CRASH COURSE ON ALGEBRA AND GEOMETRY

PATRICK LEI

1. Basic definitions

Here, I will state some definitions of various objects that you have hopefully seen before. If you are unfamiliar with something, please interrupt me.

Definition 1.1. An abelian group is a tuple ($G, \cdot, 1$) of a set G, a multiplication

$$
\cdot: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G},
$$

and an element $1 \in G$ satisfying the following properties:
(1) For any $g \in G, 1 \cdot g=g \cdot 1=g$;
(2) For any $g_{1}, g_{2}, g_{3} \in G,\left(g_{1} \cdot g_{2}\right) \cdot g_{3}=g_{1} \cdot\left(g_{2} \cdot g_{3}\right)$;
(3) For any $g \in G$, there exists $g^{-1} \in G$ such that $g \cdot g^{-1}=g^{-1} \cdot g=1$;
(4) For any $g_{1}, g_{2} \in G, g_{1} \cdot g_{2}=g_{2} \cdot g_{1}$.

Some examples of abelian groups include \mathbb{Z}^{n} (with addition), $\mathbb{Z} / \mathrm{n} \mathbb{Z}$ (with addition), and $\mathbb{C} \backslash 0$ (with multiplication).

Definition 1.2. Let G be an abelian group and X be a set. Then an action of G on X is a map

$$
\because \mathrm{G} \times \mathrm{X} \rightarrow \mathrm{X}
$$

satisfying the following axioms:
(1) For any $x \in X, 1 \cdot x=x$;
(2) For any $g_{1}, g_{2} \in G$ and $x \in X, g_{1} \cdot\left(g_{2} \cdot x\right)=\left(g_{1} \cdot g_{2}\right) \cdot x$.

A simple example of a group action is if $X=G$ and then $g_{1} \cdot g_{2}$ is simply the multiplication in G.

Definition 1.3. A commutative ring is a tuple $(R,+, \cdot, 0,1)$ consisting of a set R, an addition $+: R \times R \rightarrow R$, a multiplication $\cdot: R \times R \rightarrow R$, and $0,1 \in R$ satisfying the following properties:
(1) For any $r \in R, 0+r=r+0=r$;
(2) For any $r_{1}, r_{2} \in R, r_{1}+r_{2}=r_{2}+r_{1}$;
(3) For any $r \in R$, there exists $-r \in R$ such that $r+(-r)=(-r)+r=0$;
(4) For any $r_{1}, r_{2}, r_{3} \in R, r_{1}+\left(r_{2}+r_{3}\right)=\left(r_{1}+r_{2}\right)+r_{3}$;

Date: September 13, 2023.
(5) For any $r \in R, 1 \cdot r=r \cdot 1=r$;
(6) For any $r_{1}, r_{2} \in R, r_{1} \cdot r_{2}=r_{2} \cdot r_{1}$;
(7) For any $r_{1}, r_{2}, r_{3} \in R, r_{1} \cdot\left(r_{2} \cdot r_{3}\right)=\left(r_{1} \cdot r_{2}\right) \cdot r_{3}$;
(8) For any $r_{1}, r_{2}, r_{3} \in R, r_{1} \cdot\left(r_{2}+r_{3}\right)=r_{1} \cdot r_{2}+r_{1} \cdot r_{3}$.

Some examples of commutative rings are $\mathbb{Z}, \mathbb{C}, \mathbb{R}, \mathbb{C}[x]$, and $\mathbb{Z} / n \mathbb{Z}$.
Definition 1.4. Let R be a commutative ring. An ideal $I \subset R$ is a subset satisfying the following properties:
(1) For any $a_{1}, a_{2} \in I, a_{1}+a_{2} \in I$;
(2) For any $a \in I,-a \in I$;
(3) For any $a \in I$ and $r \in R, r \cdot a \in I$.

Some examples of ideals are $n \mathbb{Z} \subset \mathbb{Z}$ for any integer $n, R \subseteq R$ for any commutative ring $R,\{0\} \subset R$ for any commutative ring R, and

$$
\left(a_{1}, \ldots, a_{k}\right):=a_{1} R+\cdots+a_{k} R \subseteq R
$$

for any $a_{1}, \ldots, a_{k} \in R$.
For any ideal $I \subset R$ of a ring R, we can form the quotient ring R / I as follows. Define the equivalence relation \sim on R by $r \sim s$ if $r-s \in I$. Then the ring R / I is the set of equivalence classes $[r]$ with the operations

$$
[r] \cdot[s]=[r \cdot s] \quad[r]+[s]=[r+s] .
$$

This is well-defined because if $r \sim r^{\prime}$ and $s \sim s^{\prime}$, then

$$
\begin{aligned}
(r+s)-\left(r^{\prime}+s^{\prime}\right) & =\left(r-r^{\prime}\right)+\left(s-s^{\prime}\right) \in I \\
r s-r^{\prime} s^{\prime} & =r s-r s^{\prime}+r s^{\prime}-r^{\prime} s^{\prime} \\
& =r\left(s-s^{\prime}\right)+\left(r-r^{\prime}\right) s^{\prime} \in I
\end{aligned}
$$

