
AN OVERVIEW OF BATYREV’S MIRROR CONSTRUCTION

PATRICK LEI

1. Historical overview

Let Q be a quintic threefold in P4, that is a smooth hypersurface given by the
vanishing locus of a homogeneous polynomial of degree 5 in 5 variables. The
most famous example is the Fermat quintic, which is given by the equation

x50 + x51 + x52 + x53 + x54 = 0.

In 1991, four physicists stunned the mathematical community by predicting the
number of rational curves (images of maps from P1) of low degrees on a general
Q (for special Q, the number of curves will be different, or even infinite):

Table 1. Predicted number of rational curves of degree d

Degree Predicted number of curves

1 2875
2 609250
3 317206375
4 242467530000
5 229305888887625

In fact, their prediction goes all the way to degree 10 (and is correct up to degree 9
and almost correct in degree 10), but as you can see, the number of digits increases
rapidly. Besides the fact that physicists can do things at a much lower level of
rigor, the main tool that they used was something called mirror symmetry. This
allowed them to translate the problem into a much easier problem (computing
integrals) on a different algebraic variety, called the mirror quintic.

Remark 1.1. The reason the physicists’ predicted number of curves differs slightly
from the actual number of curves is because they are really computing a virtual
count of curves, called a Gromov-Witten invariant. These invariants are still the
subject of intense study today.

At the time, it was actually very difficult for physicists to produce pairs of mirror
varieties. In fact, there were many examples in which a mirror was expected to
exist, but was unknown. This was rectified in 1994 by Batyrev in [Bat93]. Our goal
today is to explain this construction. There are other mathematical predictions
made by mirror symmetry, but they are far beyond the scope of this lecture:
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• Enumerative mirror symmetry, proven in [Giv98; LLY97].
• Homological mirror symmetry, conjectured in [Kon94].

2. Mirror symmetry

Mirror symmetry arises from a physical theory called string theory, which for
reasons of mathematical consistency requires the universe to be 10-dimensional.
Of course, the observed universe is 4-dimensional, so the physicists need a way to
make the other 6 dimensions invisible. The strategy is something called compacti-
fication, which makes the 6 extra dimensions a very small compact manifold of
size  h. By various physical considerations, there are several requirements on this
6-dimensional manifold:

(1) The manifold must have a complex structure. This means that there is a
notion of holomorphic functions on it;

(2) The manifold must be simply connected (up to torsion). This means that
any loop on it can be contracted to a point (again, up to torsion);

(3) The manifold must have trivial canonical divisor, or KX = 0. Recall from
Jennifer’s second talk that the canonical divisor is the divisor of zeroes
and poles of a meromorphic differential form.

Such a manifold is called a Calabi-Yau threefold.

For any choice of a Calabi-Yau threefold X, the physicists produce a supercomfor-
mal field theory (SCFT), which has twisted (much simpler, and the ones actually
studied by mathematicians) versions called the A-model and the B-model. They are
controlled by parameters whose numbers are the dimensions of various vector
spaces associated to X.

2.1. Hodge numbers. The primary reference for this part is [GH94]. Let X be any
smooth projective complex algebraic variety of dimension n (actually, this can be
done in more generality, but I am not a differential geometer). Then X is a complex
manifold, so locally, there are holomorphic coordinates z1, . . . , zn. Then, there are
real coordinates given by z1, z1, . . . , zn, zn. Think of z = x+ iy and z = x− iy.

In these coordinates, differential forms on X (with values in C) can locally be
written as

ω =
∑

i1,...,ip,j1,...,jq

fi1,...,ip,j1,...,jq dzi1 ∧ · · ·∧ dzip ∧ dzj1 ∧ · · ·∧ dzjq .

We say that the form fdzi1 ∧ · · ·∧ dzip ∧ dzj1 ∧ · · ·∧ dzjq has type (p,q) because
it has p holomorphic parts and q antiholomorphic parts.

Next, define the operator ∂ by the formula

∂(ω) =
∑

k,i1,...,ip,j1,...,jq

∂

∂z
fi1,...,ip,j1,...,jq dzk∧dzi1 ∧ · · ·∧dzip ∧dzj1 ∧ · · ·∧dzjq

in local coordinates. By the commutativity of mixed partials, we have ∂
2
= 0, or

in other words,
∂(∂(ω)) = 0
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for all differential forms ω. Finally, let Ωp,q(X) denote the space of all differential
forms of type (p,q) and define

Zp,q(X) :=
{
ω ∈ Ωp,q(X) | ∂(ω) = 0

}
.

