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1 Two-dimensional Nonsingular Complete Toric

Varieties

1.1 Smooth Affine Toric Varieties

Let σ ⊆ NR be a strongly convex rational polyhedral cone. The affine toric
variety Uσ is considered smooth if and only if σ itself is smooth. Importantly,
all smooth affine toric varieties are of this form (Cox, Little, Schenck 40)

1.2 Refresher on Lattices

Definition 1. A lattice is a discrete additive subgroup of Rn, that is, it is a
subset Λ ⊆ Rn satisfying the following properties:

1. (subgroup) Λ is closed under addition and subtraction.

2. (discrete) There exists an ε > 0 such that any two distinct lattice
points x ̸= y ∈ Λ are at a distance at least ||x− y|| ≥ ε.

It’s worth noting that not every subgroup of Rn is a lattice.

1.3 Specifying a Sequence of Lattice Points

To describe a two-dimensional nonsingular complete toric variety, you must
specify a sequence of lattice points v0, v1, . . . , vd−i, vd = v0 in a counterclock-
wise order within the lattice N = Z2. A vital property of this sequence is
that any successive pair in the series should generate the entirety
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of the lattice. This means that for every consecutive pair of points in the
sequence, it is possible to represent any other point in N = Z2 as an linear
combination of the two.

Figure 1: Sequence of lattice points.

Remark: Considering the vectors presented in the diagram, one can
deduce that v0 and v1 form a basis for the lattice. Similarly, v1 and v2 can
also be viewed as a basis. This basis formation leads us to the conclusion that
v2 = −v0 + a1v1 for some integer a1. Following this pattern, in a generalized
sense, the relation aivi = vi−1 + vi+1 holds true for all i such that 1 ≤ i ≤ d,
where ai are specific integers.

vi − 1

vivi + 1

Example 1: Let’s determine the scalar a such that avi − vi−1 = vi+1.
With the given vectors vi−1 = (1, 0), vi = (0, 1), and the desired result
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vi+1 = (−1, 1), we set up the following system of equations based on their
vector components:

a = −1,

Solving, we obtain that vi+1 = −1(1, 0)+ 1(0, 1) = (−1, 1). Additionally,
you can show the following calculations:

aivi = vi−1 + vi+1

vi−1 = (1, 0)

avi = a(0, 1)

⇒ vi+1 = a(0, 1)− (1, 0)

= (0, a)− (1, 0)

= (−1, a)

Illustration:

v0

v1v2

-1

1

From the fact that v0 and v1 serve as a basis for the lattice, and similarly
v1 and v2 are also a basis, we can infer that

v2 = −v0 + a1v1
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for some integer a1. More generally, the relationship

aivi = vi−1 + vi+1

holds for all i such that 1 ≤ i ≤ d, where ai are specific integers.

1.4 Topological Constraints

The possible configurations are topologically constrained. For instance, two
of the cones cannot be arranged with vj in the angle strictly between vi+1

and −vi, and −vi and vj+1 in the angle strictly between −vi and −vi+1.

Figure 2: A visual of Topological Constraints found in textbook (Fulton 43)

1.5 Proof of Topological Constraints

Consider the expressions for the vectors:

vj = −avi + bvi+1

and
vj+1 = −cvi − dvi+1,

where a, b, c, and d are positive integers.
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To determine the relationship between these vectors, compute the deter-
minant of the matrix [

−a b
−c d

]
which should be 1. However, computing the determinant, we have ad+bc ≥ 2,
presenting a contradiction.

Remark: The determinant of a matrix represents the scaling factor of
the area when a transformation is applied. For our vectors vi and vi+1,
the determinant value should be 1, indicating that the vectors preserve their
relative area under the transformation. However, the computed determinant,
ad + bc, being ≥ 2, suggests that the area is scaled by at least a factor
of 2, which is contradictory to our original premise. This establishes the
inconsistency of the given vector relations under the specified constraints.

vi

vi+1

−vi

vj = (−a, b)

vj+1 = (−c,−d)

vj = −avi + bvi+1 = (−a, b)
vj+1 = −cvi − dvi+1 = (−c,−d)
a, b, c, d ∈ Z+

Diagram of the Proof

1.6 Classifying Surfaces

We want to classify all of these surfaces. The cases when the number d of
edges is small are easy to do by hand.
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Exercise: Show that for d = 3, the resulting toric variety must be P 2,
and for d = 4, one gets a Hirzebruch surface Fa, both as constructed in §1.1.

We want to classify all of these surfaces. The cases when the number d
of edges is small are easy to do by hand.

Exercise: Show that for d = 3, the resulting toric variety must be P2,
and for d = 4, one gets a Hirzebruch surface Fa, both as constructed in §1.1.

Figure 3: Fulton 6

Figure 4: Fulton 7

Remark: Each Uθa is isomorphic to C2, with coordinates (X, Y ) for θ0.
(X−1, X−1Y ) for θ1, and (Y −1, XY −1) for θ2. These glue together to form the
projective plane P2 in the usual way: if (T0 : T1 : T2) are the homogeneous
coordinates on P2, X = T1/T0 and Y = T2/T0.

1.7 Blowing Up

Given one of these toric surfaces, we know how to construct another that is
the blow-up of the first at a TN -fixed point: simply insert the sum of two
adjacent vectors.

Proposition: All complete nonsingular toric surfaces are obtained from
P2 or Fa by a succession of blow-ups at TN -fixed points.

Claim: If d ≥ 5, there must be some j, 1 ≤ j ≤ d, such that vj−1 and
vj+1 generate a strongly convex cone and vj = vj−1 + vj+1.
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Exercise

Suppose vi = −v0 and i ≥ 3. Show that vj = vj−1 + vj+1 for some 0 < j < i.

Hint from the Textbook

Write each vj as vj = −bjv0 + b′jv1. Define cj = bj + b′j. Given that c2 ≥ 3
and ci = 1, find a j such that cj > cj+1 and cj ≥ cj−1. Demonstrate that
aj = 1 (Fulton 136).

Proof

Expressing each vj in terms of v0 and v1, we have:

vj = −bjv0 + b′jv1

and
cj = bj + b′j

From the given conditions:
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• c2 ≥ 3

• ci = 1

Now, we search for a j for which:

1. cj > cj+1

2. cj ≥ cj−1

Given the expression ajvj = vj−1 + vj+1, it follows that:

ajcj = cj−1 + cj+1

Since cj is greater than cj+1 and roughly equal to or greater than cj−1:

ajcj < 2cj

Given that aj must be an integer and it lies in the open interval (0,2), it’s
evident that:

aj = 1

This concludes the proof since we now have shown that vj = vj−1 + vj+1 for
some 0 < j < i.
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