Divisors of toric varieties

Rahul Ram
Wednesday, November 8, 2023

Abstract

In this talk, we'll cover the divisors of varieties of different types, that is, Weil divisors and Cartier divisors, and their consequences on characterizing simplicial cones and a surjectivity of their constituents' inner products. This talk has been typed up following section 3.3 of Introduction to Toric Varieties authored by William Edgar Fulton in 1993 [Ful93]: Divisors, with results informed by those presented by graduate student Avi Zeff from Intersection Theory last published under Fulton in 1998 [Ful98], in Columbia's Spring 2021 seminar on intersection theory.

1 Types of divisors

Definition 1.1. A Weil divisor on a variety X is a finite formal sum $\sum_{i} a_{i} V_{i}$ of irreducible (if it cannot be written as the union of nonempty algebraic varieties), closed subvarieties of codimension one in X. The Weil divisors form a group $Z_{n-1}(X)$.

Definition 1.2. A Cartier divisor D consists of data about a covering of X by affine (if for any two distinct points in the set, the line passing through these points lie in the set itself) open sets U_{α}, that is, an open set that is isomorphic to $\operatorname{Spec} R$ for some commutative ring R and the nonzero rational functions f_{α} called local equations, such that ratios f_{α} / f_{β} are always supported (never zero) over $U_{\alpha} \cap U_{\beta}$, and regular (everywhere-defined, polynomial on the subvarieties). That is, it consists of the following data:

1. an open cover $\left\{U_{\alpha}\right\}_{\alpha}$ of X
2. for each index α, an associated rational function f_{α} on open U_{α}, defined up to multiplication by a unit (as in it does not admit any zeroes or poles) such that for any α, β we have f_{α} / f_{β} a unit on $U_{\alpha} \cap U_{\beta}$.

Remark 1.3. As such, like the Weil divisors, the Cartier divisors form an abelian group with $\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)+$ $\left(\left\{U_{\alpha}, g_{\alpha}\right\}\right)=\left(\left\{U_{\alpha}, f_{\alpha} g_{\alpha}\right\}\right)$ as the open covers are either the same or just refine to $\left\{U_{\alpha} \cap V_{\beta}\right\}$. So, we call this abeilan group $\operatorname{div}(X)$ and for any Cartier divisor D the order $\operatorname{ord}_{V}(D)=\operatorname{or}_{V}\left(f_{\alpha}\right)$ for α such that $U_{\alpha} \cap V$ is nonempty.

Definition 1.4. A vector bundle is a collection of vector spaces that varies in a geometric way over a given base space V : over each element $x \in V$ there is a vector space V_{x}, called the fiber over x, and as x varies in X, the fibers vary along in a geometric way. A line bundle is a vector bundle of dimension 1 , that is, a vector bundle whose typical fiber is a 1-dimensional vector space (a line).

Definition 1.5. The ideal sheaf $\mathscr{O}(-D)$ of D is the subsheaf (since this is invertible, it is called a line bundle) of that of rational functions generated by f_{α} on U_{α}, that is, the inverse sheaf $\mathscr{O}(D)$ is the subsheaf
of that of rational functions generated by $1 / f_{\alpha}$ on U_{α}. Indeed, the sheaf's transition functions on U_{α} to U_{β}, that is, the quotient f_{α} / f_{β} (cf. projective functionals), so a Cartier divisor D determines a Weil divisor $[D]=\sum_{\operatorname{codim}(V, X)=1} \operatorname{ord}_{V}(D) \cdot V$ where the order of vanishing of an equation for D in the local ring along V the subvariety represents $\operatorname{ord}_{V}(D)$. As such, the associated Weil divisor of a Cartier divisor D is $[D]=\sum_{V}$ ord $d_{V}(D) \cdot[V]$ for V a codimension 1 subvariety of X.

Definition 1.6. The Picard group $\operatorname{Pic}(X)$ of a ringed space (a family of rings parametrized by open subsets of a topological space together with ring homomorphisms) X is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product.

2 Divisors on toric varieties

We now inspect divisors on a toric variety $X(\Delta)=X$ that map to themselves on torus $T=T_{N}$ (latticized). The irreducible, closed subvarieties of codimension one in X that are stable on the torus T corresponding to edges / rays of the fan on which X is constructed. Thus, edges $\tau_{1}, \ldots, \tau_{d}$ and v_{i} the first lattice point met along τ_{i} gives us the divisors:

Definition 2.1. The divisors of a toric variety X on a fan Δ with edges $\tau_{1}, \ldots, \tau_{d}$ are the orbit closures $D_{i}=V\left(\tau_{i}\right)$ and the T-Weil divisors are all sums $\sum_{i} a_{i} D_{i}$ for integers a_{i}, and so the Cartier divisors that are equivalent under the torus T are T-Cartier divisors - we say that two Cartier divisors D and D^{\prime} are linearly equivalent if $D-D^{\prime}=\operatorname{div}(f)$ for some f.

