Let V be the vector space IR" A convex polyhednel cone is a set generated by $\sigma = (r_1v_1 + \cdots + r_sv_s \in V : r_i^2 \ge 0)$ set of vectors mean work. w. non reg. crefficients Vertop fig 1 ongri Scr $\longrightarrow \sim_3$ 500 As per p's def hust week A strongth convox polyhedm cone has the additional property sigma $f \quad 0 \neq V \in \sigma$, then $-v \notin \sigma$ fig2 v2 These positive mutiple, of some vi are called generation for the cone o. v4 You can also describe ones as intersections of The dimension dim (o) of o is the dimension of the timens space IR. $\sigma = dim(Span(\sigma))$ spanned by σ .

The dual or of any set o is the set of eg's of supporting hyperplanes. $\mathcal{U} = \left(u \in V^* : \langle u, v \rangle \ge 0 \text{ for all } v \in \sigma \right)$ $\left\{ d d product \right\}$ $\bigvee \star := \bigvee = \mathbb{N}_{u}$

(*) If σ is convex polyhedral cone & Vo & σ then some some σ is no $\varepsilon \sigma^{V}$ with $\langle n_{0}, V_{0} \rangle < 0$ Mere dot product is less than zero.

This fast is important because consequences insede:

1) builty therem:

$$(\sigma^{\vee})^{\vee} = \sigma$$
 "and from built of your built of your cone is the core"

A five
$$T$$
 of σ is the intersection of σ
with any supporting hyperplane $L = perp$
 $T = \sigma \cap u^{\dagger} = \xi \vee \in \sigma : \langle u, v \rangle = 0$ for some u in
 σ^{\vee} . A cone is regarded as a five of itself.
That will be when $T = \{\overline{o}\}$, then we get σ is
a five of the others
are called proper fires.
NB Arry linear subspace of a cone is contained
in every five of the core. (Show line in
 g . We / full plane. $fig 2$.)

 $(2^{)}$

Any face is also a convex polyhedral cone.

Frien
$$X \in \sigma$$
, $a_1v_1 + \dots + a_nv_n = X$ $\sigma = \langle v_1, \dots - v_h \rangle$.
Let $u \in \sigma^{\vee}$ and consider $\mathcal{T} = \sigma \wedge u^{\perp}$
Then $x \in T$ imply
 $\langle u_1 x \rangle = \langle u_1 a_1 v_1 + \dots + a_n v_h \rangle$
 $= q_1 \langle u_1 v_1 \rangle + \dots + a_n \langle u_n v_h \rangle$

= 0 = 0Thus either $q_1 = \dots = q_n = 0$ or at least one of $\langle u, v_i \rangle = 0$

$$T := \langle V_{i_{1}}, \dots, V_{i_{k}} \rangle$$
So there we finite subjects of T & therefore
finitely many fries.
3) Any intersection of faces is also a face.
3) Any intersection of faces is also a face.
$$\int (\sigma \cap u_{i}^{+}) \times \varepsilon \sigma \text{ and } let \times \varepsilon l_{j} \text{ then } \langle X_{j} u_{i} \rangle = O(\forall i)$$

$$u = \sum u_{i}^{-} \langle X_{j} u_{i} \rangle = O(\forall i)$$

$$u = \sum u_{i}^{-} \langle X_{j} u_{i} \rangle = \langle X_{j} \sum u_{i} \rangle \sum \sum \langle X_{j} u_{i} \rangle = O(\forall i)$$

$$U = \sum u_{i}^{-} \langle X_{j} u_{i} \rangle = \int O((\sum u_{i})^{\perp})^{\perp}$$

$$Y \in \sigma \text{ and } \langle Y_{j} \sum u_{i} \rangle = O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

$$W = \langle Y_{j} u_{i} \rangle \geq O(\forall i)$$

4 Any face of a face is a face.

In fact, if $\tau = \sigma \cap u^{\perp}$ and $\gamma = \tau \cap (u')^{\perp}$ for $u \in \sigma^{\vee}$ and $u' \in \tau^{\vee}$, then for large positive p, u' + pu is in σ^{\vee} and $\gamma = \sigma \cap (u' + pu)^{\perp}$.