Clearly addition and multiplication are commutative and associative, and finally it is easy to see that

$$
\begin{aligned}
{[0]+[r] } & =[0+r]=[r] \\
{[1] \cdot[r] } & =[1 \cdot r]=[r] \\
{[-r]+[r] } & =[-r+r]=[0],
\end{aligned}
$$

so $[0]$ and $[1]$ are the additive and multiplicative units, respectively.

2. Some geometry

2.1. Rings and varieties. The most basic object we will study is the n-dimensional complex vector space \mathbb{C}^{n}. You will learn during the semester that this is a toric variety, and the combinatorial data associated to it is the cone

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{1}, \ldots, x_{n} \geqslant 0\right\}
$$

which is often called the first orthant. Polynomial functions on \mathbb{C}^{n} are of course simply given by polynomials

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

in n variables. In fact, all smooth (you will learn what this means later) toric varieties locally look like \mathbb{C}^{n} for some n.
The second important object is the n-dimensional torus

$$
\left(\mathbb{C}^{x}\right)^{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n} \mid x_{1}, \ldots, x_{n} \neq 0\right\}
$$

Because all of the coordinates are nonzero, we can take their inverse, so functions on $\left(\mathbb{C}^{\times}\right)^{n}$ are given by Laurent polynomials

$$
\mathbb{C}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]=\mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] /\left(x_{1} y_{1}-1, \ldots, x_{n} y_{n}-1\right)
$$

Note that we can multiply elements of $\left(\mathbb{C}^{\times}\right)^{n}$ via the formula

$$
\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right):=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

The unit for this multiplication is clearly $(1, \ldots, 1)$, and elements are invertible via

$$
\left(x_{1}, \ldots, x_{n}\right)^{-1}:=\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)
$$

This gives the torus the structure of an abelian group. Now there is an action of $\left(\mathbb{C}^{\times}\right)^{n}$ on \mathbb{C}^{n} given by the formula

$$
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(t_{1} x_{1}, \ldots, t_{n} x_{n}\right)
$$

You will learn later that this is a key feature of all toric varieties, but this viewpoint will arise only a few times this semester.

In general, if $f_{1}, \ldots, f_{k} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, then there is an algebraic variety ${ }^{1}$

$$
\mathrm{V}\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}\right):=\left\{\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathbb{C}^{n} \mid \mathrm{f}_{1}(\mathbf{x})=\cdots=\mathrm{f}_{\mathrm{k}}(\mathbf{x})=0\right\}
$$

whose polynomial functions are given by the ring

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \cdots, f_{k}\right)
$$

We will require that this ring is an integral domain, or in other words that if $\mathrm{r} \cdot \mathrm{s}=0$, then either $r=0$ or $s=0$. This will geometrically correspond to the variety having only one component.
2.2. More general varieties. In general, algebraic varieties are constructed by gluing together things that look like $V\left(f_{1}, \ldots, f_{k}\right)$. I will not explain how gluing works in general, but instead I will give a few examples. The most important example is called projective space and has many different representations. The first is as the quotient

$$
\left(\mathbb{C}^{n+1} \backslash\{(0, \ldots, 0)\}\right) / \mathbb{C}^{\times}
$$

where \mathbb{C}^{\times}acts by scaling:

$$
t \cdot\left(x_{0}, \ldots, x_{n}\right)=\left(t x_{0}, \ldots, t x_{n}\right)
$$

Therefore, any point in \mathbb{P}^{n} can be described by homogeneous coordinates $\left[X_{0}, \ldots, X_{n}\right]$, where for any nonzero $t \in \mathbb{C}$, the coordinates $\left[X_{0}, \ldots, X_{n}\right]$ and $\left[t X_{0}, \ldots, t X_{n}\right.$] describe the same point.

