CRASH COURSE ON ALGEBRA AND GEOMETRY

PATRICK LEI

1. BASIC DEFINITIONS
Here, I will state some definitions of various objects that you have hopefully seen

before. If you are unfamiliar with something, please interrupt me.

Definition 1.1. An abelian group is a tuple (G, -, 1) of a set G, a multiplication
2GxG—=G,
and an element 1 € G satisfying the following properties:
(1) Foranyge G,1-g=g-1=g;
(2) Forany g1,92,93 € G, (91-92)- 93 = g1 -(92-93);
(3) For any g € G, there exists g~' € Gsuch thatg-g~' =g~ '-g=1;
(4) Forany g1,92 € G, 91-92 =92 91-

Some examples of abelian groups include Z™ (with addition), Z/nZ (with addi-
tion), and C \ 0 (with multiplication).

Definition 1.2. Let G be an abelian group and X be a set. Then an action of G on X
is a map
T GEx X=X

satisfying the following axioms:
(1) Foranyx € X, 1 - x =x;
(2) Forany g1,92 € Gand x € X, g1-(g2-x) =(g1-92) - x.

A simple example of a group action is if X = G and then g7 - g2 is simply the
multiplication in G.

Definition 1.3. A commutative ring is a tuple (R, +,-,0,1) consisting of a set R, an
addition +: R x R — R, a multiplication -: R x R = R, and 0, 1 € R satisfying the
following properties:

(1) Foranyre R, 0+r=7r+0=r1;

(2) Forany rq,72 € R, 11 +12 =12 +717;

(3) For any r € R, there exists —r € Rsuch that r+ (—1) = (—1) +17=0;
(4) For any 11,712,713 € R, 71 + (12 +713) = (v1 +712) +713;
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(®) ForanyreR, 1-r=1-1=1;
(6
7

)
) Forany r1,72 € R, 1112 =715 717;

) Forany 1,712,713 €R, 11 - (r2-73) = (17 -712) " 73;

(8) Forany 11,712,713 €R, 17 - (T2 4+73) =77 -T2+ 77 -73.

Some examples of commutative rings are Z, C, R, C[x|, and Z/nZ.

Definition 1.4. Let R be a commutative ring. An ideal I C R is a subset satisfying
the following properties:

(1) Forany aj,a €L, aj+ay €[
(2) Foranyael, —ael;

(3) ForanyaclandreR,r-acl

Some examples of ideals are nZ C Z for any integer n, R C R for any commutative
ring R, {0} C R for any commutative ring R, and

(a1,...,ax) =aiR+---+axRCR
forany aq,...,ax € R.

For any ideal I C R of a ring R, we can form the quotient ring R/I as follows. Define
the equivalence relation ~ on R by r ~ s if r — s € I. Then the ring R/I is the set of
equivalence classes [r] with the operations

[l -[sl=[-s]  [l+I[s]=[r+sl
This is well-defined because if v ~ v/ and s ~ s/, then
r+s)—(r'+s)=Fr—1)+(s=s") el
rs—1's’ =rs—1s’ +1s’ —1's’
=1(s—s")+(r—1")s’ €L

Clearly addition and multiplication are commutative and associative, and finally
it is easy to see that

O]+ [l =[0+71] = [1]
-l=0-1=0
[—r]+[r] = [—r+71] =[0],

so [0] and [1] are the additive and multiplicative units, respectively.

2. SOME GEOMETRY

2.1. Rings and varieties. The most basic object we will study is the n-dimensional
complex vector space C™. You will learn during the semester that this is a toric
variety, and the combinatorial data associated to it is the cone

{(X],...,Xn) G ]Rn |X]/"°/XTL 2 0}/

which is often called the first orthant. Polynomial functions on C™ are of course
simply given by polynomials
C[X]/ .. -/XT'L}
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in n variables. In fact, all smooth (you will learn what this means later) toric
varieties locally look like C™ for some n.

The second important object is the n-dimensional torus
(CO™ ={(x1,...,xn) €C™ [ x7,...,xn # O}
Because all of the coordinates are nonzero, we can take their inverse, so functions
on (C*)™ are given by Laurent polynomials
C[X1/X]_]r' . '/XTUXEW - C[X1I' ey Xn,Y1,. - -/Un]/(XﬂJ] - 1/' e XnYn — 1)
Note that we can multiply elements of (C*)™ via the formula

(X1/' "/XTL) . (91/- --/Un) = (XﬂJ],- . '/Xnyn)-
The unit for this multiplication is clearly (1,...,1), and elements are invertible via

(X1, xn) "= (xﬂ,...,xf).

This gives the torus the structure of an abelian group. Now there is an action of
(C*)™ on C™ given by the formula
(1, tn) - (X1, 0 xn) = (tixg, .00 tnXn).

You will learn later that this is a key feature of all toric varieties, but this viewpoint
will arise only a few times this semester.

In general, if fy,...,fi € Clx1,...,Xn], then there is an algebraic Variety1
V(f1,...,fx) ={(x1,...,xn) €C™ [ f1(x) =--- = fx(x) =0}
whose polynomial functions are given by the ring
Clx1,...,xnl/(f1, -+, Ti).

We will require that this ring is an integral domain, or in other words thatif r-s =0,
then either r = 0 or s = 0. This will geometrically correspond to the variety having
only one component.

