Divisors of toric varieties

Rahul Ram

Wednesday, November 8, 2023

Abstract

In this talk, we'll cover the divisors of varieties of different types, that is, *Weil* divisors and *Cartier* divisors, and their consequences on characterizing simplicial cones and a surjectivity of their constituents' inner products. This talk has been typed up following section 3.3 of *Introduction to Toric Varieties* authored by William Edgar Fulton in 1993 [Ful93]: <u>Divisors</u>, with results informed by those presented by graduate student Avi Zeff from *Intersection Theory* last published under Fulton in 1998 [Ful98], in Columbia's Spring 2021 seminar on intersection theory.

1 Types of divisors

Definition 1.1. A Weil divisor on a variety X is a finite formal sum $\sum_i a_i V_i$ of irreducible (if it cannot be written as the union of nonempty algebraic varieties), closed subvarieties of codimension one in X. The Weil divisors form a group $Z_{n-1}(X)$.

Definition 1.2. A Cartier divisor D consists of data about a covering of X by affine (if for any two distinct points in the set, the line passing through these points lie in the set itself) open sets U_{α} , that is, an open set that is isomorphic to Spec R for some commutative ring R and the nonzero rational functions f_{α} called *local equations*, such that ratios f_{α}/f_{β} are always supported (never zero) over $U_{\alpha} \cap U_{\beta}$, and regular (everywhere-defined, polynomial on the subvarieties). That is, it consists of the following data:

- 1. an open cover $\{U_{\alpha}\}_{\alpha}$ of X
- 2. for each index α , an associated rational function f_{α} on open U_{α} , defined up to multiplication by a *unit* (as in it does not admit any zeroes or poles) such that for any α, β we have f_{α}/f_{β} a unit on $U_{\alpha} \cap U_{\beta}$.

Remark 1.3. As such, like the Weil divisors, the Cartier divisors form an abelian group with $({U_{\alpha}, f_{\alpha}}) + ({U_{\alpha}, g_{\alpha}}) = ({U_{\alpha}, f_{\alpha}g_{\alpha}})$ as the open covers are either the same or just refine to ${U_{\alpha} \cap V_{\beta}}$. So, we call this abelian group div(X) and for any Cartier divisor D the order $ord_V(D) = ord_V(f_{\alpha})$ for α such that $U_{\alpha} \cap V$ is nonempty.

Definition 1.4. A vector bundle is a collection of vector spaces that varies in a geometric way over a given base space V: over each element $x \in V$ there is a vector space V_x , called the *fiber* over x, and as x varies in X, the fibers vary along in a geometric way. A *line bundle* is a vector bundle of dimension 1, that is, a vector bundle whose typical fiber is a 1-dimensional vector space (a line).

Definition 1.5. The *ideal sheaf* $\mathscr{O}(-D)$ of D is the *subsheaf* (since this is invertible, it is called a *line bundle*) of that of rational functions generated by f_{α} on U_{α} , that is, the inverse sheaf $\mathscr{O}(D)$ is the subsheaf

of that of rational functions generated by $1/f_{\alpha}$ on U_{α} . Indeed, the sheaf's transition functions on U_{α} to U_{β} , that is, the quotient f_{α}/f_{β} (cf. projective functionals), so a Cartier divisor D determines a Weil divisor $[D] = \sum_{\text{codim}(V,X)=1} \text{ord}_V(D) \cdot V$ where the order of vanishing of an equation for D in the local ring along V the subvariety represents $\text{ord}_V(D)$. As such, the associated Weil divisor of a Cartier divisor D is $[D] = \sum_V \text{ord}_V(D) \cdot [V]$ for V a codimension 1 subvariety of X.

Definition 1.6. The *Picard group* Pic(X) of a *ringed space* (a family of rings parametrized by open subsets of a topological space together with ring homomorphisms) X is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product.

2 Divisors on toric varieties

We now inspect divisors on a toric variety $X(\Delta) = X$ that map to themselves on torus $T = T_N$ (latticized). The irreducible, closed subvarieties of codimension one in X that are stable on the torus T corresponding to edges / rays of the fan on which X is constructed. Thus, edges τ_1, \ldots, τ_d and v_i the first lattice point met along τ_i gives us the divisors:

Definition 2.1. The divisors of a toric variety X on a fan Δ with edges τ_1, \ldots, τ_d are the orbit closures $D_i = V(\tau_i)$ and the *T*-Weil divisors are all sums $\sum_i a_i D_i$ for integers a_i , and so the Cartier divisors that are equivalent under the torus *T* are *T*-Cartier divisors – we say that two Cartier divisors *D* and *D'* are linearly equivalent if D - D' = div(f) for some *f*.