It's earlies to be a dual of T bernuse there are ferrer conditions to satisfy compared to being a dual of signa so therefore the set is prtentially larger. The large positive is used to oversome that. WTS $n' + pu \in \sigma^{\vee}$ let $v \in \sigma$ $\langle u' + p, v \rangle = \langle u', v \rangle + p \langle u, v \rangle$ $j \ge 0$, done $\ge 0 \models u \notin \sigma^{\perp}$

A funct is a face of continension one

 $p \ge 0$

p-1≥0 p3,1

S) Any proper face is contained in some face. I - Muybe just
with
$$(\sigma) = dwin(V)$$

for space spaced the proof induces quitting
divin $(\tau) = dwin(W)$ be dont and to worm about
the proof induces quitting
the dont $(\sigma) - dwin(\tau) \ge 2$
the dont and to worm if the
first = first
The induces ∇_i in V/W of the generators of σ
are constantial in a half-space determined by u .
 $u \in \sigma^{\vee}$
and $\tau = \sigma \cap ut$
If $\sigma = gen \{\nabla_{i, i}, \dots, v_n\}$
then V/W with contain $\nabla_{i, j}, \dots, \nabla_n$ in the half-space
muche by $u : \langle \nabla_{i, i}, \overline{v} \ge 30$
At least two are $\neq \overline{\sigma}$ (i.e. two or more $v_i \notin W$)
In fact any free of continent two is the
intersection of exactly.

(6) Any proper face is the intersection of all facets containing it.

$$V_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad V_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad V_{3} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$C = fint \quad octure$$

$$= gen \quad \sum V_{1} , V_{2} , V_{3} \\ T_{1} = gen \quad \sum V_{1} , V_{2} \\ T_{1} = gen \quad \sum V_{1} , V_{2} \\ T_{2} = gen \quad \sum V_{1} , V_{3} \\ T_{3} = gen \quad \sum V_{1} , V_{3} \\ T_{4} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{2} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{1} , V_{3} \\ T_{5} = gen \quad \sum V_{5} \\ T_{5} \\ T_{5} = gen \quad \sum V_{5} \\ T_{5} \\$$

$$\begin{aligned} \mathcal{T}_{1} \cap \mathcal{T}_{2} &= \mathcal{T}_{1} = gen \{ v_{i} \} \\ \mathcal{T}_{2} \cap \mathcal{T}_{3} &= \mathcal{T}_{2} = gen \{ v_{2} \} \\ \mathcal{T}_{3} \cap \mathcal{T}_{2} = \{ o \} \in proper \text{ fore } crdmin = 3 \\ (\mathcal{T}_{1} \cap \mathcal{T}_{2} \cap \mathcal{T}_{3}) \\ \mathcal{T}_{1} \cap \mathcal{T}_{2} \cap \mathcal{T}_{3} \\ \mathcal{T}_{2} \cap \mathcal{T}_{3} \\ \mathcal{T}_{3} \text{ functs} \end{aligned}$$

Indeed, if τ is any face of codimension larger than two, from (5) we can find a facet γ containing it; by induction τ is the intersection of facets in γ , and each of these is the intersection of two facets in σ , so their intersection τ is an intersection of facets.

(7) The topological boundary of a cone that spans V is the union of its proper faces (or facets).

(8) If σ spans V and $\sigma \neq V$, then σ is the intersection of the half-spaces $H_{\tau} = \{v \in V : \langle u_{\tau}, v \rangle \ge 0\}$, as τ ranges over the facets of σ .