Finally, we define the space

Hp,q(X) := Zp,q(X)/(∂Ωp,q−1(X))

and its dimension hp,q(X) = dimC Hp,q(X), called a Hodge number. It is convenient
to arrange the Hodge numbers of X into a diamond as below:

h0,0

h0,1

h0,2

h0,m

h1,0

h2,0

hm,0

hm,m−2

hm,m−1

hm,m

hm−2,m

hm−1,m

h1,1

hm−1,m−1

. . .

. . .

...

...

. . . . . .

...

...

↶
Serre

↔
conjugation

↕ Hodge

2.2. Hodge numbers and mirror symmetry. Returning to mirror symmetry, it
turns out that

• The A-model associated to a Calabi-Yau threefold X is controlled by Kähler
parameters, which live in H1,1(X).

• The B-model associated to X is controlled by complex parameters, which live
in H2,1(X).

Then the idea of mirror symmetry is that for a Calabi-Yau threefold X, there
should be a mirror Calabi-Yau threefold X∨ such that the corresponding SCFTs
are equivalent in a way that exchanges the A- and B-models (hence exchanges
Kähler and complex parameters). In particular, we must have

h1,1(X) = h2,1(X∨)

and vice versa.

3. Reflexive polytopes and mirror symmetry

3.1. Reflexive polytopes. Recall the following definition from Jennifer’s second
lecture:
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Definition 3.1. A lattice polytope P is reflexive if its facet presentation is

P = {v ∈ M | ⟨v,uF⟩ ⩾ −1 for all facets F}.

Here, uF is the first lattice point on the inward pointing normal ray to F.

Recall also that if P is reflexive, then the origin is the unique interior lattice point
of P and the dual polytope (c.f. Peng’s first talk)

P◦ = {u ∈ N | ⟨v,u⟩ ⩾ −1 for all v ∈ P}.

is a reflexive lattice polytope. We can attempt to classify lattice polytopes, but this
gets much harder every time the dimension increases by 1. In two dimensions,
reflexive lattice polygons were classified last week:

Theorem 3.2. There are 16 equivalence classes (up to GL2(Z)) of reflexive polygons.

In three dimensions, there are 4319 classes of reflexive polytopes, and in four
dimensions, there are 473800776 equivalence classes of reflexive polytopes. The
latter fact was discovered only in 2002.

3.2. The Batyrev construction. The construction in [Bat93] is actually quite sim-
ple. Let P be an n + 1-dimensional reflexive polytope. This defines an n + 1-
dimensional Fano toric variety XP, as explained by Jennifer last week. Recall from
Peng’s second talk that a divisor ∑

aiDi

on XP defines a polytope, which is the set{
v ∈ Zn+1 | ⟨v,ui⟩ ⩾ −ai for all i

}
,

where ui are the rays of the fan of XP. In particular, P corresponds to the divisor

−
∑

Di = −KXP
,

as explained in Jennifer’s talk.

As Jake explained in his second talk, the global sections of (the line bundle
corresponding to) −KX are {

xv | v ∈ P ∩ Zn+1
}

.

In coordinates, if v = (v1, . . . , vn+1), then xv := x
v1
1 · · · xvn+1

n+1 . If we choose a
general section

f :=
∑

v∈P∩Zn+1

cvx
v,

then the locus V := (f = 0) ⊂ XP defines a hypersurface in XP, or a subvariety
of dimension n. By general considerations in algebraic geometry (the adjunction
formula), KVf

= 0. In addition, V inherits the property of being simply connected
up to torsion from XP (the Lefschetz hyperplane theorem), so it is a Calabi-Yau
variety. In general, XP may be singular, so V may also be singular (the best we can
hope for is that the singularities of V are only at the singularities of XP, which is
satisfied for a general V by Bertini’s theorem).
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If we consider P◦ instead, we obtain a Fano toric variety XP◦ , a global section

f◦ :=
∑

v◦∈P◦∩Zn+1

cv◦xv
◦
,

and a Calabi-Yau hypersurface

V◦ := (f◦ = 0) ⊂ XP◦ .

Theorem 3.3 ([Bat93]). The Hodge numbers (suitably defined) of V and V◦ are related by

h1,1(V) = hn−1,1(V◦) hn−1,1(V) = h1,1(V◦).

Of course, the physicists are looking for smooth objects, but we have only defined
a possibly singular Calabi-Yau variety. Recall that we may assume that the
singularities of V are only at the singularities of XP, so we only need to consider
the singularities of XP. Recall the final result from Jennifer’s first talk:

Theorem 3.4. For any toric variety X, there is a refinement Σ̃ of its fan Σ such that
X
Σ̃
→ X is a resolution of singularities.

