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Abstract

In this talk, we’ll cover the construction of general toric varieties over fans utilizing previous construc-

tions of affine toric varieties with spectrums by discussing disjoint unions as ’gluing’ operations, as well

as some interesting results about structure preservation between varieties generated from fans belonging

to different, but structurally similar lattices. This talk has been typed up following section 1.4 of Introduc-

tion to Toric Varieties authored byWilliam Edgar Fulton in 1993 [Ful93]: Fans and general toric varieties.

1 Introduction

In the previous talk covering section 1.3 [Ful93]: Affine toric varieties, we discussed how to construct an

affine toric variety on a cone σ. We first note that discussing such objects, we impose going forward that our

cones are rational (generated by vectors in a lattice), strongly convex (contain no lines through the origin),

and polyhedral (a ’polyhedron’ that is also a cone in our sense of the form {
∑n

i=1 aivi : ai ∈ R≥0, vi ∈ Rn} for

’basis’ vectors {v1, v2, . . . , vn}, i.e. it geometrically has a polyhedral/polygonal base at suitable dimensions,

that are the rays of the cone).

Definition 1.1. A fan ∆ is a set of cones such that:

1. For all cones σ ∈ ∆, any face τ of σ is a cone τ in ∆.

2. for all cones σ1, σ2 ∈ ∆, σ1 ∩ σ2 is a face τ of both σ1, σ2.

Remark 1.2. It is trivial that for all cones σ1, σ2 ∈ ∆, σ1∩σ2 is a cone in ∆ (closed under intersection). We

thus proceed with our construction, prefaced with some remarks that tie into the topological interpretations

of our work.

2 Zariski topologies and varieties

To interpret our broad work from last time, we first shed light on the nature of varieties.

Definition 2.1. An affine variety is the set of solutions to a homogenous system of polynomial equations

over a an algebraically closed field F (if a ring is an abelian group under addition and a monoid under

multiplication, a field is an abelian group under addition and multiplication, i.e. it is a ring that also

demonstrates multiplicative invertibility for non-zero elements, commutativity, and is with unity). That

is, for S = {f1, f2, . . .} for polynomials f ∈ F[x1, . . . , xn], the affine variety V (S) = {v ∈ Fn : f(v) =

0 for all f ∈ S}. A subvariety W of a variety V is a variety such that W ⊂ V .
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Example 2.2. If F = C and S = {zn − 1 : n ∈ N}, then the affine variety associated to S is ∪n∈N{e2πik/n :

0 ≤ k ≤ n − 1} for k ∈ N0, that is, it is the set of ALL roots of unity in the complex plane which

behaves correspondingly due to the fundmental theorem of algebra. Similarly, S = {Φn(x) : n ∈ N}, the
set of cyclotomic polynomials (real-coefficiented in one variable, but have primitive nth roots of unity as

solutions), has the associated affine variety ∪n∈N{e2πik/n : 0 ≤ k < n, gcd(k, n) = 1 or k = 0}

Definition 2.3. A topology τ ⊂ P(X) on a set X is a collection of subsets of X that contains ∅, X, is closed

under all arbitrary unions as well as under finite intersections, and the structure (X, τ) is a topological space.

Definition 2.4. For an ideal I of a ring R, we consider a ’closed set’ V (I) in the following sense: with

V (I) = {J : J prime ideal, I ⊂ J}, the set T = {V (I) : I ideal of R} of all such closed sets is the Zariski

topology, which is generalized to make the set of prime ideals of a commutative ring (called the spectrum of

the ring) a topological space.

Remark 2.5. The Zariski topology allows tools from topology to be used to study algebraic varieties, even

when the underlying field is not a topological field. Thus, the Zariski topology of an algebraic variety is the

topology whose closed sets are the algebraic subsets of the variety. Additionally. the Zariski topology on the

set of prime ideals (spectrum) of a commutative ring is the topology such that a set of prime ideals is closed

if and only if it is the set of all prime ideals that contain a fixed ideal.

3 Expanding on affine toric varieties

We know that the affine toric variety over a cone σ, denoted Uσ, equals Spec(C[Sσ]) = Spec(C[σ∨ ∩ Zn]),

that is, the set of prime ideals of the space of complex-coefficient polynomials over elements of the dual cone,

latticized.

Remark 3.1. We first note that for variables x, y, Spec(C[x, y]) = (0) ∪ {(x − a, y − b : a, b ∈ C} ∪ {(f) :
f(x, y) irreducible polynomial}. The spectral structure is much harder to investigate for more adjoined

variables, but it serves to suffice for the most elementary examples.

Example 3.2. Taking the cone σ generated by u1 = (2, 0), u2 = (−1,−1), our dual σ∨ is clearly generated by

u′
1 = (0, 2), u′

2 = (−1, 1), whose lattice Sσ is spanned by these vectors. Then, C[Sσ] = C[x⃗u′
1 , x⃗u′

2 ] = C[y2, y
x ].

So, Uσ = Spec(C[Sσ]) = (0) ∪ {(y2 − a, x
y − b : a, b ∈ C} ∪ {(f) : f(y2, x

y ) irreducible polynomial in y2, x
y }.

Remark 3.3. It turns out that (0) corresponds to the trivial origin, and these prime ideals indeed act

analogously to points of the face of each cone in the fan by closure under their generators, which gives way

to our gluing.

