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1. Basic definitions

Here, I will state some definitions of various objects that you have hopefully seen
before. If you are unfamiliar with something, please interrupt me.

Definition 1.1. An abelian group is a tuple (G, ·, 1) of a set G, a multiplication

· : G×G → G,

and an element 1 ∈ G satisfying the following properties:

(1) For any g ∈ G, 1 · g = g · 1 = g;

(2) For any g1,g2,g3 ∈ G, (g1 · g2) · g3 = g1 · (g2 · g3);

(3) For any g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = 1;

(4) For any g1,g2 ∈ G, g1 · g2 = g2 · g1.

Some examples of abelian groups include Zn (with addition), Z/nZ (with addi-
tion), and C \ 0 (with multiplication).

Definition 1.2. Let G be an abelian group and X be a set. Then an action of G on X
is a map

· : G×X → X

satisfying the following axioms:

(1) For any x ∈ X, 1 · x = x;

(2) For any g1,g2 ∈ G and x ∈ X, g1 · (g2 · x) = (g1 · g2) · x.

A simple example of a group action is if X = G and then g1 · g2 is simply the
multiplication in G.

Definition 1.3. A commutative ring is a tuple (R,+, ·, 0, 1) consisting of a set R, an
addition +: R× R → R, a multiplication · : R× R → R, and 0, 1 ∈ R satisfying the
following properties:

(1) For any r ∈ R, 0+ r = r+ 0 = r;

(2) For any r1, r2 ∈ R, r1 + r2 = r2 + r1;

(3) For any r ∈ R, there exists −r ∈ R such that r+ (−r) = (−r) + r = 0;

(4) For any r1, r2, r3 ∈ R, r1 + (r2 + r3) = (r1 + r2) + r3;
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(5) For any r ∈ R, 1 · r = r · 1 = r;

(6) For any r1, r2 ∈ R, r1 · r2 = r2 · r1;

(7) For any r1, r2, r3 ∈ R, r1 · (r2 · r3) = (r1 · r2) · r3;

(8) For any r1, r2, r3 ∈ R, r1 · (r2 + r3) = r1 · r2 + r1 · r3.

Some examples of commutative rings are Z, C, R, C[x], and Z/nZ.

Definition 1.4. Let R be a commutative ring. An ideal I ⊂ R is a subset satisfying
the following properties:

(1) For any a1,a2 ∈ I, a1 + a2 ∈ I;

(2) For any a ∈ I, −a ∈ I;

(3) For any a ∈ I and r ∈ R, r · a ∈ I.

Some examples of ideals are nZ ⊂ Z for any integer n, R ⊆ R for any commutative
ring R, {0} ⊂ R for any commutative ring R, and

(a1, . . . ,ak) := a1R+ · · ·+ akR ⊆ R

for any a1, . . . ,ak ∈ R.

For any ideal I ⊂ R of a ring R, we can form the quotient ring R/I as follows. Define
the equivalence relation ∼ on R by r ∼ s if r− s ∈ I. Then the ring R/I is the set of
equivalence classes [r] with the operations

[r] · [s] = [r · s] [r] + [s] = [r+ s].

This is well-defined because if r ∼ r ′ and s ∼ s ′, then

(r+ s) − (r ′ + s ′) = (r− r ′) + (s− s ′) ∈ I

rs− r ′s ′ = rs− rs ′ + rs ′ − r ′s ′

= r(s− s ′) + (r− r ′)s ′ ∈ I.

Clearly addition and multiplication are commutative and associative, and finally
it is easy to see that

[0] + [r] = [0+ r] = [r]

[1] · [r] = [1 · r] = [r]

[−r] + [r] = [−r+ r] = [0],

so [0] and [1] are the additive and multiplicative units, respectively.

2. Some geometry

2.1. Rings and varieties. The most basic object we will study is the n-dimensional
complex vector space Cn. You will learn during the semester that this is a toric
variety, and the combinatorial data associated to it is the cone

{(x1, . . . , xn) ∈ Rn | x1, . . . , xn ⩾ 0},

which is often called the first orthant. Polynomial functions on Cn are of course
simply given by polynomials

C[x1, . . . , xn]
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in n variables. In fact, all smooth (you will learn what this means later) toric
varieties locally look like Cn for some n.