Unfortunately, if f : X̃ → X is a resolution of singularities, in general it is impossible
to choose X̃ such that f∗KX = K

X̃
. Fortunately for the physicists, this is not a

problem when n = 3.

Proposition 3.5. Let V be a singular Calabi-Yau variety of dimension 3. Then there exists
a resolution Ṽ → V where Ṽ is a smooth Calabi-Yau variety (in other words, a Calabi-Yau
threefold).

This allows us to choose smooth models for V and V◦ defined above. By Theo-
rem 3.3, they satisfy

h1,1(V) = h2,1(V◦) h2,1(V) = h1,1(V◦).

Warning 3.6. For any given V constructed from a 4-dimensional polytope, there
may be more than one smooth model. However, in string theory, there are really
global Kähler and complex moduli spaces of dimensions h1,1(V) and h2,1(V),
respectively. The Kähler and complex parameters of different smooth models of V
correspond looking at different open sets of the same global Kähler and complex
moduli spaces.

Remark 3.7. A more modern perspective in mathematics is to not worry about try-
ing to resolve the singularities of V by enlarging the class of geometric objects such
that V becomes smooth. This requires the fan to contain extra data, see [BCS05].

4. The quintic threefold, revisited

Our goal is to construct the quintic threefold V with h1,1(V) = 1 and h2,1(V) = 101
and its mirror V◦.
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Recall that the fan of P4 has rays e1, e2, e3, e4,−e1 − e2 − e3 − e4. This implies
that the polytope corresponding to −KP4 = D1 +D2 +D3 +D4 has the form

P =
{
(v1, v2, v3, v4) ∈ R4 | v1, v2, v3, v4 ⩾ −1, v1 + v2 + v3 + v4 ⩽ 1

}
.

Its vertices are the points

(−1,−1,−1,−1), (4,−1,−1,−1), (−1, 4,−1,−1), (−1,−1, 4,−1), (−1,−1,−1, 4).

Given v ∈ P ∩ Z4, we obtain the monomial xv1
1 · · · xv4

4 . We want to homogeneize
this, and to do this we replace it with the monomial

x
−v1−v2−v3−v4+1
0 x

v1+1
1 x

v2+1
2 x

v3+1
3 x

v4+1
4

as in [CLS11, Section 5.4]. For example, x−1
1 x−1

2 x−1
3 x−1

4 is replaced by x50 and
x41x

−1
2 x−1

3 x−1
4 is replaced by x51. In particular, all of the resulting monomials have

nonnegative degrees in all of the variables and total degree 5 by construction.
Therefore, V is the vanishing locus of a homogeneous quintic polynomial and is
thus a quintic threefold.

There are
(
5+5−1
5−1

)
= 126 homogeneous polynomials of degree 5 in 5 variables.

Note that V is not changed by scaling all cv by the same factor simultaneously.
Then P4 has a 24-dimensional automorphism group, so in fact, we have 101

degrees of freedom, which recovers h2,1(V) = 101.

The dual polytope P◦ has vertices given by the points e1, e2, e3, e4,−e1 − e2 −
e3 − e4. The corresponding fan has rays which pass through the vertices of P.
Note that

P◦ ∩ Z4 = {0, e1, e2, e3, e4,−e1 − e2 − e3 − e4},
so any f◦ has the form

f◦ = c5 + c1x1 + c2x2 + c3x3 + c4x4 + c0x
−1
1 x−1

2 x−1
3 x−1

4 .

The homogeneization procedure is given by

xv → x
−v1−v2−v3−v4+1
0

∏
i=14

x
4vi+1−

∑
j ̸=i vj

i ,

so f◦ becomes

f◦ = c5x0x1x2x3x4 + c0x
5
0 + c1x

5
1 + c2x

5
2 + c3x

5
3 + c4x

5
4.

This makes sense because XP◦ is P4/G, where G = µ3
5 acts by

(ζ1, ζ2, ζ3) · [x0 : x1 : x2 : x3 : x4] = [x0 : ζ1x1 : ζ2x2 : ζ3x3 : ζ−1
1 ζ−1

2 ζ−1
3 x4].

Now again V◦ is unchanged by a global scalar and XP◦ has automorphism group of
dimension 4, so we in fact have only 1 degree of freedom. This gives h2,1(V◦) = 1,
as desired.
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