, we have ((πn0n

1 )−1(C)·Z) = qn(C.Z2)+(C.Z1), and ((πn0n
2 )−1(C).Z) = qn(C ·Z1)+(C.Z2).

Proof. This follows directly from the description of the non-ordinary locus as well as Corollary
3.2.

We keep the notation in the previous result. Recall that we define the Faltings height of the
abelian variety AC to be the degree of the Hodge bundle ω restricted to C. As in [MST22a] and
[MST22b], the class of the Hodge bundle can be expressed in terms of the non-ordinary locus. To
be precise, we have that Z is the vanishing locus of the Hasse invariant, which is a section of ωp−1
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(for example, see [Box15, Section 1.4]). This, together with Theorem 4.1 gives the following result.

Theorem 4.2. The Faltings heights of A(π
n0n
1 )−1(C) and A(π

n0n
2 )−1(C) are

hF (A(π
n0n
1 )−1(C)) =

qn(C · Z2) + (C.Z1)

p− 1
and hF (A(π

n0n
2 )−1(C)) =

qn(C.Z1) + (C.Z2)

p− 1
.

In particular, if C is also ample4, we have hF (A(π
n0n
1 )−1(C)) � qn � hF (A(π

n0n
2 )−1(C)) as n→∞.

5 Just-likely intersections on Hilbert Modular Surfaces

Definition 3. Given two proper curves C,D ⊂ H defined over Fq parametrizing Abelian surfaces
AC ,AD, we let

I (C,D) = {(x, y) ∈ H2 : AC,x is isogenous to AD,y through a power of πni }.

Moreover, let

Ĩ (C,D) = {(x, y) ∈ H2 : AC,x is isogenous to AD,y through a p-power isogeny }.

Note that I (C,D) ⊂ Ĩ (C,D).

We use the results of Section 3 to prove:

Theorem 5.1. Let C,D be as above and suppose that AC ,AD parametrized respectively by C,D
have no extra endomorphisms generically, are generically ordinary and suppose moreover that D is
ample.

Then I (C,D) has infinitely many points not contained in a finite union of axes of the form⋃
i{xi} ×D ∪

⋃
j C × {yj}.

Remark 2. If one of the curves generically does have extra endomorphisms, then the theorem is
still true by the results of [MST22b].

Theorem 5.2. Suppose that C,D ⊂ H are two curves such that I (C,D) has infinitely many

points not contained in a finite union of the axes as in the previous theorem. Then, Ĩ (C,D) is
dense in C ×D.

The strategy for the proof of Theorem 5.1 is as follows. We first prove that the local intersection
numbers dn = ((πn1 )−1(C).D)x are bounded for any x ∈ D. Next, we prove that the global inter-
section numbers ((πn1 )−1(C).D) are unbounded, by comparing these numbers with the quantities
((πn1 )−1(C).Z), using Theorem 4.1 and the ampleness of D. Finally, Theorem 5.2 follows by a soft
argument. Note that Theorem 5.2 always holds for two curves which satisfy the conclusions of
Theorem 5.1.

Throughout, we use the local coordinates t1, t2 of Lemma 2.1. Let C,D be as in Theorem 5.1.
We prove Theorem 5.1 through a sequence of lemmas. Recall that for a point x ∈ X, r(x) is the

smallest value so that π
r(x)
1 (x) = π

r(x)
2 (x) = x.

4This would imply that (C.Z1) and (C.Z2) are both positive. Even if C is not ample, the curve Z1 ∪Z2 is ample,
and so either (C.Z1) or (C.Z2) must be positive, whence we obtain the same asymptotic formula for the Faltings
heights of either A(π

n0n
1 )−1(C) or A(π

n0n
2 )−1(C).
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Lemma 5.3. For any point x ∈ C, the intersection number of (πni )−1(C) with D at (πni )−1(x) = x
is bounded absolutely as n ranges through the multiples of r(x).

