CRASH COURSE ON ALGEBRA AND GEOMETRY

PATRICK LEI

1. BASIC DEFINITIONS

Here, I will state some definitions of various objects that you have hopefully seen before. If you are unfamiliar with something, please interrupt me.

Definition 1.1. An *abelian group* is a tuple $(G, \cdot, 1)$ of a set G, a multiplication

$$\cdot: \mathsf{G} \times \mathsf{G} \to \mathsf{G}$$

and an element $1 \in G$ satisfying the following properties:

- (1) For any $g \in G$, $1 \cdot g = g \cdot 1 = g$;
- (2) For any $g_1, g_2, g_3 \in G$, $(g_1 \cdot g_2) \cdot g_3 = g_1 \cdot (g_2 \cdot g_3)$;
- (3) For any $g \in G$, there exists $g^{-1} \in G$ such that $g \cdot g^{-1} = g^{-1} \cdot g = 1$;
- (4) For any $g_1, g_2 \in G$, $g_1 \cdot g_2 = g_2 \cdot g_1$.

Some examples of abelian groups include \mathbb{Z}^n (with addition), $\mathbb{Z}/n\mathbb{Z}$ (with addition), and $\mathbb{C} \setminus 0$ (with multiplication).

Definition 1.2. Let G be an abelian group and X be a set. Then an *action of* G *on* X is a map

 $\cdot \colon G \times X \to X$

satisfying the following axioms:

- (1) For any $x \in X$, $1 \cdot x = x$;
- (2) For any $g_1, g_2 \in G$ and $x \in X$, $g_1 \cdot (g_2 \cdot x) = (g_1 \cdot g_2) \cdot x$.

A simple example of a group action is if X = G and then $g_1 \cdot g_2$ is simply the multiplication in G.

Definition 1.3. A *commutative ring* is a tuple $(R, +, \cdot, 0, 1)$ consisting of a set R, an addition $+: R \times R \rightarrow R$, a multiplication $\cdot: R \times R \rightarrow R$, and $0, 1 \in R$ satisfying the following properties:

- (1) For any $r \in R$, 0 + r = r + 0 = r;
- (2) For any $r_1, r_2 \in R$, $r_1 + r_2 = r_2 + r_1$;
- (3) For any $r \in R$, there exists $-r \in R$ such that r + (-r) = (-r) + r = 0;
- (4) For any $r_1, r_2, r_3 \in R$, $r_1 + (r_2 + r_3) = (r_1 + r_2) + r_3$;

Date: September 13, 2023.

- (5) For any $r \in R$, $1 \cdot r = r \cdot 1 = r$;
- (6) For any $r_1, r_2 \in R$, $r_1 \cdot r_2 = r_2 \cdot r_1$;
- (7) For any $r_1, r_2, r_3 \in R$, $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$;
- (8) For any $r_1, r_2, r_3 \in R$, $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3$.

Some examples of commutative rings are \mathbb{Z} , \mathbb{C} , \mathbb{R} , $\mathbb{C}[x]$, and $\mathbb{Z}/n\mathbb{Z}$.

Definition 1.4. Let R be a commutative ring. An *ideal* $I \subset R$ is a subset satisfying the following properties:

- (1) For any $a_1, a_2 \in I$, $a_1 + a_2 \in I$;
- (2) For any $a \in I$, $-a \in I$;
- (3) For any $a \in I$ and $r \in R$, $r \cdot a \in I$.

Some examples of ideals are $n\mathbb{Z} \subset \mathbb{Z}$ for any integer $n, R \subseteq R$ for any commutative ring $R, \{0\} \subset R$ for any commutative ring R, and

$$(a_1,\ldots,a_k) \coloneqq a_1 R + \cdots + a_k R \subseteq R$$

for any $a_1, \ldots, a_k \in \mathbb{R}$.

For any ideal $I \subset R$ of a ring R, we can form the *quotient ring* R/I as follows. Define the equivalence relation ~ on R by r ~ s if $r - s \in I$. Then the ring R/I is the set of equivalence classes [r] with the operations

$$[r] \cdot [s] = [r \cdot s]$$
 $[r] + [s] = [r + s]$

This is well-defined because if $r \sim r'$ and $s \sim s'$, then

(

$$\begin{aligned} \mathbf{r} + \mathbf{s}) - (\mathbf{r}' + \mathbf{s}') &= (\mathbf{r} - \mathbf{r}') + (\mathbf{s} - \mathbf{s}') \in \mathbf{I} \\ \mathbf{r} \mathbf{s} - \mathbf{r}' \mathbf{s}' &= \mathbf{r} \mathbf{s} - \mathbf{r} \mathbf{s}' + \mathbf{r} \mathbf{s}' - \mathbf{r}' \mathbf{s}' \\ &= \mathbf{r} (\mathbf{s} - \mathbf{s}') + (\mathbf{r} - \mathbf{r}') \mathbf{s}' \in \mathbf{I}. \end{aligned}$$