4 General toric varieties

Definition 4.1. The toric variety X(∆) of a fan ∆ of cones is the structure obtained from the disjoint

union of our affine toric varieties Uσ over each cone σ ∈ ∆: ⊔cones σ∈∆Uσ = ∪σ∈∆{(v, σ) : v ∈ Uσ}, that is,
an adhesion such that for cones σ1, σ2 ∈ ∆, σ1 ∩ σ2 is a face of both σ1 and σ2.

Definition 4.2. A toric variety is nonsingular if its cones of maximal dimension are generated by a basis

of the lattice over which it adheres.
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Remark 4.3. Since each face itself is a cone in the fan, the affine toric variety Uσ1∩σ2 is a subvariety of Uσ1

and of Uσ2 that is also contained in the Zariski topology we expanded upon earlier, with the base Spec(R)

for ring R. Then, for σ a cone in our lattice, we can let σ along all of its faces (which, by definition, are

cones themselves) comprise the fan ∆. Then, not only is X(∆) simply the fan’s affine toric variety Uσ, but

only for such a fan construction do we get an affine toric variety from our gluings.

Example 4.4. In just Z, we only have left and right rays along with the origin for our cones, so we get C,
C∗, and P1 (can be visualized as the space of lines through the origin in C2) as our possible toric varieties

depending on the possible fans we choose from these (possible unions generated from the cones).

Example 4.5. Consider in R2 a fan ∆ of two cones σ1, σ2 generated by u1 = (−1, 0) and u2 = (0, 1) / u2

and u3 = (1, 0) respectively, i.e. they share a face u2. In vein with the above example, we can take, by way of

the fans being formed by two rays each, two copies of C2 associated with our adjoined rings C[ 1x , y],C[x, y].
So, because our gluing (considering the shared face u2 that is thus also a cone in its own dimension), we

consider the faces, themselves cones in ∆ by closure, so u1, u3 with the origin lead to P1 (from two opposite

direction rays with origin) and u2 leads to C (one ray with origin), we see our toric variety X(∆) = P1 ×C.

Indeed, if we added u4 = (0,−1) to our collection of faces thus reflecting σ1, σ2 to σ3, σ4 additional cones,

we see that u2, u4 with that origin leads to P1 itself, so X(∆) = P1 × P1.

Corollary 4.5.1. We see that for ∆,∆′ fans in lattices Zm,Zn respectively for m,n ∈ N, we can generate

a product fan in Zm+n from the set of all Cartesian products σ × σ′ for σ ∈ ∆, σ′ ∈ ∆′, and indeed

due to the reflected structure preserved with our affine toric varieties, the toric variety X(∆ × ∆′) =

X(∆)×X(∆′). From this, it is clear we see that the projective n-space Pn = (Cn+1)∗/(C∗), in line with our

geometric interpretation, because a collection of n+ 1 vectors that generate an n-dimensional lattice have a

corresponding toric variety (from the fan with cones generated by any proper subset of those vectors) that

is ’isomorphic’ to Pn, i.e. there exists a one-to-one correspondence (mapping) between two of these groups

that preserves operational structure between elements of the groups, expanded upon below.

Example 4.6. We work through toric varieties generated by the fans:

1. What is the toric variety X(∆1) corresponding to the fan ∆1 generated from cones σ1, σ2 ∈ Z2 where

σ1 has faces u1 = (0, 1), u2 = (−1, 0) and σ2 has faces u2 and u3 = (0,−1)?

2. What is the toric variety X(∆2) corresponding to the fan ∆2 generated from cones σ1, σ2 ∈ Z2 where

σ1 has faces u1 = (1, 0), u2 = (0, 1) and σ2 has faces u3 = (−1, 0) and u4 = (0,−1)?

3. What is the toric variety X(∆3) corresponding to the fan ∆3 generated from cones u1 = (1, 0),

u2 = (0, 1) in Z2?

Theorem 4.7. Now, we have a homomorphism φ : Zm → Zn for n,m ∈ N, i.e. there exists a mapping

between two groups that preserves operational structure between elements of the groups (an isomorphism

is a bijective homomorphism, as above), that is we have an φ : Zm → Zn such that for all x, y ∈ Zm,

φ(x+y) = φ(x)+φ(y) (the group operation is addition because we have zero, which would of course not have

a multiplicative inverse), i.e Cauchy’s functional equation is satisfied. Then, for fans of cones ∆ ∈ Zm and

∆′ ∈ Zn, we know that for any cone σ′ ∈ ∆′, there exists a cone σ ∈ ∆ such that φ(σ′) = {φ(x) : x ∈ σ′} ⊂ σ.

That is, a morphism (structure-preserving map from one mathematical structure to another one of the same

type, analogous to homomorphism but used in references to structures beyond basic algebraic groups or rings
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that can have embedded topologies, etc.) Uσ′ → Uσ ⊂ X(∆) the toric variety associated to ∆ is induced by

the homomorphism φ : Zm → Zn.

Corollary 4.7.1. In fact, we actually see that in patching together these morphisms Uσ′ → X(∆) as a whole

results in the overarching morphism φ∗ : X(∆′) → X(∆). That is, toric varieties of fans in homomorphic

lattices are themselves similar in structure!

5 Conclusion

Today, we defined many fundamental objects and notions along with our construction which all prove to

be deeply useful over more complex varieties like those dealing with more intricate varieties generated from

convex polytopes (polyhedra generalized over more dimensions) that reflect conic properties. In a nutshell,

our examples covered affine and projective toric varieties derived from normal (vis-à-vis dual) cones.
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