Because at least one of the coordinates must be nonzero, suppose that $X_{0} \neq 0$. Then dividing by X_{0}, any point in $\left(X_{0} \neq 0\right) \subset \mathbb{P}^{n}$ can be described by the coordinates

$$
\left[1, \frac{X_{1}}{X_{0}}, \ldots, \frac{X_{n}}{X_{0}}\right]
$$

[^0]If we set $x_{i}=\frac{X_{i}}{X_{0}}$, we see that we have a copy of \mathbb{C}^{n}. But now we can consider the chart where $X_{1} \neq 0$, and here the coordinates are now

$$
\left[\frac{X_{0}}{X_{1}}, 1, \frac{X_{2}}{X_{1}}, \ldots, \frac{X_{n}}{X_{1}}\right] .
$$

If we write $y_{i}=\frac{x_{i}}{X_{1}}$, then we have another copy of \mathbb{C}^{n}. These two copies of \mathbb{C}^{n} overlap where both $X_{0}, X_{1} \neq 0$. In this region, to convert the x_{i} to the y_{i}, we can see that

$$
\begin{aligned}
y_{0} & =\frac{x_{0}}{x_{1}}=\left(\frac{x_{1}}{x_{0}}\right)^{-1}=x_{1}^{-1} \\
y_{2} & =\frac{x_{2}}{x_{1}}=\frac{x_{2}}{x_{0}} \cdot \frac{x_{0}}{x_{1}}=x_{2} x_{1}^{-1} \\
& \vdots \\
y_{n} & =\frac{x_{n}}{x_{1}}=\frac{x_{n}}{x_{0}} \cdot \frac{x_{0}}{x_{1}}=x_{n} x_{1}^{-1} .
\end{aligned}
$$

The change of coordinates between the $X_{i} \neq 0$ and $X_{j} \neq 0$ charts is similar.
Instead of beginning with the description of \mathbb{P}^{n} as a quotient (in fact all toric varieties can be described this way), we could in principle have started with $n+1$ copies of \mathbb{C}^{n} with coordinates

$$
x_{1}^{0}, \ldots, x_{n}^{0}, x_{0}^{1}, \widehat{x}_{1}^{1} \ldots, x_{n}^{1}, \ldots, x_{0}^{k} \ldots, \hat{x}_{k}^{k}, \ldots, x_{n}^{k} \ldots, x_{0}^{n}, \ldots, x_{n-1}^{n}
$$

(here the hat means that x_{k}^{k} is omitted) and then specified the transition maps

$$
x_{\mathfrak{i}}^{\ell}=x_{i}^{k}\left(x_{\ell}^{k}\right)^{-1}
$$

between the k-th and ℓ-th copies of \mathbb{C}^{n} whenever $k \neq \ell$ (here, we set $x_{k}^{k}=1$ for the purpose of this formula).

Later, you will learn that \mathbb{P}^{n} is a toric variety associated to the fan obtained by considering all cones generated by subsets of up to n of the vectors

$$
e_{1}, e_{2}, \ldots, e_{n},-e_{1}-e_{2}-\cdots-e_{n}
$$

where e_{i} is the vector with 1 in the i-th coordinate and 0 in the other coordinates.

Figure 1. Fan of \mathbb{P}^{2}

3. Introduction to toric varieties

We will now turn to the subject of this seminar. A classical viewpoint on toric varieties can be seen in the sequence of inclusions

$$
\left(\mathbb{C}^{\times}\right)^{n} \subset \mathbb{C}^{n} \subset \mathbb{P}^{n}
$$

Other examples include products of projective spaces and quotients of \mathbb{C}^{n} by finite abelian groups. We can define a toric variety to be a variety X of dimension n with an action of $\left(\mathbb{C}^{\times}\right)^{n}$ such that there is an orbit isomorphic to $\left(\mathbb{C}^{\times}\right)^{n}$. This definition explains the original name of toric varieties as torus embeddings, but it completely obscures the relationship with combinatorics that we will emphasize this semester.
3.1. Definition of a toric variety. Instead, we will construct a toric variety as follows. We will first consider a lattice $N=\mathbb{Z}^{n}$ and a fan Σ in N, which is a collection of strongly convex rational polyhedral cones in $N_{\mathbb{R}}=\mathbb{R}^{n}$.

Definition 3.1. A strongly convex rational polyhedral cone $\sigma \subset \mathbb{R}^{n}$ is a cone

$$
\mathbb{R}_{\geqslant 0} \cdot v_{1}+\cdots+\mathbb{R}_{\geqslant 0} \cdot v_{k}
$$

such that
(1) $v_{1}, \ldots, v_{k} \in \mathbb{Z}^{n}$;
(2) If $0 \neq v \in \sigma$, then $-v \notin \sigma$.