Clearly addition and multiplication are commutative and associative, and finally it is easy to see that

$$\begin{aligned} [0] + [r] &= [0 + r] = [r] \\ [1] \cdot [r] &= [1 \cdot r] = [r] \\ [-r] + [r] &= [-r + r] = [0], \end{aligned}$$

so [0] and [1] are the additive and multiplicative units, respectively.

2. Some geometry

2.1. **Rings and varieties.** The most basic object we will study is the n-dimensional complex vector space \mathbb{C}^n . You will learn during the semester that this is a toric variety, and the combinatorial data associated to it is the cone

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n\mid x_1,\ldots,x_n\geq 0\},\$$

which is often called the first orthant. Polynomial functions on \mathbb{C}^n are of course simply given by polynomials

$$\mathbb{C}[x_1,\ldots,x_n]$$

in n variables. In fact, all smooth (you will learn what this means later) toric varieties locally look like \mathbb{C}^n for some n.

The second important object is the n-dimensional torus

 $(\mathbb{C}^{\times})^{\mathfrak{n}} \coloneqq \{(x_1, \ldots, x_{\mathfrak{n}}) \in \mathbb{C}^{\mathfrak{n}} \mid x_1, \ldots, x_{\mathfrak{n}} \neq 0\}.$

Because all of the coordinates are nonzero, we can take their inverse, so functions on $(\mathbb{C}^{\times})^n$ are given by *Laurent polynomials*

$$\mathbb{C}[x_1, x_1^{-1}, \dots, x_n, x_n^{-1}] = \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] / (x_1 y_1 - 1, \dots, x_n y_n - 1).$$

Note that we can multiply elements of $(\mathbb{C}^{\times})^n$ via the formula

 $(\mathbf{x}_1,\ldots,\mathbf{x}_n)\cdot(\mathbf{y}_1,\ldots,\mathbf{y}_n)\coloneqq(\mathbf{x}_1\mathbf{y}_1,\ldots,\mathbf{x}_n\mathbf{y}_n).$

The unit for this multiplication is clearly (1, ..., 1), and elements are invertible via

$$(x_1, \ldots, x_n)^{-1} \coloneqq (x_1^{-1}, \ldots, x_n^{-1}).$$

This gives the torus the structure of an *abelian group*. Now there is an *action* of $(\mathbb{C}^{\times})^n$ on \mathbb{C}^n given by the formula

$$\mathbf{t}_1,\ldots,\mathbf{t}_n)\cdot(\mathbf{x}_1,\ldots,\mathbf{x}_n)=(\mathbf{t}_1\mathbf{x}_1,\ldots,\mathbf{t}_n\mathbf{x}_n).$$

You will learn later that this is a key feature of all toric varieties, but this viewpoint will arise only a few times this semester.

In general, if $f_1, \ldots, f_k \in \mathbb{C}[x_1, \ldots, x_n]$, then there is an algebraic variety¹

 $V(f_1,\ldots,f_k) \coloneqq \{(x_1,\ldots,x_n) \in \mathbb{C}^n \mid f_1(x) = \cdots = f_k(x) = 0\}$

whose polynomial functions are given by the ring

$$\mathbb{C}[x_1,\ldots,x_n]/(f_1,\cdots,f_k).$$

We will require that this ring is an *integral domain*, or in other words that if $r \cdot s = 0$, then either r = 0 or s = 0. This will geometrically correspond to the variety having only one component.

2.2. **More general varieties.** In general, *algebraic varieties* are constructed by gluing together things that look like $V(f_1, ..., f_k)$. I will not explain how gluing works in general, but instead I will give a few examples. The most important example is called *projective space* and has many different representations. The first is as the quotient

$$(\mathbb{C}^{n+1} \setminus \{(0,\ldots,0)\})/\mathbb{C}^{\times},$$

where \mathbb{C}^{\times} acts by scaling:

$$\mathbf{t} \cdot (\mathbf{x}_0, \dots, \mathbf{x}_n) = (\mathbf{t} \mathbf{x}_0, \dots, \mathbf{t} \mathbf{x}_n).$$

Therefore, any point in \mathbb{P}^n can be described by *homogeneous coordinates* $[X_0, \ldots, X_n]$, where for any nonzero $t \in \mathbb{C}$, the coordinates $[X_0, \ldots, X_n]$ and $[tX_0, \ldots, tX_n]$ describe the same point.