The second important object is the n-dimensional torus

(C×)n := {(x1, . . . , xn) ∈ Cn | x1, . . . , xn ̸= 0}.

Because all of the coordinates are nonzero, we can take their inverse, so functions
on (C×)n are given by Laurent polynomials

C[x1, x−1
1 , . . . , xn, x−1

n ] = C[x1, . . . , xn,y1, . . . ,yn]/(x1y1 − 1, . . . , xnyn − 1).

Note that we can multiply elements of (C×)n via the formula

(x1, . . . , xn) · (y1, . . . ,yn) := (x1y1, . . . , xnyn).

The unit for this multiplication is clearly (1, . . . , 1), and elements are invertible via

(x1, . . . , xn)−1 := (x−1
1 , . . . , x−1

n ).

This gives the torus the structure of an abelian group. Now there is an action of
(C×)n on Cn given by the formula

(t1, . . . , tn) · (x1, . . . , xn) = (t1x1, . . . , tnxn).

You will learn later that this is a key feature of all toric varieties, but this viewpoint
will arise only a few times this semester.

In general, if f1, . . . , fk ∈ C[x1, . . . , xn], then there is an algebraic variety1

V(f1, . . . , fk) := {(x1, . . . , xn) ∈ Cn | f1(x) = · · · = fk(x) = 0}

whose polynomial functions are given by the ring

C[x1, . . . , xn]/(f1, · · · , fk).

We will require that this ring is an integral domain, or in other words that if r · s = 0,
then either r = 0 or s = 0. This will geometrically correspond to the variety having
only one component.

2.2. More general varieties. In general, algebraic varieties are constructed by gluing
together things that look like V(f1, . . . , fk). I will not explain how gluing works in
general, but instead I will give a few examples. The most important example is
called projective space and has many different representations. The first is as the
quotient

(Cn+1 \ {(0, . . . , 0)})/C×,
where C× acts by scaling:

t · (x0, . . . , xn) = (tx0, . . . , txn).

Therefore, any point in Pn can be described by homogeneous coordinates [X0, . . . ,Xn],
where for any nonzero t ∈ C, the coordinates [X0, . . . ,Xn] and [tX0, . . . , tXn]
describe the same point.

Because at least one of the coordinates must be nonzero, suppose that X0 ̸= 0. Then
dividing by X0, any point in (X0 ̸= 0) ⊂ Pn can be described by the coordinates[

1,
X1

X0
, . . . ,

Xn

X0

]
.

1This is not strictly true, but will be OK in all the examples we consider.
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If we set xi =
Xi
X0

, we see that we have a copy of Cn. But now we can consider the
chart where X1 ̸= 0, and here the coordinates are now[

X0

X1
, 1,

X2

X1
, . . . ,

Xn

X1

]
.

If we write yi =
Xi
X1

, then we have another copy of Cn. These two copies of Cn

overlap where both X0,X1 ̸= 0. In this region, to convert the xi to the yi, we can
see that

y0 =
X0

X1
=

(
X1

X0

)−1

= x−1
1

y2 =
X2

X1
=

X2

X0
· X0

X1
= x2x

−1
1

...

yn =
Xn

X1
=

Xn

X0
· X0

X1
= xnx

−1
1 .

The change of coordinates between the Xi ̸= 0 and Xj ̸= 0 charts is similar.

Instead of beginning with the description of Pn as a quotient (in fact all toric
varieties can be described this way), we could in principle have started with n+ 1
copies of Cn with coordinates

x01, . . . , x0n, x10, x̂11 . . . , x1n, . . . , xk0 . . . , x̂kk, . . . , xkn . . . , xn0 , . . . , xnn−1

(here the hat means that xkk is omitted) and then specified the transition maps

xℓi = xki (x
k
ℓ )

−1

between the k-th and ℓ-th copies of Cn whenever k ̸= ℓ (here, we set xkk = 1 for
the purpose of this formula).