(not giving proof)

This is helpful for finding generators for
the dual one
duri
$$(V) = n$$
 σ spans V
 $\sigma \neq V$
procedure $\sigma = gen \{V_{11}, \dots, V_m\}$ $(m \ge n)$
get a lin. indep. pubset of size $n-1$ for t in σ
(There are $\binom{m}{n-1}$ of there)
Check early set for Linear Independence
 $a_1V_1 + \dots + a_{n-1}V_{n-1} = 0$
WTS $a_1 = \dots = a_{n-1} = 0$

and complete perp. subspace in V (which with
choose the generator up that has

$$\langle v, u_{\partial} \rangle > 0$$
 $\forall v \in \tau$
Get als up to find the generator list.
 $\tau' = gen \{ u_{\tau_1}, \dots, u_{\tau_F} \}$

Faky Theorem :

(9) The dual of a convex polyhedral cone is a convex polyhedral cone.

The confluency is the generators of the perp. SWDSpares are the generators for or (just choose the generators with gen. 5 with non neg. but product, w. elements of t)

~Zr Wit integ Zr

If we now suppose σ is *rational*, meaning that its generators can be taken from M, then σ is also rational; indeed, the above procedure shows how to construct generators u_i in $\sigma \cap M$. rational menas V: has integer Coordinates

, main point

Proposition 1. (Gordon's Lemma) If σ is a rational convex polyhedral cone, then $S_{\sigma} = \sigma^{\vee} \cap M$ is a finitely generated semigroup.

A semigroup
$$(S, *)$$
 $(S, *)$ $(S \times S)$
Pet and $(S \times S)$ $(S \times S)$
 $and (S \times S)$ $(S \times S)$
 $and (S \times S)$
 $and (S \times S)$
 $and (S \times S)$
 $and (S \times S)$
 $(S \times S)$
 $and (S \times S)$
 $(S \times S)$
 $and (S \times S)$
 $(S \times S)$

Let
$$\{u_1, \ldots, u_s\} \in \sigma^{\vee} \cap \mathbb{Z}^n$$
 be a generating
set for σ^{\vee} as a cone up $|\mathbb{R}^n$

$$\cdot Let K = \{ \Sigma t; u_i : 0 \leq t; \leq 1 \}$$

· Let u E o V n Z, with u= Zriui, ri ElRzo

. Take
$$t_i = r_i - [r_i] \in [0, 1)$$

 M greatest integre less r_i
. Set $m_i = [r_i]$
. $u = \sum r_i u_i = \sum (m_i + t_i) u_i = \sum m_i u_i + \sum t_i u_i$
. If u has integre coordinates χ
 $\sum m_i u_i \in \mathbb{Z}^n$, then $\sum t_i u_i \in \mathbb{Z}^n$ as uch
So $\sum t_i u_i \in K \cap \mathbb{Z}^n$
Therefore u is generated by clements of
 $K \cap \mathbb{Z}^n$

It is often necessary to find a point in the *relative interior* of a cone σ , i.e., in the topological interior of σ in the space $\mathbb{R} \cdot \sigma$ spanned by σ . This is achieved by taking any positive combination of dim(σ) linearly independent vectors among the generators of σ . In particular, if σ is rational, we can find such points in the lattice.

Any point in the relative interni can be found by falling a positive combination of dim (o) L. I waters among the generation of r.

(10) If τ is a face of σ , then $\sigma^{\vee} \cap \tau^{\perp}$ is a face of σ^{\vee} , with $\dim(\tau) + \dim(\sigma^{\vee} \cap \tau^{\perp}) = n = \dim(\vee)$. This sets up a one-to-one order-reversing correspondence between the faces of σ and the faces of σ^{\vee} . The smallest face of σ is $\sigma \cap (-\sigma)$.