Because at least one of the coordinates must be nonzero, suppose that $X_0 \neq 0$. Then dividing by X_0 , any point in $(X_0 \neq 0) \subset \mathbb{P}^n$ can be described by the coordinates

$$\left[1,\frac{X_1}{X_0},\ldots,\frac{X_n}{X_0}\right]$$

¹This is not strictly true, but will be OK in all the examples we consider.

If we set $x_i = \frac{X_i}{X_0}$, we see that we have a copy of \mathbb{C}^n . But now we can consider the chart where $X_1 \neq 0$, and here the coordinates are now

$$\left[\frac{X_0}{X_1}, 1, \frac{X_2}{X_1}, \dots, \frac{X_n}{X_1}\right].$$

If we write $y_i = \frac{X_i}{X_1}$, then we have another copy of \mathbb{C}^n . These two copies of \mathbb{C}^n overlap where both $X_0, X_1 \neq 0$. In this region, to convert the x_i to the y_i , we can see that

$$y_{0} = \frac{X_{0}}{X_{1}} = \left(\frac{X_{1}}{X_{0}}\right)^{-1} = x_{1}^{-1}$$

$$y_{2} = \frac{X_{2}}{X_{1}} = \frac{X_{2}}{X_{0}} \cdot \frac{X_{0}}{X_{1}} = x_{2}x_{1}^{-1}$$

$$\vdots$$

$$y_{n} = \frac{X_{n}}{X_{1}} = \frac{X_{n}}{X_{0}} \cdot \frac{X_{0}}{X_{1}} = x_{n}x_{1}^{-1}.$$

The change of coordinates between the $X_i \neq 0$ and $X_j \neq 0$ charts is similar.

Instead of beginning with the description of \mathbb{P}^n as a quotient (in fact all toric varieties can be described this way), we could in principle have started with n + 1 copies of \mathbb{C}^n with coordinates

$$x_1^0, \dots, x_n^0, x_0^1, \hat{x}_1^1, \dots, x_n^1, \dots, x_0^k, \dots, \hat{x}_k^k, \dots, x_n^k, \dots, x_n^n, \dots, x_{n-1}^n$$

(here the hat means that x_k^k is omitted) and then specified the transition maps

$$x_i^\ell = x_i^k (x_\ell^k)^{-1}$$

between the k-th and ℓ -th copies of \mathbb{C}^n whenever $k \neq \ell$ (here, we set $x_k^k = 1$ for the purpose of this formula).

Later, you will learn that \mathbb{P}^n is a toric variety associated to the fan obtained by considering all cones generated by subsets of up to n of the vectors

 $e_1, e_2, \ldots, e_n, -e_1 - e_2 - \cdots - e_n,$

where e_i is the vector with 1 in the i-th coordinate and 0 in the other coordinates.

FIGURE 1. Fan of \mathbb{P}^2

3. INTRODUCTION TO TORIC VARIETIES

We will now turn to the subject of this seminar. A classical viewpoint on toric varieties can be seen in the sequence of inclusions

$$(\mathbb{C}^{\times})^{\mathfrak{n}} \subset \mathbb{C}^{\mathfrak{n}} \subset \mathbb{P}^{\mathfrak{n}}.$$

Other examples include products of projective spaces and quotients of \mathbb{C}^n by finite abelian groups. We can define a toric variety to be a variety X of dimension n with an action of $(\mathbb{C}^{\times})^n$ such that there is an orbit isomorphic to $(\mathbb{C}^{\times})^n$. This definition explains the original name of toric varieties as *torus embeddings*, but it completely obscures the relationship with combinatorics that we will emphasize this semester.

3.1. **Definition of a toric variety.** Instead, we will construct a toric variety as follows. We will first consider a lattice $N = \mathbb{Z}^n$ and a *fan* Σ in N, which is a collection of strongly convex rational polyhedral cones in $N_{\mathbb{R}} = \mathbb{R}^n$.

Definition 3.1. A strongly convex rational polyhedral cone $\sigma \subset \mathbb{R}^n$ is a cone

$$\mathbb{R}_{\geq 0} \cdot \nu_1 + \cdots + \mathbb{R}_{\geq 0} \cdot \nu_k$$

such that

- (1) $v_1, ..., v_k \in \mathbb{Z}^n$;
- (2) If $0 \neq v \in \sigma$, then $-v \notin \sigma$.