Remark 2.2. In the way we defined a Cartier divisor, we attain a line bundle on X. That is, given a divisor $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$, construct line bundle $L=\mathcal{O}(D)$ to be trivialized on each U_{α} with transition functions f_{α} / f_{β}. Then, the abelian group of such line bundles on X with group operation given by tensor product allow as to characterize the Picard group on the variety of X since two Cartier divisors D and D^{\prime} are clearly linearly equivalent if and only if $\mathcal{O}(D)=\mathcal{O}\left(D^{\prime}\right)$. Conversely, a line bundle L determines a Cartier divisor $D(L)$ up to the property that it has a nonzero rational section s of L.

Remark 2.3. Informed by the above characterizations, Cartier divisors can be thought of as the data of a line bundle together with associated nonzero rational section that it has.

Lemma 2.4. For any rational f on X, a principal Cartier $\operatorname{divisor} \operatorname{div}(f)$ is yielded by choosing a cover $\left\{U_{\alpha}\right\}$ and defining $f_{\alpha}=\left.f\right|_{U_{\alpha}}$ so the image $[\operatorname{div}(f)]$ of this divisor under its map to $Z_{n-1} X$ is the Weil principal divisor. So, with $\operatorname{Pic} X$ the group of Cartier divisors modulo linear equivalence, the above shows that the map $\operatorname{Div}(X) \rightarrow Z_{n-1} X$ descends to a map $\operatorname{Pic} X \rightarrow A_{n-1} X$ affine. The map $D \rightarrow[D]$ embeds Cartier divisors within Weil divisors, and as such we denote a divisor $\operatorname{div}(f)$ determined by a nonzero rational function f to be a principal divisor when the local equation in each open set is f

Definition 2.5. The support $|D|$ of a Cartier divisor D is the union of codimension one subvarieties V of X such that f_{α} is not a unit for U_{α} that nontrivially intersects V (that is, or $d_{V}(D) \neq 0$). So, a Cartier divisor $D=\left(\left\{U_{\alpha}, f_{\alpha}\right\}\right)$ if all functions f_{α} are regular (admit no poles).

Example 2.6. Consider affine toric variety $X=U_{\sigma}$ where $\operatorname{dim}(\sigma)=n \in \mathbb{N}_{0}$ and D a divisor preserved by torus T corresponding to the fractional ideal $I=\Gamma(X, \mathscr{O}(D))$ (non-trivial subset of a fraction field Frac R over a commutative ring R for which a $0 \neq r \in R$ exists so that $r I \subset R$ is an ideal in R :

Proposition 2.7. I is generated by a function χ_{u} for a unique $u \in \sigma^{\checkmark} \cap M$. It follows that such a unique u exists with $i=A_{\sigma} \cdot \chi^{u}$.

Lemma 2.8. A general T-Cartier divisor on U_{σ} has the form $\operatorname{div}\left(\chi^{u}\right)$ for a unique $u \in M$ lattice.
Theorem 2.9. For $u \in M$ and v the first lattice point along an edge $\tau, \operatorname{ord} d_{V(\tau)}\left(\operatorname{div}\left(\chi^{u}\right)\right)=<u, v>$ yields that Weil divisor $\left[\operatorname{div}\left(\chi^{u}\right)\right]=\sum_{i}<u, v_{i}>D_{i}$.

Proof. The order on the open set $U_{\tau} \cong \mathbb{C} \times\left(\mathbb{C}^{*}\right)^{n-1}$ is apparent, on which $V(\tau)$ is associated to $\{0\} \times\left(\mathbb{C}^{*}\right)^{n-1}$. Therefore we reduce our computation to the case where $N=\mathbb{Z}$ a single-dimensional lattice so τ generated by $v=1$ and $u \in M=\mathbb{Z}$. Easily, χ^{u} is the resultant monomial of X^{u} with order of vanishing being u at origin 0 .

Example 2.10. Take cone $\sigma \subset \mathbb{Z}^{2}$ generated by $v_{1}=(2,-1), v_{2}=(0,1)$ so U_{σ} admits two T-Weil divisors D_{1} and D_{2} that are simply straight lines on the cone. Then, for $u=(p, q) \in M=\mathbb{Z}^{2}$, it is clear that $\operatorname{div}\left(\chi^{u}\right)=(2 p-q) D_{1}+q D_{2}$ and thus $2 D_{1}, 2 D_{2}$ are Cartier divisors even though D_{1} and D_{2} are not!

Exercise 2.11. For $\sigma \subset \mathbb{Z}^{2}$ generated by $v_{1}=(2,-1), v_{2}=(-1,2)$ corresponding to divisors D_{1}, D_{2}, show that $a_{1} D_{1}+a_{2} D_{2}$ is a Cartier divisor on U_{σ} if and only if $a_{1} \equiv a_{2} \bmod 3$.

3 Acknowledgments

This write-up was prepared to be given as a 50 minute talk scheduled at 7:00 p.m. on Wednesday, November 8,2023 for the undergraduate Toric Varieties seminar led by Patrick Lei at Columbia University's Department of Mathematics, a discussion section fulfilling the requirement for the fall 2023 iteration of MATH UN3951: Undergraduate Seminars in Mathematics. Thank you to Patrick Lei for supervising this presentation and those students whose talks preceded this one in material, for being able to work on built-up background proved extremely beneficial.

References

[Ful93] William Fulton. Introduction to Toric Varieties. (AM-131), Volume 131. Princeton University Press, Princeton, NJ, 1993.
[Ful98] William Fulton. Intersection Theory. Springer, New York, NY, 1998.