eg on pri or o would map to the whole lone 5~

$$\vec{V} \in \mathcal{T}$$
 (a fine $q \sigma$) s.t. \vec{V} is in \mathcal{T}'_{s} intervoir.
then $\sigma^{\vee} \cap \mathcal{V}^{\perp} = \sigma^{\vee} \cap (\mathcal{T}^{\vee} \cap \mathcal{V}^{\perp}) = \sigma^{\vee} \cap \mathcal{T}^{\perp}$
perp to $\vec{V} \Rightarrow$ perp to everything
 \vec{T}
- define $\mathcal{T}^{*} = \underbrace{\sigma^{\vee} \cap \mathcal{T}^{\perp}}_{\text{Fires } q \sigma^{\vee}}$

$$F: \operatorname{True}(\sigma) \longrightarrow \operatorname{Frue}(\sigma')$$

$$F(-e) = \sigma' \cap \gamma^{\perp}$$

$$\gamma \subseteq \sigma \cap (\sigma' \cap \gamma^{\perp})^{\perp} = (\gamma^{*})^{*}$$

$$\operatorname{Fom} \operatorname{True}(\gamma^{*} \gamma^{*} = ((\tau^{*}))^{*})^{*} \quad so \quad bijective$$

and this implies

$$(\sigma^{\vee})^{\bigstar} = (\sigma^{\vee})^{\vee} \cap (\sigma^{\vee})^{\perp}$$

$$= \sigma \cap (\sigma^{\vee})^{\perp}$$

$$= (\sigma^{\vee})^{\perp}$$

$$= \sigma \cap (-\sigma)$$

$$= \sigma \cap$$

have
$$\sigma \in (\sigma v)^{\perp}$$

and $-\sigma \leq (\sigma v)^{\perp}$
Subset of σ
and $-\sigma$

(11) If $u \in \sigma^{\vee}$, and $\tau = \sigma \cap u^{\perp}$, then $\tau^{\vee} = \sigma^{\vee} + \mathbb{R}_{\geq 0} \cdot (-u)$.

er i di statute da construction de la const

$$\begin{split} \gamma^{\vee} &= \sigma^{\vee} = |\mathcal{R}_{\geq 0}(-n) \\ &\cdot (\gamma^{\vee})^{\vee} = \gamma \\ &\cdot (\sigma^{\vee} + |\mathcal{R}_{\geq 0} \cdot (-n))^{\vee} = \sigma \cap (-n)^{\vee} \end{split}$$

Proposition 2. Let σ be a rational convex polyhedral cone, and let u be in $S_{\sigma} = \sigma^{\vee} \cap \mathbf{M}$. Then $\tau = \sigma \cap u^{\perp}$ is a rational convex polyhedral cone. All faces of σ have this form, and

$$S_{\tau} = S_{\sigma} + Z_{\sigma} \cdot (-u)$$
Falls of RCPC are themselves
RCPC.
Proof If T is a free, then $T = \sigma \cap u^{\pm}$ for
any u is the relative interval & n can be
in Z' since $\sigma \vee n \tau^{\pm}$ is returned.
Know its' rational from (9.5). σ reduced $\Rightarrow \sigma^{\vee}$
rational.
Given $w \in S_{\tau}$ then $w \neq p \cdot u$ is in σ^{\vee} for large positive $p_{\tau}(4)$
and following p to be an integer shows that
 w is in $S_{\sigma} + Z_{\geq 0} \cdot (-u)$

= r n h+

$$8 \cap U^{\perp} = 8 \cap (-8) = (\sigma - \sigma) \cap (\sigma' - \sigma)$$

$$(10)$$

$$\sigma \in 8 : W \in 8, \exists v \in \sigma, \exists v' \in \sigma'$$

$$s.t. W = V + V'$$

$$0 minder then V' = 0 : U = V \in \sigma$$

$$so \forall v \in \sigma, v \in 8 \Rightarrow \sigma \in 8$$

$$- \text{ Since } \sigma \text{ is contrained in } v = 0 \text{ or } s$$

$$- \text{ Since } \sigma \text{ is contrained in } v = 0 \text{ or } s$$

$$- \text{ Since } \sigma \text{ is contrained in } v = 0 \text{ or } s$$

$$- \text{ Since } \sigma \text{ or } s \text{ contrained in } \sigma \cap s$$

$$- \text{ If } v \in \sigma \cap u^{\perp} \text{ then } v \text{ is in } \sigma^{\perp} \sigma \text{ or } s$$

