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Title:   Expanding upon Affine Toric Varieties

First we start with a few definitions:

Def. Semigroup: A set S alongside a binary operation   which satisfies the associativity 
property. So for   such that

An additive semigroup is when the binary operation is addition.

Def. Prime Ideal: An ideal P of a commutative ring R is prime if it satisfies 

If for   and   then   or  

P is not the whole ring R

This definition expands upon our definition of prime numbers. “if p is a prime number 
and if p divides a product ab of two integers, then p divides a or p divides b”

Def. Maximal Ideal: A maximal ideal, J, of a Ring R is an Ideal if it is not equal to R 
such that there are no ideals which are a subset of R and contain an a subset J.

Lemma: if m is a max ideal then m is prime

Def. Spec(A): Assuming A is a ring then Spec(A) is the set of all prime ideals of A.

Def. Specm(A): A closed point of Spec(A) corresponding to the maximum ideal.

⋅
(S, ⋅)

∀a, b, c ∈ S, (a ⋅ b) ⋅ c = a ⋅ (b ⋅ c)

a, b ∈ R ab ∈ P a ∈ P b ∈ P

https://en.wikipedia.org/wiki/Divides
https://en.wikipedia.org/wiki/Integer
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Affine Toric Variety

Now we can get into defining an affine toric variety. From Gordan’s lemma we know that 

where    is a lattice and   is the dual lattice that consists of the grid 
points in this space.

Then the group ring   “C adjoined S”  is a commutative algebra. It is a complex 
vector space so we can have its basis be   as   spans S. Therefore addition in S is 

determined by multiplication in the complex space for two points in   like so:

Therefore generators of   uniquely correspond to    for the  

Now we let A be any finitely generated commutative C-algrebra and we pick the 
generators of A so we can write it as 

where I is an Ideal. Then   is all prime ideals of this and   is the point 
corresponding the the maximum ideal.

We let   then we denote the complex Affine variety as Spec(A)  then any 
homomorphism (structure preserving map of the form  ) from A 
to B determines a morphism from   to   (the equivalent for sets). 

Then we choose a point   and we define 

so   because we take out what doesn’t invert. When 
  is constructed from a semigroup the points correspond to homomorphisms of 

semigroups from S to  . 

S  =σ σ ∩∧ M

N M = Hom(N,Z)

C[S]
χu u

u ,u ∈′ S

χ ⋅u χ =u′
χu+u′

S χu C[S].

C[X  ,X  , ...,X  ]/I1 2 m

Spec(A) Specm(A)

A = C[S]
f(x) ⋅ f(y) = f(x ⋅ y)

Spec(A) Spec(B)

f ∈ A

A  =f A[1/f]

Spec(A  ) >f Spec(A[1/f]) A =
C[S]

C
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and when   is convex rational polyhedral cone (from last lecture, also a 
semigroup) then we let   and 

where this is the corresponding Affine Toric Variety.

Examples
#1:

Let the cone   to be defined by the points (0,1) and (n, -1) then   is generated by (1, 
0), (1,1) , …. So, if we label these with   then we can get the relations

which generalizes to 

so it looks like 

where   corresponds with   and the denominator is the ideal at 0.

#2:

If we look at a group   then S is generated by the elements 2 and 
3. Then we can write 

So   is a rational curve with a cusp.

Lemmas/Exercises

S = S  σ

A  =σ C[S  ]σ

U  =σ Spec(C[S  ]) =σ Spec(A  )σ

σ σ∧

v  , ..., v  0 n

v  +0 v  =2 2v  1

v  +n v  =n+2 2v  n+1

C[S] = C[x  , ...,x  ] =1 n  

(x  ∗ x  − x  )  j j+2 j+1
2

0
n

C[Y ,Z]

x  i v  i

S = {2, 3, 4, 6, 7, ...}

C[S] = C[X ,X ] =2 3
 

Z − Y2 3

C[Y ,Z]

Spec(C[S])
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Prove: If   is a face of   then the map   embeds   as a principle open 
subset of   .

Prove: If    is a subset of   and the map   embeds   as a principle open 

subset of    then   must be a face of  .

τ σ U  →τ U  σ U  τ

U  σ

τ σ U  →τ U  σ U  τ

U  σ τ σ


