Smooth Toric Surfaces

Jake Bernstein

October 18th, 2023

1 Two-dimensional Nonsingular Complete Toric Varieties

1.1 Smooth Affine Toric Varieties

Let $\sigma \subseteq N_{\mathbb{R}}$ be a strongly convex rational polyhedral cone. The affine toric variety U_{σ} is considered smooth if and only if σ itself is smooth. Importantly, all smooth affine toric varieties are of this form (Cox, Little, Schenck 40)

1.2 Refresher on Lattices

Definition 1. A lattice is a discrete additive subgroup of \mathbb{R}^{n}, that is, it is a subset $\Lambda \subseteq \mathbb{R}^{n}$ satisfying the following properties:

1. (subgroup) Λ is closed under addition and subtraction.
2. (discrete) There exists an $\varepsilon>0$ such that any two distinct lattice points $x \neq y \in \Lambda$ are at a distance at least $\|x-y\| \geq \varepsilon$.

It's worth noting that not every subgroup of \mathbb{R}^{n} is a lattice.

1.3 Specifying a Sequence of Lattice Points

To describe a two-dimensional nonsingular complete toric variety, you must specify a sequence of lattice points $v_{0}, v_{1}, \ldots, v_{d-i}, v_{d}=v_{0}$ in a counterclockwise order within the lattice $N=\mathbb{Z}^{2}$. A vital property of this sequence is that any successive pair in the series should generate the entirety
of the lattice. This means that for every consecutive pair of points in the sequence, it is possible to represent any other point in $N=\mathbb{Z}^{2}$ as an linear combination of the two.

Figure 1: Sequence of lattice points.
Remark: Considering the vectors presented in the diagram, one can deduce that v_{0} and v_{1} form a basis for the lattice. Similarly, v_{1} and v_{2} can also be viewed as a basis. This basis formation leads us to the conclusion that $v_{2}=-v_{0}+a_{1} v_{1}$ for some integer a_{1}. Following this pattern, in a generalized sense, the relation $a_{i} v_{i}=v_{i-1}+v_{i+1}$ holds true for all i such that $1 \leq i \leq d$, where a_{i} are specific integers.

Example 1: Let's determine the scalar a such that $a \mathbf{v}_{i}-\mathbf{v}_{i-1}=\mathbf{v}_{i+1}$. With the given vectors $\mathbf{v}_{i-1}=(1,0), \mathbf{v}_{i}=(0,1)$, and the desired result
$\mathbf{v}_{i+1}=(-1,1)$, we set up the following system of equations based on their vector components:

$$
a=-1,
$$

Solving, we obtain that $\mathbf{v}_{i+1}=-1(1,0)+1(0,1)=(-1,1)$. Additionally, you can show the following calculations:

$$
\begin{aligned}
a_{i} v_{i} & =v_{i-1}+v_{i+1} \\
v_{i-1} & =(1,0) \\
a v_{i} & =a(0,1) \\
\Rightarrow v_{i+1} & =a(0,1)-(1,0) \\
& =(0, a)-(1,0) \\
& =(-1, a)
\end{aligned}
$$

Illustration:

From the fact that v_{0} and v_{1} serve as a basis for the lattice, and similarly v_{1} and v_{2} are also a basis, we can infer that

$$
v_{2}=-v_{0}+a_{1} v_{1}
$$

for some integer a_{1}. More generally, the relationship

$$
a_{i} v_{i}=v_{i-1}+v_{i+1}
$$

holds for all i such that $1 \leq i \leq d$, where a_{i} are specific integers.

1.4 Topological Constraints

The possible configurations are topologically constrained. For instance, two of the cones cannot be arranged with v_{j} in the angle strictly between v_{i+1} and $-v_{i}$, and $-v_{i}$ and v_{j+1} in the angle strictly between $-v_{i}$ and $-v_{i+1}$.

Figure 2: A visual of Topological Constraints found in textbook (Fulton 43)

1.5 Proof of Topological Constraints

Consider the expressions for the vectors:

$$
v_{j}=-a v_{i}+b v_{i+1}
$$

and

$$
v_{j+1}=-c v_{i}-d v_{i+1},
$$

where a, b, c, and d are positive integers.

To determine the relationship between these vectors, compute the determinant of the matrix

$$
\left[\begin{array}{ll}
-a & b \\
-c & d
\end{array}\right]
$$

which should be 1 . However, computing the determinant, we have $a d+b c \geq 2$, presenting a contradiction.

