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1. Linear algebra review

1.1. Linear algebra over R.

Definition 1.1. A R-vector space V is a set V with the operations of addition and
scalar multiplication satisfying the following axioms:

(1) Addition is commutative and associative;

(2) There exists 0 ∈ V such that 0+ v = 0 for all v ∈ V ;

(3) For any v ∈ V , there exists −v ∈ V such that (−v) + v = 0;

(4) Scalar multiplication distributes over addition.

Definition 1.2. If {vi}i∈I is a set of vectors in V , then the span span(vi)i∈I is the
set of all linear combinations of the vi (note that this must be a finite sum).

Definition 1.3. We say v1, . . . , vn ∈ V are linear independent if there does not exist
a1, . . . ,an, not all zero, such that

a1v1 + · · ·+ anvn = 0.

A set {vi}i∈I is linearly independent if any finite subset of the vi is linearly indepen-
dent.

Definition 1.4. Suppose {vi}i∈I are linearly independent and span(vi)i∈I = V .
Then {vi}i∈I is called a basis of V .

Proposition 1.5. Every vector space V has a basis.

We will denote the standard basis vectors of Rn by ei.

Remark 1.6. This is equivalent to the Axiom of Choice.

It turns out that all bases have the same size, so if {vi} is a basis for V , then |{vi}| is
called the dimension of V .

Definition 1.7. Let V be an R-vector space. Then the dual space V∨ is defined to
be the space V∨ := Hom(V , R) of linear maps from V to R.

Proposition 1.8. If V is finite-dimensional, then dimV = dimV∨.
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Proof. Let n = dimV and choose a basis v1, . . . , vn of V . Then define v∗i by

v∗i (vj) = δij.

Every linear map V → R is uniquely determined by its values on the vi, so the v∗i
span V∨. The v∗i are clearly linearly independent, so they form a basis of V∨. □

1.2. Linear algebra over Z.

Definition 1.9. A lattice is an abelian group N with an isomorphism N ∼= Zn for
some nonnegative integer n.

Spans and linear independence are defined exactly as they are over R, so we can
talk about bases for N (in fact the isomorphism N ∼= Zn is the same thing as a
choice of basis for N).

Proposition 1.10. A matrix M ∈ Mn(Z) is invertible over Z (as in M−1 has integer
entries) if and only if detM = ±1.

Proof. If A is the cofactor matrix of M, then MA = det(M)In, and therefore M−1 =
1

det(M)A. If detM = ±1, then M−1 = ±A has integer entries, so M is invertible
over Z. If M is invertible over Z, then its determinant has a multiplicative inverse
in Z, so it must be ±1. □

Definition 1.11. If N is a lattice, we define the dual lattice M to be the abelian
group Hom(N, Z) of maps of abelian groups (linear maps over Z) from N to Z.

Proposition 1.12. For any lattice N, M ∼= N.

The proof of this fact is exactly the same as over R.

2. A word about projective spaces

2.1. Toric description. Consider the vectors v1 = e1, . . . , vn = en, v0 =:= −
∑n

i=1 ei.
Then there is a cone σi generated by vj, j ̸= i. Then there is a fan ∆ consisting of
the σi and all of their faces. Denote the standard basis for N = Zn by e1, . . . , en
and the basis for M by e∗1, . . . , e∗n.

Definition 2.1. We will define projective space by Pn = X∆.

We will now explore some properties of Pn. First note that for each i, σi is
generated by a basis for N because when i ̸= 0,

−ei = v0 +
∑
j ̸=i

vi.

This implies that Uσi
∼= Cn. We will now put coordinates on the Uσi

.

Note that σ∨
0 = σ0, while for i = 1, . . . ,n,

σ∨
i =

〈
−e∗i , e∗j − e∗i | j ̸= i

〉
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because when j ̸= 0, if τij = σi ∩ σj is the face of σi given by forgetting vj, the
inward-pointing normal p

ij
= (p1, . . . ,pn) satisfies the equations

pk = 0 k ̸= i, j
pi + pj = 0

and must have pi < 0 (because any point in σi has non-positive i-th coordinate).

Therefore,

C[Sσi
] = C

[
x1
xi

, . . . ,
xi−1

xi
,
1

xi
,
xi+1

xi
, . . . ,

xn

xi

]
.

Then note that τij := σi ∩ σj is generated by all of the vectors except vi, vj. Then
we can compute

τ∨ij =
〈
−e∗i , e∗j − e∗i | j ̸= i, e∗i − e∗j

〉
.

This is symmetric in i and j because e∗k − e∗i + (e∗i − e∗j ) = e∗k − e∗j . Then

C[Sτij
] = C

[
x1
xi

, . . . ,
xi−1

xi
,
1

xi
,
xi+1

xi
, . . . ,

xn

xi
,
xi
xj

]
,

and this has an automorphism given by multiplication by xi
xj

(this is the gluing
map). If i ̸= 0, j = 0, then we obtain

C[Sτij
] = C[x1, . . . , xi−1, xi, x−1

i , xi+1, . . . , xn],

and there is an automorphism given by multiplication by x−1
i (the gluing map).

If we set xi =
Xi
X0

, we obtain the uniform description

C[Sσi
] = C

[
X0

Xi
, . . . ,

Xn

Xi

]
,

C[Sτij
] = C

[
X0

Xi
, . . . ,

Xn

Xi
,
Xi

Xj

]
.

Then C[Sτij
] has an automorphism given by multiplication by Xi

Xj
, which recovers

the description given in my first talk via gluing.

2.2. A word on the quotient construction. Recall that in my first talk, my first
definition of Pn was as (Cn+1 \ 0)/C×. I then used this to obtain the description
of Pn via gluing that I just gave. We can in fact go in the opposite direction to
recover the quotient construction from the toric description. You will see some of
this story later in the semester, and one of you could give a talk about the quotient
description of toric varieties if you want.

Consider the map Zn+1 → Zn given by ei 7→ vi. This has a kernel generated by
(1, . . . , 1), so there is an exact sequence

0 → Z → Zn+1 → Zn → 0.

Then we can consider the map C× → (C×)n+1 given by t 7→ (t, . . . , t), and so we
see a copy of C× scaling C×n+1 as in the first talk. Then the polynomials that
satisfy f(tx) = tf(x) are simply the monomials x0, . . . , xn, and the locus where
they all vanish is the origin, so we remove the origin and take the quotient (in
general, there is a theory of stability that tells us how to do it).
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