$$- \text{ V + W = U' } V + W \in \sigma' \quad v + W \in \sigma \quad \mathcal{U} = \sigma \cap \sigma''$$

$$\Rightarrow V + W \in \mathcal{U} \quad \text{ the sum } \sigma \text{ 2 elements in } s$$

$$a \text{ free } con be \text{ in } a \text{ free } \sigma \text{ or } s$$

$$\Rightarrow v \in \mathcal{U}$$

$$The is chose front $\tau = \sigma \cap u^{\perp}$

$$\text{ Some } a \text{ contrained } \text{ for } -n$$

$$\text{ to give } \sigma' \cap u^{\perp} = \tau.$$$$

Propojition 3

Proposition 3. If σ and σ' are rational convex polyhedral cones whose intersection τ is a face of each, then

$$s_{\tau} = s_{\sigma} + s_{\sigma}.$$

Profine $\subseteq \sigma \cap \sigma'$

 $\Rightarrow (\sigma \cap \sigma')^{\vee} \subseteq \Upsilon^{\vee}$

 $\sigma^{\vee} + (\sigma')^{\vee} \subseteq \Upsilon^{\vee}$

 $(\sigma^{\vee} + (\sigma')^{\vee}) \cap \mathbb{Z}^{n} \subseteq \Upsilon \cap \mathbb{Z}^{n}$

 $S_{\sigma} + S_{\sigma} \subseteq S_{\sigma}$

For the Ater may around by (12)

We can say a in $\sigma^{\vee} \cap (-\sigma')^{\vee} \cap \mathbb{Z}^{n}$

so that $\Upsilon = \sigma \cap u^{\perp} = \sigma' \cap v^{\perp}$ By proposition

 $2 \quad \& \quad that - u \quad is \quad in \quad S_{\sigma'}$

we have $S_{\sigma} \subset S_{\sigma} + \mathbb{Z}_{go'}(-u) \subseteq S_{\sigma} + S_{\sigma'}$

[3) For a convex phybridial core σ the filtring conditions are equivalent

i) $\sigma \cap (-\sigma) = \{0\}$ the origin

ii) $\sigma \subset contains no non linear subspace$

If $0 \neq v \in \sigma$, then $-v \notin \sigma$

iii) there is a u in σ^{\vee} with $\sigma \cap u^{\perp} = \{0\}$

iv) σ^{\vee} spans $|\mathbb{R}^{n}$

A cone is called *strongly convex* if it satisfies the conditions of (13). Any cone is generated by some minimal set of generators. If the cone is strongly convex, then the rays generated by a minimal set of generators are exactly the one-dimensional faces of σ (as seen by applying (*) to any generator that is not in the cone generated by the others); in particular, these minimal generators are unique up to multiplication by positive scalars.

In future lectures we will just call them ones.

 $\chi \ge 0$ and $y \le \chi$ $\chi - \eta \geq 0$ $\mu = \eta$ D $\Rightarrow (\chi, y) \cdot (1, -1) \succeq 0$ $y \ge 0$ and $x \le y$ $u \in \mathcal{T}^{\vee} \cap (-\mathcal{T}')^{\vee}$ <u>y</u>-x ≥C wow! amazing! TT $\Rightarrow (x_{\gamma q}) \cdot (-1, 1) \geq 0$ $\Rightarrow (x_{y}) \cdot - (1, -1) \geq 0$ $-\mathcal{U}\in \left(\nabla ^{\prime }\right) ^{\vee }$ $u \in (-\pi'$