Remark: The determinant of a matrix represents the scaling factor of the area when a transformation is applied. For our vectors v_{i} and v_{i+1}, the determinant value should be 1 , indicating that the vectors preserve their relative area under the transformation. However, the computed determinant, $a d+b c$, being ≥ 2, suggests that the area is scaled by at least a factor of 2 , which is contradictory to our original premise. This establishes the inconsistency of the given vector relations under the specified constraints.

Diagram of the Proof

$$
\begin{aligned}
& v_{j}=-a v_{i}+b v_{i+1}=(-a, b) \\
& v_{j+1}=-c v_{i}-d v_{i+1}=(-c,-d) \\
& a, b, c, d \in \mathbb{Z}^{+}
\end{aligned}
$$

1.6 Classifying Surfaces

We want to classify all of these surfaces. The cases when the number d of edges is small are easy to do by hand.

Exercise: Show that for $d=3$, the resulting toric variety must be P^{2}, and for $d=4$, one gets a Hirzebruch surface F_{a}, both as constructed in §1.1.

We want to classify all of these surfaces. The cases when the number d of edges is small are easy to do by hand.

Exercise: Show that for $d=3$, the resulting toric variety must be \mathbb{P}^{2}, and for $d=4$, one gets a Hirzebruch surface F_{a}, both as constructed in §1.1.

Figure 4: Fulton 7

Figure 3: Fulton 6
Remark: Each $U_{\theta_{a}}$ is isomorphic to \mathbb{C}^{2}, with coordinates (X, Y) for θ_{0}. $\left(X^{-1}, X^{-1} Y\right)$ for θ_{1}, and $\left(Y^{-1}, X Y^{-1}\right)$ for θ_{2}. These glue together to form the projective plane \mathbb{P}^{2} in the usual way: if $\left(T_{0}: T_{1}: T_{2}\right)$ are the homogeneous coordinates on $\mathbb{P}^{2}, X=T_{1} / T_{0}$ and $Y=T_{2} / T_{0}$.

1.7 Blowing Up

Given one of these toric surfaces, we know how to construct another that is the blow-up of the first at a T_{N}-fixed point: simply insert the sum of two adjacent vectors.

Proposition: All complete nonsingular toric surfaces are obtained from \mathbb{P}^{2} or F_{a} by a succession of blow-ups at T_{N}-fixed points.

Claim: If $d \geq 5$, there must be some $j, 1 \leq j \leq d$, such that v_{j-1} and v_{j+1} generate a strongly convex cone and $v_{j}=v_{j-1}+v_{j+1}$.

Exercise

Suppose $v_{i}=-v_{0}$ and $i \geq 3$. Show that $v_{j}=v_{j-1}+v_{j+1}$ for some $0<j<i$.

Hint from the Textbook

Write each v_{j} as $v_{j}=-b_{j} v_{0}+b_{j}^{\prime} v_{1}$. Define $c_{j}=b_{j}+b_{j}^{\prime}$. Given that $c_{2} \geq 3$ and $c_{i}=1$, find a j such that $c_{j}>c_{j+1}$ and $c_{j} \geq c_{j-1}$. Demonstrate that $a_{j}=1$ (Fulton 136).

Proof

Expressing each v_{j} in terms of v_{0} and v_{1}, we have:

$$
v_{j}=-b_{j} v_{0}+b_{j}^{\prime} v_{1}
$$

and

$$
c_{j}=b_{j}+b_{j}^{\prime}
$$

From the given conditions:

- $c_{2} \geq 3$
- $c_{i}=1$

Now, we search for a j for which:

1. $c_{j}>c_{j+1}$
2. $c_{j} \geq c_{j-1}$

Given the expression $a_{j} v_{j}=v_{j-1}+v_{j+1}$, it follows that:

$$
a_{j} c_{j}=c_{j-1}+c_{j+1}
$$

Since c_{j} is greater than c_{j+1} and roughly equal to or greater than c_{j-1} :

$$
a_{j} c_{j}<2 c_{j}
$$

Given that a_{j} must be an integer and it lies in the open interval $(0,2)$, it's evident that:

$$
a_{j}=1
$$

This concludes the proof since we now have shown that $v_{j}=v_{j-1}+v_{j+1}$ for some $0<j<i$.

References

1. David Cox, John Little, Hal Schenck. Toric Varieties. American Mathematical Society, 2011.
2. William Fulton. Introduction to Toric Varieties. (AM-131), Volume 131. Princeton University Press, Princeton, 1993.
