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Title:   Expanding upon Affine Toric Varieties

First we start with a few definitions:

Def. Semigroup: A set S alongside a binary operation ﻿ which satisfies the associativity 
property. So for ﻿ such that

An additive semigroup is when the binary operation is addition.

Def. Prime Ideal: An ideal P of a commutative ring R is prime if it satisfies 

If for ﻿ and ﻿ then ﻿ or ﻿

P is not the whole ring R

This definition expands upon our definition of prime numbers. “if p is a prime number 
and if p divides a product ab of two integers, then p divides a or p divides b”

Def. Maximal Ideal: A maximal ideal, J, of a Ring R is an Ideal if it is not equal to R 
such that there are no ideals which are a subset of R and contain an a subset J.

Lemma: if m is a max ideal then m is prime

Def. Spec(A): Assuming A is a ring then Spec(A) is the set of all prime ideals of A.

Def. Specm(A): A closed point of Spec(A) corresponding to the maximum ideal.

⋅
(S, ⋅)

∀a, b, c ∈ S, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

a, b ∈ R ab ∈ P a ∈ P b ∈ P

https://en.wikipedia.org/wiki/Divides
https://en.wikipedia.org/wiki/Integer
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Affine Toric Variety

Now we can get into defining an affine toric variety. From Gordan’s lemma we know that 

where ﻿  is a lattice and ﻿ is the dual lattice that consists of the grid 
points in this space.

Then the group ring ﻿ “C adjoined S”  is a commutative algebra. It is a complex 
vector space so we can have its basis be ﻿ as ﻿ spans S. Therefore addition in S is 

determined by multiplication in the complex space for two points in ﻿ like so:

Therefore generators of ﻿ uniquely correspond to  ﻿ for the ﻿

Now we let A be any finitely generated commutative C-algrebra and we pick the 
generators of A so we can write it as 

where I is an Ideal. Then ﻿ is all prime ideals of this and ﻿ is the point 
corresponding the the maximum ideal.

We let ﻿ then we denote the complex Affine variety as Spec(A)  then any 
homomorphism (structure preserving map of the form ﻿) from A 
to B determines a morphism from ﻿ to ﻿ (the equivalent for sets). 

Then we choose a point ﻿ and we define 

so ﻿ because we take out what doesn’t invert. When 
﻿ is constructed from a semigroup the points correspond to homomorphisms of 

semigroups from S to ﻿. 

S ​ =σ σ ∩∧ M

N M = Hom(N,Z)

C[S]
χu u

u ,u ∈′ S

χ ⋅u χ =u′
χu+u′

S χu C[S].

C[X ​,X ​, ...,X ​]/I1 2 m

Spec(A) Specm(A)

A = C[S]
f(x) ⋅ f(y) = f(x ⋅ y)

Spec(A) Spec(B)

f ∈ A

A ​ =f A[1/f]

Spec(A ​) >f Spec(A[1/f]) A =
C[S]

C
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and when ﻿ is convex rational polyhedral cone (from last lecture, also a 
semigroup) then we let ﻿ and 

where this is the corresponding Affine Toric Variety.

Examples
#1:

Let the cone ﻿ to be defined by the points (0,1) and (n, -1) then ﻿ is generated by (1, 
0), (1,1) , …. So, if we label these with ﻿ then we can get the relations

which generalizes to 

so it looks like 

where ﻿ corresponds with ﻿ and the denominator is the ideal at 0.

#2:

If we look at a group ﻿ then S is generated by the elements 2 and 
3. Then we can write 

So ﻿ is a rational curve with a cusp.

Lemmas/Exercises

S = S ​σ

A ​ =σ C[S ​]σ

U ​ =σ Spec(C[S ​]) =σ Spec(A ​)σ

σ σ∧

v ​, ..., v ​0 n

v ​ +0 v ​ =2 2v ​1

v ​ +n v ​ =n+2 2v ​n+1

C[S] = C[x ​, ...,x ​] =1 n ​

(x ​ ∗ x ​ − x ​) ​j j+2 j+1
2

0
n

C[Y ,Z]

x ​i v ​i

S = {2, 3, 4, 6, 7, ...}

C[S] = C[X ,X ] =2 3
​

Z − Y2 3

C[Y ,Z]

Spec(C[S])
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Prove: If ﻿ is a face of ﻿ then the map ﻿ embeds ﻿ as a principle open 
subset of  ﻿.

Prove: If  ﻿ is a subset of ﻿ and the map ﻿ embeds ﻿ as a principle open 

subset of  ﻿ then ﻿ must be a face of ﻿.

τ σ U ​ →τ U ​σ U ​τ

U ​σ

τ σ U ​ →τ U ​σ U ​τ

U ​σ τ σ