2.2. More general varieties. In general, algebraic varieties are constructed by gluing
together things that look like V(fy,..., fi). I will not explain how gluing works in
general, but instead I will give a few examples. The most important example is
called projective space and has many different representations. The first is as the
quotient

(€I {(0,..,0n/C,

where C* acts by scaling:
t-(xg,.+-,%Xn) = (txg, ..., txn).

Therefore, any point in IP™ can be described by homogeneous coordinates [Xo, . .., Xnl,
where for any nonzero t € C, the coordinates [Xo,...,Xn] and [tXo,..., tXn]
describe the same point.

Because at least one of the coordinates must be nonzero, suppose that Xy # 0. Then
dividing by X, any point in (Xo # 0) C IP™ can be described by the coordinates
X1 Xn ]

1,—,...,
Xo Xo

IThis is not strictly true, but will be OK in all the examples we consider.
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If we set x; = ;é—é, we see that we have a copy of C™. But now we can consider the
chart where X7 # 0, and here the coordinates are now

Xo 1 X2 Xn
X]/ /><]/---/><1 .

If we write y; = )%, then we have another copy of C™. These two copies of C™
overlap where both Xy, X7 # 0. In this region, to convert the x; to the y;, we can

see that
_Xo_ (X
Jo X4 Xo !

=2 X2 Xo
2TX1 T Xo X 2
_Xn X Xo

Yn X; Xo X nXq

The change of coordinates between the X; # 0 and X;j # 0 charts is similar.

Instead of beginning with the description of IP™ as a quotient (in fact all toric
varieties can be described this way), we could in principle have started with n + 1
copies of C™ with coordinates

0 0 .1 21 1 k <k k
X7y oo er Xor s Xr X7 oo erXgrse oo s XQ e eer Xigrowor Xow oo e s X0 e e X1

(here the hat means that x[ is omitted) and then specified the transition maps
xf = x}f(x}f)*]

between the k-th and {-th copies of C™ whenever k # { (here, we set x} = 1 for
the purpose of this formula).

Later, you will learn that IP™ is a toric variety associated to the fan obtained by
considering all cones generated by subsets of up to n of the vectors

€1,€2,...,€n,—€1 —€2 — -+ —¢€n,

where e; is the vector with 1 in the i-th coordinate and 0 in the other coordinates.

FIGURE 1. Fan of P2
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3. INTRODUCTION TO TORIC VARIETIES

We will now turn to the subject of this seminar. A classical viewpoint on toric
varieties can be seen in the sequence of inclusions

(CcC*)™cCtcpPm

Other examples include products of projective spaces and quotients of C™ by finite
abelian groups. We can define a toric variety to be a variety X of dimension n
with an action of (C*)™ such that there is an orbit isomorphic to (C*)™. This
definition explains the original name of toric varieties as torus embeddings, but it
completely obscures the relationship with combinatorics that we will emphasize
this semester.

3.1. Definition of a toric variety. Instead, we will construct a toric variety as
follows. We will first consider a lattice N = Z™ and a fan X in N, which is a
collection of strongly convex rational polyhedral cones in Ng = R™.

Definition 3.1. A strongly convex rational polyhedral cone o C R™ is a cone
Rso-vi+---+Rso - vk
such that
1) vi,...,vg €2Z™;
(2) If 0 #v € 0, then —v ¢ 0©.

We will call these simply cones. We then consider the lattice M = Hom(N, Z) =
Z™ with the pairing (in practice just the usual dot product)

(==):MeN=Z  (uv)=u(v).
Then we define the dual cone 0¥ C Mg = R™ by the formula
oV ={ue Mg | (u,v) >0 forallv e o}.

Then we consider the semigroup S¢ = o¥' N'M, and then we may consider the
commutative ring

’ ! . . . .
where xV - x* = x*t% and 1 = x°. This determines an algebraic variety Xg.

Now if T C ois a face, 0¥ C 1V, and therefore Ss C S+, so there is an inclusion
C[Ss] C C[S<]. This defines a map Xt C Xg. Thus, if 7 is a face of both o, o’,
Xo and X/ are glued together along X.. From the fan I, this gluing process
determines an algebraic variety, which is called X5 . For this seminar, we will take
the perspective that a toric variety is something abstractly determined by the fan
Z, which will be the primary object of study.
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3.2. Some examples. We will conclude with some examples.

Example 3.2. Consider the fan in IR? consisting of the cone
o =1{(xy) x>0y >0).
Then the dual cone is
o ={(a,b) | ax+by > 0 for all x,y > 0}

={(a,b) | a,b >0}
Therefore, S¢ = {(a,b) € Z? | a,b > 0}, and therefore,

C[Ss] = @ C-x%y® =Clx,y],

a,b>0

s0 Xg = C2.
Example 3.3. Consider the fan in Figure 1 with o the first quadrant and o;, 03

numbered counterclockwise. Also write vi = (1,0),v, = (0,1),v3 = (—1,-1).
Then we can compute

o7 ={(a,b) [ a,b >0}
0y ={(a,b) [b>0,a+b <0}
03 ={(a,b)[a>0,a+b <0}
This implies that
Cloq] = Clx, ]
Cloy] =Clx~ ', x Tyl
Cloz] =Cly~ ', xy~ L.
If we set x = ;% and y = %, these glue to form P2 in the way described

in Section 2.2.

Example 3.4. Consider the fan in R™ defined by the cone o = {0}. Then oV =
M = R", so S¢ = Z™. Finally, we obtain C[S,] = C[x1,x1’],...,xn,x;1], SO
Xo = (C*)™, as discussed in Section 2.1.
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