Remark 2.2. In the way we defined a Cartier divisor, we attain a line bundle on X. That is, given a divisor $D = (\{U_{\alpha}, f_{\alpha}\})$, construct line bundle $L = \mathcal{O}(D)$ to be trivialized on each U_{α} with transition functions f_{α}/f_{β} . Then, the abelian group of such line bundles on X with group operation given by tensor product allow as to characterize the Picard group on the variety of X since two Cartier divisors D and D' are clearly linearly equivalent if and only if $\mathcal{O}(D) = \mathcal{O}(D')$. Conversely, a line bundle L determines a Cartier divisor D(L) up to the property that it has a nonzero rational section s of L.

Remark 2.3. Informed by the above characterizations, Cartier divisors can be thought of as the data of a line bundle together with associated nonzero rational section that it has.

Lemma 2.4. For any rational f on X, a principal Cartier divisor div(f) is yielded by choosing a cover $\{U_{\alpha}\}$ and defining $f_{\alpha} = f|_{U_{\alpha}}$ so the image [div(f)] of this divisor under its map to $Z_{n-1}X$ is the Weil principal divisor. So, with Pic X the group of Cartier divisors modulo linear equivalence, the above shows that the map $Div(X) \to Z_{n-1}X$ descends to a map Pic $X \to A_{n-1}X$ affine. The map $D \to [D]$ embeds Cartier divisors within Weil divisors, and as such we denote a divisor div(f) determined by a nonzero rational function f to be a principal divisor when the local equation in each open set is f

Definition 2.5. The support |D| of a Cartier divisor D is the union of codimension one subvarieties V of X such that f_{α} is not a unit for U_{α} that nontrivially intersects V (that is, $ord_{V}(D) \neq 0$). So, a Cartier divisor $D = (\{U_{\alpha}, f_{\alpha}\})$ if all functions f_{α} are regular (admit no poles).

Example 2.6. Consider affine toric variety $X = U_{\sigma}$ where dim $(\sigma) = n \in \mathbb{N}_0$ and D a divisor preserved by torus T corresponding to the *fractional ideal* $I = \Gamma(X, \mathcal{O}(D))$ (non-trivial subset of a fraction field Frac R over a commutative ring R for which a $0 \neq r \in R$ exists so that $rI \subset R$ is an ideal in R:

Proposition 2.7. *I* is generated by a function χ_u for a unique $u \in \sigma^{\checkmark} \cap M$. It follows that such a unique u exists with $i = A_{\sigma} \cdot \chi^u$.

Lemma 2.8. A general *T*-Cartier divisor on U_{σ} has the form $div(\chi^u)$ for a unique $u \in M$ lattice.

Theorem 2.9. For $u \in M$ and v the first lattice point along an edge τ , $ord_{V(\tau)}(div(\chi^u)) = \langle u, v \rangle$ yields that Weil divisor $[div(\chi^u)] = \sum_i \langle u, v_i \rangle D_i$.

Proof. The order on the open set $U_{\tau} \cong \mathbb{C} \times (\mathbb{C}^*)^{n-1}$ is apparent, on which $V(\tau)$ is associated to $\{0\} \times (\mathbb{C}^*)^{n-1}$. Therefore we reduce our computation to the case where $N = \mathbb{Z}$ a single-dimensional lattice so τ generated by v = 1 and $u \in M = \mathbb{Z}$. Easily, χ^u is the resultant monomial of X^u with order of vanishing being u at origin 0.

Example 2.10. Take cone $\sigma \in \mathbb{Z}^2$ generated by $v_1 = (2, -1), v_2 = (0, 1)$ so U_{σ} admits two *T*-Weil divisors D_1 and D_2 that are simply straight lines on the cone. Then, for $u = (p,q) \in M = \mathbb{Z}^2$, it is clear that $div(\chi^u) = (2p-q)D_1 + qD_2$ and thus $2D_1, 2D_2$ are Cartier divisors even though D_1 and D_2 are not!

Exercise 2.11. For $\sigma \subset \mathbb{Z}^2$ generated by $v_1 = (2, -1), v_2 = (-1, 2)$ corresponding to divisors D_1, D_2 , show that $a_1D_1 + a_2D_2$ is a Cartier divisor on U_{σ} if and only if $a_1 \equiv a_2 \mod 3$.

3 Acknowledgments

This write-up was prepared to be given as a 50 minute talk scheduled at 7:00 p.m. on Wednesday, November 8, 2023 for the undergraduate *Toric Varieties* seminar led by Patrick Lei at **Columbia University**'s Department of Mathematics, a discussion section fulfilling the requirement for the fall 2023 iteration of MATH UN3951: Undergraduate Seminars in Mathematics. Thank you to Patrick Lei for supervising this presentation and those students whose talks preceded this one in material, for being able to work on built-up background proved extremely beneficial.

References

- [Ful93] William Fulton. Introduction to Toric Varieties. (AM-131), Volume 131. Princeton University Press, Princeton, NJ, 1993.
- [Ful98] William Fulton. Intersection Theory. Springer, New York, NY, 1998.