

Local Properties of Toric Varieties

William Durie

October 4, 2023

1 Notation and Definition review

To begin, lets review some definitions and notation.

Definition: a semigroup is a set whose elements are associative on a group operation.

$$\forall a, b, c \in S : a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Essentially, we can think of a semi-group in exactly the same way we think about a group, except a semi-group does not necessarily contain the identity or inverse elements like a group would. For now, we can just think of the semi-group as a set

We also want to remember a couple of things in regards to notation:

$$\sigma = \text{cone}$$

$$\sigma^{\vee} = \text{dual}$$

$$U_{\sigma} = \text{affine variety of } \sigma$$

N and M are lattices

$$^{\perp} = \text{elements perpendicular to } \sigma$$

2 Local Properties of Toric Varieties

Local in this sense means up close on the chosen point.

 σ

For any cone σ in a lattice N, the corresponding affine variety U_{σ} has a distinguished point, which we denote by x_{σ} . This point in U_{σ} is given by a map of semigroups:

$$S_{\sigma} = \sigma^{\vee} \cap M \to \{1, 0\} \subset \mathbb{C}^* \cup \{0\} = \mathbb{C}$$

defined by the rule

$$\mathbf{u} \mapsto \begin{cases} 1 \text{ if } \mathbf{u} \in \sigma^{\perp} \\ 0 \text{ otherwise} \end{cases}$$

Lets look at an example of this:

*See Appendix¹

This function is well-defined, since σ^{\perp} is a face of σ^{\vee} , which implies that the sum of two elements in σ^{\vee} cannot be in σ^{\perp} unless both are in σ^{\perp} . In other words:

 $u_1, u_2 \in \sigma^{\vee}$: if $u_1 \notin \sigma^{\perp}$, then there exists $v \in \sigma$ such that $u_1 \cdot v > 0, u_2 \ge 0$ so $(u_1 + u_2) \cdot v > 0$

3 Nonsingularity

Restating the difference between M and N Remember, N and M are lattices created by the spans of vector spaces. For our purposes, we can think of $N = \mathbb{Z}^n$. M is a little different; M is defined as some homomorphism that takes the dot product of N and Z, but essentially is also \mathbb{Z}^n . $(M = hom(N, \mathbb{Z}) = \mathbb{Z}^n)$. **Definition**: U_{σ} is non-singular if and only if σ is generated by a basis of N.

Exercise 1

We want to show that if σ spans $N_{\mathbb{R}}$, then x_{σ} is the unique fixed point of the action of the torus T_N on U_{σ} . So lets say σ spans $N_{\mathbb{R}}$, or in other words, σ spans \mathbb{Z}^n . Then we know from the previous example that $\sigma^{\perp} = \{0\}$. Now, take a ring $A = A_{\sigma}$ and let m be the maximal ideal of A corresponding to the point x_{σ} (the maximal ideal is generated by x_{σ} , the vectors in σ^{\perp}), so m is generated by all χ^u for nonzero u in S_{σ} . The square m^2 is generated by all χ^u for those u that are sums of two elements of $S_{\sigma} \setminus \{0\}$.

Definition The cotangent space m/m^2 has a basis of images of elements χ^u for those u in $S_{\sigma} \setminus \{0\}$ that are not the sums of two vectors.

An example of this is in Appendix 4,5

One characterization of nonsingularity is that the cotangent space m/m^2 is ndimentional, since $dim(U_{\sigma}) = dim(T_N) = n$. This inplies in particular that σ^{\vee} cannot have more than n edges (and that the minimal generators along these edges must generate S_{σ}).

 \implies the minimal generators for S_{σ} must be a basis for M, and the dual is generated by a basis for N.

Hence U_{σ} is isomorphic to \mathbb{C}^n

Definition : for $u \in N, k \in \mathbb{Z} > 0$; A structure is saturated if $u \in N$ and $k \cdot u \in \sigma \cap N$ then $u \in \sigma \cap N$

A general cone has smaller dimension k. Let $N_{\sigma} = span(\sigma) \cap N$ $(N_{\sigma} = \sigma \cap N + (-\sigma \cap N))$ be the sublattice of N generated by $\sigma \cap N$. Since σ is saturated, N_{σ} is also saturated, so the quotient group $N(\sigma) = N/N_{\sigma}$ is also a lattice.