We will call these simply cones. We then consider the lattice $M=\operatorname{Hom}(N, \mathbb{Z}) \cong$ \mathbb{Z}^{n} with the pairing (in practice just the usual dot product)

$$
\langle-,-\rangle: M \otimes \mathrm{~N} \rightarrow \mathbb{Z} \quad\langle u, v\rangle=u(v)
$$

Then we define the dual cone $\sigma^{\vee} \subseteq M_{\mathbb{R}}=\mathbb{R}^{n}$ by the formula

$$
\sigma^{\vee}:=\left\{u \in M_{\mathbb{R}} \mid\langle u, v\rangle \geqslant 0 \text { for all } v \in \sigma\right\}
$$

Then we consider the semigroup $S_{\sigma}:=\sigma^{\vee} \cap M$, and then we may consider the commutative ring

$$
\mathbb{C}\left[S_{\sigma}\right]=\bigoplus_{u \in S_{\sigma}} \mathbb{C} \cdot x^{u}
$$

where $x^{v} \cdot x^{\mathfrak{u}^{\prime}}=x^{\mathfrak{u}+\mathfrak{u}^{\prime}}$ and $1=x^{0}$. This determines an algebraic variety X_{σ}. Now if $\tau \subset \sigma$ is a face, $\sigma^{\vee} \subseteq \tau^{\vee}$, and therefore $S_{\sigma} \subseteq S_{\tau}$, so there is an inclusion $\mathbb{C}\left[S_{\sigma}\right] \subseteq \mathbb{C}\left[S_{\tau}\right]$. This defines a map $X_{\tau} \subseteq X_{\sigma}$. Thus, if τ is a face of both σ, σ^{\prime}, X_{σ} and $X_{\sigma^{\prime}}$ are glued together along X_{τ}. From the fan Σ, this gluing process determines an algebraic variety, which is called X_{Σ}. For this seminar, we will take the perspective that a toric variety is something abstractly determined by the fan Σ, which will be the primary object of study.
3.2. Some examples. We will conclude with some examples.

Example 3.2. Consider the fan in \mathbb{R}^{2} consisting of the cone

$$
\sigma=\{(x, y) \mid x \geqslant 0, y \geqslant 0\}
$$

Then the dual cone is

$$
\begin{aligned}
\sigma^{\vee} & =\{(a, b) \mid a x+b y \geqslant 0 \text { for all } x, y \geqslant 0\} \\
& =\{(a, b) \mid a, b \geqslant 0\} .
\end{aligned}
$$

Therefore, $S_{\sigma}=\left\{(a, b) \in \mathbb{Z}^{2} \mid a, b \geqslant 0\right\}$, and therefore,

$$
\mathbb{C}\left[S_{\sigma}\right]=\bigoplus_{a, b \geqslant 0} \mathbb{C} \cdot x^{a} y^{b}=\mathbb{C}[x, y]
$$

so $X_{\sigma}=\mathbb{C}^{2}$.
Example 3.3. Consider the fan in Figure 1 with σ_{1} the first quadrant and σ_{2}, σ_{3} numbered counterclockwise. Also write $v_{1}=(1,0), v_{2}=(0,1), v_{3}=(-1,-1)$. Then we can compute

$$
\begin{aligned}
& \sigma_{1}^{\vee}=\{(a, b) \mid a, b \geqslant 0\} \\
& \sigma_{2}^{\vee}=\{(a, b) \mid b \geqslant 0, a+b \leqslant 0\} \\
& \sigma_{3}^{\vee}=\{(a, b) \mid a \geqslant 0, a+b \leqslant 0\}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \mathbb{C}\left[\sigma_{1}\right]=\mathbb{C}[x, y] \\
& \mathbb{C}\left[\sigma_{2}\right]=\mathbb{C}\left[x^{-1}, x^{-1} y\right] \\
& \mathbb{C}\left[\sigma_{3}\right]=\mathbb{C}\left[y^{-1}, x y^{-1}\right] .
\end{aligned}
$$

If we set $x=\frac{x_{1}}{X_{0}}$ and $y=\frac{x_{2}}{X_{0}}$, these glue to form \mathbb{P}^{2} in the way described in Section 2.2.

Example 3.4. Consider the fan in \mathbb{R}^{n} defined by the cone $\sigma=\{0\}$. Then $\sigma^{\vee}=$ $M=\mathbb{R}^{n}$, so $S_{\sigma}=\mathbb{Z}^{n}$. Finally, we obtain $\mathbb{C}\left[S_{\sigma}\right]=\mathbb{C}\left[x_{1}, x_{1}^{-1}, \ldots, x_{n}, x_{n}^{-1}\right]$, so $X_{\sigma}=\left(\mathbb{C}^{\times}\right)^{n}$, as discussed in Section 2.1.

[^0]: ${ }^{1}$ This is not strictly true, but will be OK in all the examples we consider.