Later, you will learn that Pn is a toric variety associated to the fan obtained by
considering all cones generated by subsets of up to n of the vectors

e1, e2, . . . , en,−e1 − e2 − · · ·− en,

where ei is the vector with 1 in the i-th coordinate and 0 in the other coordinates.

Figure 1. Fan of P2
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3. Introduction to toric varieties

We will now turn to the subject of this seminar. A classical viewpoint on toric
varieties can be seen in the sequence of inclusions

(C×)n ⊂ Cn ⊂ Pn.

Other examples include products of projective spaces and quotients of Cn by finite
abelian groups. We can define a toric variety to be a variety X of dimension n

with an action of (C×)n such that there is an orbit isomorphic to (C×)n. This
definition explains the original name of toric varieties as torus embeddings, but it
completely obscures the relationship with combinatorics that we will emphasize
this semester.

3.1. Definition of a toric variety. Instead, we will construct a toric variety as
follows. We will first consider a lattice N = Zn and a fan Σ in N, which is a
collection of strongly convex rational polyhedral cones in NR = Rn.

Definition 3.1. A strongly convex rational polyhedral cone σ ⊂ Rn is a cone

R⩾0 · v1 + · · ·+ R⩾0 · vk

such that

(1) v1, . . . , vk ∈ Zn;

(2) If 0 ̸= v ∈ σ, then −v /∈ σ.

We will call these simply cones. We then consider the lattice M = Hom(N, Z) ∼=
Zn with the pairing (in practice just the usual dot product)

⟨−,−⟩ : M⊗N → Z ⟨u, v⟩ = u(v).

Then we define the dual cone σ∨ ⊆ MR = Rn by the formula

σ∨ := {u ∈ MR | ⟨u, v⟩ ⩾ 0 for all v ∈ σ}.

Then we consider the semigroup Sσ := σ∨ ∩M, and then we may consider the
commutative ring

C[Sσ] =
⊕
u∈Sσ

C · xu,

where xv · xu ′
= xu+u ′

and 1 = x0. This determines an algebraic variety Xσ.
Now if τ ⊂ σ is a face, σ∨ ⊆ τ∨, and therefore Sσ ⊆ Sτ, so there is an inclusion
C[Sσ] ⊆ C[Sτ]. This defines a map Xτ ⊆ Xσ. Thus, if τ is a face of both σ,σ ′,
Xσ and Xσ ′ are glued together along Xτ. From the fan Σ, this gluing process
determines an algebraic variety, which is called XΣ. For this seminar, we will take
the perspective that a toric variety is something abstractly determined by the fan
Σ, which will be the primary object of study.
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3.2. Some examples. We will conclude with some examples.

Example 3.2. Consider the fan in R2 consisting of the cone

σ = {(x,y) | x ⩾ 0,y ⩾ 0}.

Then the dual cone is

σ∨ = {(a,b) | ax+ by ⩾ 0 for all x,y ⩾ 0}

= {(a,b) | a,b ⩾ 0}.

Therefore, Sσ =
{
(a,b) ∈ Z2 | a,b ⩾ 0

}
, and therefore,

C[Sσ] =
⊕

a,b⩾0

C · xayb = C[x,y],

so Xσ = C2.

Example 3.3. Consider the fan in Figure 1 with σ1 the first quadrant and σ2,σ3

numbered counterclockwise. Also write v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1).
Then we can compute

σ∨
1 = {(a,b) | a,b ⩾ 0}

σ∨
2 = {(a,b) | b ⩾ 0,a+ b ⩽ 0}

σ∨
3 = {(a,b) | a ⩾ 0,a+ b ⩽ 0}.

This implies that

C[σ1] = C[x,y]

C[σ2] = C[x−1, x−1y]

C[σ3] = C[y−1, xy−1].

If we set x = X1
X0

and y = X2
X0

, these glue to form P2 in the way described
in Section 2.2.

Example 3.4. Consider the fan in Rn defined by the cone σ = {0}. Then σ∨ =

M = Rn, so Sσ = Zn. Finally, we obtain C[Sσ] = C[x1, x−1
1 , . . . , xn, x−1

n ], so
Xσ = (C×)n, as discussed in Section 2.1.
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