We will call these simply cones. We then consider the lattice $M = Hom(N, \mathbb{Z}) \cong \mathbb{Z}^n$ with the pairing (in practice just the usual dot product)

$$\langle -, - \rangle : \mathbf{M} \otimes \mathbf{N} \to \mathbb{Z} \qquad \langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}(\mathbf{v}).$$

Then we define the *dual cone* $\sigma^{\vee} \subseteq M_{\mathbb{R}} = \mathbb{R}^n$ by the formula

$$\sigma^{\vee} \coloneqq \{ \mathfrak{u} \in \mathcal{M}_{\mathbb{R}} \mid \langle \mathfrak{u}, \nu \rangle \ge 0 \text{ for all } \nu \in \sigma \}.$$

Then we consider the semigroup $S_{\sigma} \coloneqq \sigma^{\vee} \cap M$, and then we may consider the commutative ring

$$\mathbb{C}[S_{\sigma}] = \bigoplus_{u \in S_{\sigma}} \mathbb{C} \cdot x^{u},$$

where $x^{\nu} \cdot x^{\mu'} = x^{\mu+\mu'}$ and $1 = x^0$. This determines an algebraic variety X_{σ} . Now if $\tau \subset \sigma$ is a face, $\sigma^{\vee} \subseteq \tau^{\vee}$, and therefore $S_{\sigma} \subseteq S_{\tau}$, so there is an inclusion $\mathbb{C}[S_{\sigma}] \subseteq \mathbb{C}[S_{\tau}]$. This defines a map $X_{\tau} \subseteq X_{\sigma}$. Thus, if τ is a face of both σ, σ' , X_{σ} and $X_{\sigma'}$ are glued together along X_{τ} . From the fan Σ , this gluing process determines an algebraic variety, which is called X_{Σ} . For this seminar, we will take the perspective that a toric variety is something abstractly determined by the fan Σ , which will be the primary object of study. 3.2. Some examples. We will conclude with some examples.

Example 3.2. Consider the fan in \mathbb{R}^2 consisting of the cone

 $\sigma = \{(x,y) \mid x \geqslant 0, y \geqslant 0\}.$

Then the dual cone is

$$\sigma^{\vee} = \{(a, b) \mid ax + by \ge 0 \text{ for all } x, y \ge 0\}$$
$$= \{(a, b) \mid a, b \ge 0\}.$$

Therefore, $S_{\sigma} = \left\{ (a, b) \in \mathbb{Z}^2 \mid a, b \ge 0 \right\}$, and therefore,

$$\mathbb{C}[S_{\sigma}] = \bigoplus_{\alpha, b \ge 0} \mathbb{C} \cdot x^{\alpha} y^{b} = \mathbb{C}[x, y],$$

so $X_{\sigma} = \mathbb{C}^2$.

Example 3.3. Consider the fan in Figure 1 with σ_1 the first quadrant and σ_2, σ_3 numbered counterclockwise. Also write $\nu_1 = (1, 0), \nu_2 = (0, 1), \nu_3 = (-1, -1)$. Then we can compute

$$\begin{split} \sigma_1^{\vee} &= \{(a,b) \mid a,b \ge 0\} \\ \sigma_2^{\vee} &= \{(a,b) \mid b \ge 0, a+b \leqslant 0\} \\ \sigma_3^{\vee} &= \{(a,b) \mid a \ge 0, a+b \leqslant 0\}. \end{split}$$

This implies that

$$C[\sigma_1] = C[x, y]$$

$$C[\sigma_2] = C[x^{-1}, x^{-1}y]$$

$$C[\sigma_3] = C[y^{-1}, xy^{-1}].$$

If we set $x = \frac{X_1}{X_0}$ and $y = \frac{X_2}{X_0}$, these glue to form \mathbb{P}^2 in the way described in Section 2.2.

Example 3.4. Consider the fan in \mathbb{R}^n defined by the cone $\sigma = \{0\}$. Then $\sigma^{\vee} = M = \mathbb{R}^n$, so $S_{\sigma} = \mathbb{Z}^n$. Finally, we obtain $\mathbb{C}[S_{\sigma}] = \mathbb{C}[x_1, x_1^{-1}, \dots, x_n, x_n^{-1}]$, so $X_{\sigma} = (\mathbb{C}^{\times})^n$, as discussed in Section 2.1.