Proof. Around any point x ∈ C,D, the curves C,D don’t contain the divisors ti = 0 since otherwise
they would either be generically non-ordinary or generically have extra endomorphisms (by Lemma
2.4).

Therefore, part (1) of Theorem 3.1 applies and shows that the intersection number of ((πni )−1(C) ·
D) at (πn1 )−1(x) is absolutely bounded as n = mr(x)→∞.

The next lemma deals with the global intersection number. We have that (C.Z) = (C.Z1) +
(C.Z2) is positive, so we assume without loss of generality that (C.Z2) is positive and define
Cn = (πni )−1(C).

Lemma 5.4. The global intersection number Cn ·Z →∞ as n→∞ through the multiples of r(x).

Proof. This follows immediately from Theorem 4.1.

Lemma 5.5. Let D now be an arbitrary ample, proper divisor. Then, the global intersection number
Cn ·D →∞ as n→∞.

Proof. We will reduce to the case where our divisor is Z, the Hasse locus.

Since D is ample, we can find a large enough m such that mD − Z is also ample. Therefore:

Cn.(mD − Z) ≥ 0 ⇐⇒ mCn.D ≥ Cn.Z

and since Cn.Z →∞ by the previous Lemma 5.4, Cn.D is also unbounded.

We are now ready to prove the main results of this paper.

Proof of Theorem 5.1. Let Sn ⊂ Cn = (πn1 )−1(C) be the set of points xi,n on Cn isogenous to
some point yi,n on D. Note that there is a unique xi ∈ C so that πn1 (xi,n) = xi since π1 is a
universal homeomorphism. We first show that |Sn| → ∞ as n → ∞. For contradiction, suppose
that |Sn| ≤ N . Then, for r � 0 and n ranging through the multiples of the lcm of r(x1), . . . , r(xN ):

(Crn ·D) =
N∑
i=1

(Crn ·D)xi,n ≤ NC0

where the bound on the right hand side follows from Lemma 5.3 and C0 is some constant. On
the other hand, the left hand side goes to infinity by Lemma 5.5 which provides us with our
contradiction.

We have thus shown that there is an infinite set of points x1, x2, · · · ⊂ C isogenous to some point
on D. We would like to show that the corresponding points y1, y2, . . . on D also form an infinite
set. Suppose otherwise for contradiction.

Thus, we can find an infinite subset xi1 , xi2 , . . . isogenous to the same point y on D through the
isogenies corresponding to πn1

1 , πn2
2 , . . . with ni →∞. That is:

π
nj
1 (y) = xij .
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On the other, the orbit of π1 on any Fq point of H is finite since, in local coordinates, π1 just
corresponds to the Frobenius on one of the coordinates which certainly has a finite orbit. This forces
us to identify some of the xij which is contradictory to our assumption that the xi are distinct.

We have thus shown that we can find two sequences xi, yi ∈ C,D such that xi 6= xj , yi 6= yj for
i 6= j and the xi are isogenous to the yi as required.

We now prove Theorem 5.2, and therefore finish the proof of Theorem 1.1.

Proof of Theorem 5.2. Suppose for contradiction that the closure of Ĩ (C,D) is a proper subset
of C × D ⊂ H2. Let W be the complement of the axes inside the closure of I (C,D). By
Theorem 5.1, W has positive dimension. We can therefore find an infinite sequence of points
(x1, y1), (x2, y2), · · · ∈ W such that the fields of definition of yi individually go to infinity. We will
prove that Ni = #{y ∈ D : (xi, y) ∈ W} → ∞ as i → ∞ which contradicts the fact that W is a
closed subset of C ×D and therefore has finite degree projections onto the first factor.

Indeed, if yi has field of definition Fqmi , then the size of the orbit of yi under Frobq has size mi and
moreover, each point in this orbit is p-power isogenous to xi and lies on D (since D is defined over
Fq). Since W is defined over Fq too, it is fixed by any Frobenius and the entire orbit is contained
inside W proving that Ni ≥ mi →∞ as i→∞.
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