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Abstract

In this talk, we’ll cover the divisors of varieties of different types, that is, Weil divisors and Cartier

divisors, and their consequences on characterizing simplicial cones and a surjectivity of their constituents’

inner products. This talk has been typed up following section 3.3 of Introduction to Toric Varieties

authored by William Edgar Fulton in 1993 [Ful93]: Divisors, with results informed by those presented

by graduate student Avi Zeff from Intersection Theory last published under Fulton in 1998 [Ful98], in

Columbia’s Spring 2021 seminar on intersection theory.

1 Types of divisors

Definition 1.1. A Weil divisor on a variety X is a finite formal sum
∑

i aiVi of irreducible (if it cannot

be written as the union of nonempty algebraic varieties), closed subvarieties of codimension one in X. The

Weil divisors form a group Zn−1(X).

Definition 1.2. A Cartier divisor D consists of data about a covering of X by affine (if for any two

distinct points in the set, the line passing through these points lie in the set itself) open sets Uα, that is, an

open set that is isomorphic to SpecR for some commutative ring R and the nonzero rational functions fα

called local equations, such that ratios fα/fβ are always supported (never zero) over Uα ∩ Uβ , and regular

(everywhere-defined, polynomial on the subvarieties). That is, it consists of the following data:

1. an open cover {Uα}α of X

2. for each index α, an associated rational function fα on open Uα, defined up to multiplication by a unit

(as in it does not admit any zeroes or poles) such that for any α, β we have fα/fβ a unit on Uα ∩ Uβ .

Remark 1.3. As such, like the Weil divisors, the Cartier divisors form an abelian group with ({Uα, fα}) +
({Uα, gα}) = ({Uα, fαgα}) as the open covers are either the same or just refine to {Uα∩Vβ}. So, we call this
abeilan group div(X) and for any Cartier divisor D the order ordV (D) = ordV (fα) for α such that Uα ∩ V

is nonempty.

Definition 1.4. A vector bundle is a collection of vector spaces that varies in a geometric way over a given

base space V : over each element x ∈ V there is a vector space Vx, called the fiber over x, and as x varies

in X, the fibers vary along in a geometric way. A line bundle is a vector bundle of dimension 1, that is, a

vector bundle whose typical fiber is a 1-dimensional vector space (a line).

Definition 1.5. The ideal sheaf O(−D) of D is the subsheaf (since this is invertible, it is called a line

bundle) of that of rational functions generated by fα on Uα, that is, the inverse sheaf O(D) is the subsheaf
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of that of rational functions generated by 1/fα on Uα. Indeed, the sheaf’s transition functions on Uα

to Uβ , that is, the quotient fα/fβ (cf. projective functionals), so a Cartier divisor D determines a Weil

divisor [D] =
∑

codim(V,X)=1 ordV (D) · V where the order of vanishing of an equation for D in the local ring

along V the subvariety represents ordV (D). As such, the associated Weil divisor of a Cartier divisor D is

[D] =
∑

V ordV (D) · [V ] for V a codimension 1 subvariety of X.

Definition 1.6. The Picard group Pic(X) of a ringed space (a family of rings parametrized by open subsets

of a topological space together with ring homomorphisms) X is the group of isomorphism classes of invertible

sheaves (or line bundles) on X, with the group operation being tensor product.

2 Divisors on toric varieties

We now inspect divisors on a toric variety X(∆) = X that map to themselves on torus T = TN (latticized).

The irreducible, closed subvarieties of codimension one in X that are stable on the torus T corresponding to

edges / rays of the fan on which X is constructed. Thus, edges τ1, . . . , τd and vi the first lattice point met

along τi gives us the divisors:

Definition 2.1. The divisors of a toric variety X on a fan ∆ with edges τ1, . . . , τd are the orbit closures

Di = V (τi) and the T -Weil divisors are all sums
∑

i aiDi for integers ai, and so the Cartier divisors that are

equivalent under the torus T are T -Cartier divisors – we say that two Cartier divisors D and D′ are linearly

equivalent if D −D′ = div(f) for some f .

Remark 2.2. In the way we defined a Cartier divisor, we attain a line bundle on X. That is, given a divisor

D = ({Uα, fα}), construct line bundle L = O(D) to be trivialized on each Uα with transition functions

fα/fβ . Then, the abelian group of such line bundles on X with group operation given by tensor product

allow as to characterize the Picard group on the variety of X since two Cartier divisors D and D′ are clearly

linearly equivalent if and only if O(D) = O(D′). Conversely, a line bundle L determines a Cartier divisor

D(L) up to the property that it has a nonzero rational section s of L.

Remark 2.3. Informed by the above characterizations, Cartier divisors can be thought of as the data of a

line bundle together with associated nonzero rational section that it has.

Lemma 2.4. For any rational f on X, a principal Cartier divisor div(f) is yielded by choosing a cover {Uα}
and defining fα = f |Uα

so the image [div(f)] of this divisor under its map to Zn−1X is the Weil principal

divisor. So, with PicX the group of Cartier divisors modulo linear equivalence, the above shows that the map

Div(X) → Zn−1X descends to a map PicX → An−1X affine. The map D → [D] embeds Cartier divisors

within Weil divisors, and as such we denote a divisor div(f) determined by a nonzero rational function f to

be a principal divisor when the local equation in each open set is f

Definition 2.5. The support |D| of a Cartier divisor D is the union of codimension one subvarieties V of X

such that fα is not a unit for Uα that nontrivially intersects V (that is, ordV (D) ̸= 0). So, a Cartier divisor

D = ({Uα, fα}) if all functions fα are regular (admit no poles).

Example 2.6. Consider affine toric variety X = Uσ where dim(σ) = n ∈ N0 and D a divisor preserved by

torus T corresponding to the fractional ideal I = Γ(X,O(D)) (non-trivial subset of a fraction field FracR

over a commutative ring R for which a 0 ̸= r ∈ R exists so that rI ⊂ R is an ideal in R:
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Proposition 2.7. I is generated by a function χu for a unique u ∈ σ✓ ∩M . It follows that such a unique

u exists with i = Aσ · χu.

Lemma 2.8. A general T -Cartier divisor on Uσ has the form div(χu) for a unique u ∈ M lattice.

Theorem 2.9. For u ∈ M and v the first lattice point along an edge τ , ordV (τ)(div(χ
u)) =< u, v > yields

that Weil divisor [div(χu)] =
∑

i < u, vi > Di.

Proof. The order on the open set Uτ
∼= C×(C∗)n−1 is apparent, on which V (τ) is associated to {0}×(C∗)n−1.

Therefore we reduce our computation to the case where N = Z a single-dimensional lattice so τ generated

by v = 1 and u ∈ M = Z. Easily, χu is the resultant monomial of Xu with order of vanishing being u at

origin 0.

Example 2.10. Take cone σ ⊂ Z2 generated by v1 = (2,−1), v2 = (0, 1) so Uσ admits two T -Weil divisors

D1 and D2 that are simply straight lines on the cone. Then, for u = (p, q) ∈ M = Z2, it is clear that

div(χu) = (2p− q)D1 + qD2 and thus 2D1, 2D2 are Cartier divisors even though D1 and D2 are not!

Exercise 2.11. For σ ⊂ Z2 generated by v1 = (2,−1), v2 = (−1, 2) corresponding to divisors D1, D2, show

that a1D1 + a2D2 is a Cartier divisor on Uσ if and only if a1 ≡ a2 mod 3.
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