

Local Properties of Toric Varieties

William Durie

October 4, 2023

1 Notation and Definition review

To begin, lets review some definitions and notation.
Definition: a semigroup is a set whose elements are associative on a group operation.

$$
\forall a, b, c \in S: a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

Essentially, we can think of a semi-group in exactly the same way we think about a group, except a semi-group does not necessarily contain the identity or inverse elements like a group would. For now, we can just think of the semi-group as a set

We also want to remember a couple of things in regards to notation:

$$
\begin{gathered}
\sigma=\text { cone } \\
\sigma^{\vee}=\text { dual } \\
U_{\sigma}=\text { affine variety of } \sigma \\
\mathrm{N} \text { and M are lattices } \\
\sigma^{\perp}=\text { elements perpendicular to } \sigma
\end{gathered}
$$

2 Local Properties of Toric Varieties

Local in this sense means up close on the chosen point.
For any cone σ in a lattice N , the corresponding affine variety U_{σ} has a distinguished point, which we denote by x_{σ}. This point in U_{σ} is given by a map of semigroups:

$$
S_{\sigma}=\sigma^{\vee} \cap M \rightarrow\{1,0\} \subset \mathbb{C}^{*} \cup\{0\}=\mathbb{C}
$$

defined by the rule
$\mathrm{u} \mapsto\left\{\begin{array}{l}1 \text { if } \mathrm{u} \in \sigma^{\perp} \\ 0 \text { otherwise }\end{array}\right.$

Lets look at an example of this:
*See Appendix ${ }^{1}$

This function is well-defined, since σ^{\perp} is a face of σ^{\vee}, which implies that the sum of two elements in σ^{\vee} cannot be in σ^{\perp} unless both are in σ^{\perp}. In other words:

$$
u_{1}, u_{2} \in \sigma^{\vee}: \text { if } u_{1} \notin \sigma^{\perp}, \text { then there exists } v \in \sigma \text { such that } u_{1} \cdot v>0, u_{2} \geq 0 \text { so }
$$

$$
\left(u_{1}+u_{2}\right) \cdot v>0
$$

3 Nonsingularity

Restating the difference between \mathbf{M} and \mathbf{N} Remember, N and M are lattices created by the spans of vector spaces. For our purposes, we can think of $N=\mathbb{Z}^{n} . \mathrm{M}$ is a little different; M is defined as some homomorphism that takes the dot product of N and \mathbb{Z}, but essentially is also $\mathbb{Z}^{n} .\left(M=\operatorname{hom}(N, \mathbb{Z})=\mathbb{Z}^{n}\right)$. Definition: U_{σ} is non-singular if and only if σ is generated by a basis of N .

Exercise 1

We want to show that if σ spans $N_{\mathbb{R}}$, then x_{σ} is the unique fixed point of the action of the torus T_{N} on U_{σ}. So lets say σ spans $N_{\mathbb{R}}$, or in other words, σ spans \mathbb{Z}^{n}. Then we know from the previous example that $\sigma^{\perp}=\{0\}$. Now, take a ring $A=A_{\sigma}$ and let m be the maximal ideal of A corresponding to the point x_{σ} (the maximal ideal is generated by x_{σ}, the vectors in σ^{\perp}), so m is generated by all χ^{u} for nonzero u in S_{σ}. The square m^{2} is generated by all χ^{u} for those u that are sums of two elements of $S_{\sigma} \backslash\{0\}$.
Definition The cotangent space m / m^{2} has a basis of images of elements χ^{u} for those u in $S_{\sigma} \backslash\{0\}$ that are not the sums of two vectors.

An example of this is in Appendix ${ }^{1,5}$
One characterization of nonsingularity is that the cotangent space m / m^{2} is n dimentional, since $\operatorname{dim}\left(U_{\sigma}\right)=\operatorname{dim}\left(T_{N}\right)=n$. This inplies in particular that σ^{\vee} cannot have more than n edges (and that the minimal generators along these edges must generate S_{σ}).
\Longrightarrow the minimal generators for S_{σ} must be a basis for M , and the dual is generated by a basis for N .

Hence U_{σ} is isomorphic to \mathbb{C}^{n}
Definition : for $u \in N, k \in \mathbb{Z}>0$; A structure is saturated if $u \in N$ and $k \cdot u \in \sigma \cap N$ then $u \in \sigma \cap N$

A general cone has smaller dimension k. Let $N_{\sigma}=\operatorname{span}(\sigma) \cap N\left(N_{\sigma}=\right.$ $\sigma \cap N+(-\sigma \cap N)$) be the sublattice of N generated by $\sigma \cap N$. Since σ is saturated, N_{σ} is also saturated, so the quotient group $N(\sigma)=N / N_{\sigma}$ is also a lattice.

You can write this by splitting up the lattice: The dimension of $N(\sigma)=\mathbb{Z}^{n-k}$ then $N=N_{\sigma} \oplus R^{n-k}, \sigma=\sigma^{\prime} \oplus 0 .\left(\sigma^{\prime}\right.$ is a cone in N$)$ and $N \cong N_{\sigma} \oplus N(\sigma)$.
We do this for M, as well.
$\left(M=M^{\prime} \oplus M^{\prime \prime}\right) \rightarrow N_{\sigma} \oplus N^{\prime \prime} \rightarrow S_{\sigma}=\left(\left(\sigma^{\prime}\right)^{\vee} \cap M^{\prime}\right) \oplus M^{\prime \prime}$
So then

$$
U_{\sigma} \cong U_{\sigma^{\prime}} \times T_{N^{\prime \prime}} \cong U_{\sigma^{\prime}} \times\left(\mathbb{C}^{*}\right)^{n-k}
$$

This leads us to propose that an affine toric variety is nonsingular if and only if the cone is generated by part of a basis for lattice N , in which case

$$
U_{\sigma} \cong \mathbb{C}^{k} \times\left(\mathbb{C}^{*}\right)^{n-k}, k=\operatorname{dim}(\sigma)
$$

We therefore call a cone nonsingular if it is generated by part of a basis for a lattice, and we call a fan nonsingular if all of its cones are nonsingular, i.e., if the cooressponding toirc variety is nonsingular.

4 References

[Ful93] William Fulton. Introduction to Toric Varieties. (AM-131), Volume 131. Princeton University Press, Princeton, 1993.

$$
\sigma=(0,1) \text { Not generated by a basis for } \mathbb{Z}^{2}
$$

6. \(\left.\underset{\sim}{ } \begin{array}{c}Span

\mathrm{m} / \mathrm{m}^{2}=(x, y)

\operatorname{dim}=2\end{array}\right) \quad\)| nonsingular |
| :---: |

$\prod_{\square}^{\sigma^{2}} \delta_{\sigma}=(\mathbb{Z} \geq 0)^{2}$
$\mu \mapsto \begin{cases}1 & \mu=(0,0) \\ 0 & \text { otherwise }\end{cases}$