You can write this by splitting up the lattice: The dimension of $N(\sigma) = \mathbb{Z}^{n-k}$ then $N = N_{\sigma} \oplus R^{n-k}$, $\sigma = \sigma' \oplus 0$. (σ' is a cone in N) and $N \cong N_{\sigma} \oplus N(\sigma)$. We do this for M, as well. $(M = M' \oplus M'') \to N_{\sigma} \oplus N'' \to S_{\sigma} = ((\sigma')^{\vee} \cap M') \oplus M''$ So then

$$U_{\sigma} \cong U_{\sigma'} \times T_{N''} \cong U_{\sigma'} \times (\mathbb{C}^*)^{n-k}$$

This leads us to propose that an affine toric variety is nonsingular if and only if the cone is generated by part of a basis for lattice N, in which case

$$U_{\sigma} \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}, k = \dim(\sigma)$$

We therefore call a cone nonsingular if it is generated by part of a basis for a lattice, and we call a fan nonsingular if all of its cones are nonsingular, i.e., if the cooressponding toirc variety is nonsingular.

4 References

[Ful93] William Fulton. Introduction to Toric Varieties. (AM-131), Volume 131. Princeton University Press, Princeton, 1993.

1 0 · 1 Kernel - ([So] - (Maximal Ideal = point in Ur o" : May €[S_] = €[x,y] → € $\begin{array}{c} \left[\begin{array}{c} \chi, \chi \right] \rightarrow \psi \\ \chi_{=0} \\ \chi_{=0} \end{array} \end{array} \xrightarrow{\qquad } \begin{array}{c} A_{g=} C \left[S_{g} \right] \\ \chi_{g=0} \\ \chi_{g=1} \end{array} \end{array}$ 2 \mathcal{U}_{σ} $\mathcal{U}_{\sigma} \stackrel{\sim}{=} \stackrel{\sim}{\mathfrak{f}}(\rho)$ torus stuff intuitively $\downarrow \uparrow$ $T_{N(\sigma)} = (\binom{v}{}^{K})^{-\gamma} P$, any point $Did No^{+} NM$ Did not mak (R = = (1,0)) 3 τ fores $\mathcal{U}_{\tau} = \mathbf{C} \times \mathbf{C}$ $C\{s_{2}\} = C[x, x', y]$, XHHATATT, 2. I D C Did not use $(\mathcal{M}_1, \mathcal{M}_2) \mapsto \begin{cases} 1 & (\mathcal{M}_2 = 0) \\ 0 & \text{otherwise} \end{cases}$ m/2 = (x,y) MO $\mathbb{C}[S_{\sigma}] = \mathbb{C}[x, y] \rightarrow \mathbb{C}$ $\chi = 70$ A = C [S_p] $\chi = 70$ $\chi_0 = (0, 0)$ MOV M: (xi) m/m2: (xi) - 20 vector space \mathfrak{M}^{2} : $(\mathfrak{p}^{2}, \mathfrak{X}_{\gamma}, \gamma^{2})$

5. Example of singular Not generated by a basis for 222 X coordinate is always a multiple of n 10,-11 $\mathcal{D}_{\sigma} = \left\langle (1,0), (1,1), \dots, (1,n) \right\rangle$ n>2 m/m2 = span (x, xy, ..., xy)) dim = n+1 j singular ig n >2 (1,n) (1,0) σ'= 5

Span m/m² = (×,y) dim = 2 > nonsingular 6. $\begin{array}{c} \mathcal{O}^{\vee} \\ \mathcal{O$ $\mathcal{U} \mapsto \begin{cases} 1 & \mathcal{U} = (0, 0) \\ 0 & \text{otherwise} \end{cases}$ die not use