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1 Notation and Definition review

To begin, lets review some definitions and notation.
Definition: a semigroup is a set whose elements are associative on a group

operation.

8a, b, c 2 S : a · (b · c) = (a · b) · c

Essentially, we can think of a semi-group in exactly the same way we think
about a group, except a semi-group does not necessarily contain the identity
or inverse elements like a group would. For now, we can just think of the
semi-group as a set

We also want to remember a couple of things in regards to notation:

� = cone
�_ = dual

U� = a�ne variety of �
N and M are lattices

�? = elements perpendicular to �

2 Local Properties of Toric Varieties

Local in this sense means up close on the chosen point.
For any cone � in a lattice N, the corresponding a�ne variety U� has a

distinguished point, which we denote by x�. This point in U� is given by a map
of semigroups:

S� = �_ \M ! {1, 0} ⇢ C⇤ [ {0} = C

defined by the rule

u 7!
(
1 if u 2 �?

0 otherwise
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Lets look at an example of this:

⇤See Appendix1

This function is well-defined, since �? is a face of �_, which implies that the
sum of two elements in �_ cannot be in �? unless both are in �?. In other words:

u1, u2 2 �_: if u1 /2 �?, then there exists v 2 � such that u1 · v > 0, u2 � 0 so
(u1 + u2) · v > 0

3 Nonsingularity

Restating the di↵erence between M and N Remember, N and M are lat-
tices created by the spans of vector spaces. For our purposes, we can think of
N = Zn. M is a little di↵erent; M is defined as some homomorphism that takes
the dot product of N and Z, but essentially is also Zn. (M = hom(N,Z) = Zn).
Definition: U� is non-singular if and only if � is generated by a basis of N.

Exercise 1
We want to show that if � spans NR, then x� is the unique fixed point of the
action of the torus TN on U�. So lets say � spans NR, or in other words, �
spans Zn. Then we know from the previous example that �? = {0}. Now, take
a ring A = A� and let m be the maximal ideal of A corresponding to the point
x� (the maximal ideal is generated by x�, the vectors in �?), so m is generated
by all �u for nonzero u in S�. The square m2 is generated by all �u for those u
that are sums of two elements of S�\{0}.
Definition The cotangent space m/m2 has a basis of images of elements �u for
those u in S�\{0} that are not the sums of two vectors.

An example of this is in Appendix
One characterization of nonsingularity is that the cotangent space m/m2 is n-
dimentional, since dim(U�) = dim(TN ) = n. This inplies in particular that �_

cannot have more than n edges (and that the minimal generators along these
edges must generate S�).

=) the minimal generators for S� must be a basis for M, and the dual is
generated by a basis for N.

Hence U� is isomorphic to Cn

Definition : for u 2 N, k 2 Z > 0; A structure is saturated if u 2 N and
k · u 2 � \N then u 2 � \N

A general cone has smaller dimension k. Let N� = span(�) \ N (N� =
� \ N + (�� \ N)) be the sublattice of N generated by � \ N . Since � is
saturated, N� is also saturated, so the quotient group N(�) = N/N� is also a
lattice.
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You can write this by splitting up the lattice: The dimension of N(�) = Zn�k

then N = N� �Rn�k, � = �0 � 0. (�0 is a cone in N)
and N ⇠= N� �N(�).
We do this for M, as well.
(M = M 0 �M 00) ! N� �N 00 ! S� = ((�0)_ \M 0)�M 00

So then

U�
⇠= U�0 ⇥ TN 00 ⇠= U�0 ⇥ (C⇤)n�k

This leads us to propose that an a�ne toric variety is nonsingular if and
only if the cone is generated by part of a basis for lattice N, in which case

U�
⇠= Ck ⇥ (C⇤)n�k, k = dim(�)

We therefore call a cone nonsingular if it is generated by part of a basis for
a lattice, and we call a fan nonsingular if all of its cones are nonsingular, i.e., if
the cooressponding toirc variety is nonsingular.
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