Let V be the vector spare \mathbb{R}^{n} A convex polyhedral cone is a set generates by sigma $\sigma=\left(r_{1} v_{1}+\ldots .+r_{s} v_{s} \in V: r_{i} \geq 0\right)$ any finite set of vectors linear count. w. non neg. creffineits

fig 1

As per p's def" hest week
A strongly convex poly hedmel cone has the abibitionat property sigma
if $\quad 0 \neq v \in \sigma$, then $-v \notin \sigma$

These positive multiple, of some v_{i} are cilleal genentor for the
$\left[\begin{array}{l}\text { you can abs describe cones as intersections of } \\ \text { half sprues }\end{array}\right]$ The dimension $\operatorname{dim}(\sigma)$ of σ is the dimension of IR. $\sigma=\operatorname{dim}\left(\int_{\operatorname{pan}}(\sigma)\right)$ sparred by σ.

Cone
The dual σ^{v} of any get σ is the set of $e q^{n} s$ of supporting hyperplanes.
y. $\quad \sigma^{v}=\left(u \in V^{*}:\langle u, v\rangle \geqslant 0\right.$ for all $\left.v \in \sigma\right)$ © dot provinces

$$
V^{*}:=V=\mathbb{R}^{n}
$$

(*)
If σ is convex polyhedral cone \& $v_{0} \& \sigma$ then there is some $u_{0} \in \sigma^{v}$ with $\left\langle u_{0}, v_{0}\right\rangle<0$ whee dot less than rout is less thin zero.

This fact is importrat because consequences insole:

1) Duality theorem:

$$
\left(\sigma^{v}\right)^{v}=\sigma
$$

"dual of your leal of your
cone is the core"
A free τ of σ is the intenectron of σ
with any supporting hyperplane
$\tau=\sigma \cap u^{\perp}=\{v \in \sigma:\langle u, v\rangle=0\}$ for some u in σ^{\cup}. A cone is regarded as a fore of itself.
Thur will be when $\tau=\{\overrightarrow{0}\}$, then we get σ is a fire of trey. The steen are called proper fives.
NB tory linker subspace of a cone is continued in every frae of the cone. or. line / full plane.
(show hie in fig 2.
(2) Any face is also a convex polyhedral cone.

Green $x \in \sigma, a, v,+\ldots .+a_{n} v_{n}=x \quad \sigma=\left\langle v_{1}, \ldots-v_{n}\right\rangle$.
Let $u \in \sigma^{\vee}$ and consider $\tau-\sigma \wedge u^{\perp}$
Then $x \in \tau$ imply

$$
\begin{aligned}
\langle u, x\rangle & =\left\langle u, a_{1} v_{1}+\ldots .+a_{n} v_{n}\right\rangle \\
& =\underbrace{q_{1}}_{\geqslant 0} \underbrace{\left\langle u_{1} v_{1}\right\rangle}_{\geqslant 0}+\ldots+a_{n}\left\langle u, v_{n}\right\rangle \\
& =0
\end{aligned}
$$

Thus either $a_{1}=\ldots=a_{n}=0$ or at least one of $\left\langle u, v_{i}\right\rangle=0$
If $v_{i}, \ldots v_{i k}$ are those gelling 0

$$
T=\left\langle v_{i}, \ldots ., v_{i k}\right\rangle
$$

So there are finite subsets of τ \& therefore finiloty many fuses.
3) Any intersection of faces is also a face.

$$
\begin{aligned}
& \underbrace{\cap\left(\sigma \cap u_{i}^{+}\right)}_{i=1} \quad x \in \sigma \text { and } \\
& \text { let } x \in\left\langle x, u_{i}\right\rangle=0\left(\forall_{i}\right) \\
& u=\sum u_{i} \quad(x, u\rangle=\left\langle x, \sum u_{i}\right\rangle F\left(x, u_{i}\right)=0 \\
& \cap\left(\sigma \cap u_{i}^{+}\right) \geq \sigma \cap\left(\sum u_{i}\right)^{\perp} \\
& y \in \sigma \text { and }\left\langle y, \sum u_{i}\right\rangle=0
\end{aligned}
$$

we know $u, \ldots, u_{n} \in \sigma^{v}$ and $y \in \sigma$
so $\left\langle y, u_{i}^{\prime}\right\rangle \geqslant 0_{0}\left(\forall_{i}\right)$ and $y \in 0$
thus if $\left.\left\langle y, u_{1}\right\rangle\right\rangle 0$, then $\left\langle y, \sum u_{i}\right\rangle$

$$
=\underbrace{\left\langle y, u_{1}\right\rangle}_{>0}+\langle\underbrace{\left\langle y_{1} \sum_{i \geq 2} u_{i}\right\rangle}_{\geqslant 0}
$$

4) Any face of a face is a face.

In fact, if $\tau=\sigma \cap u^{\perp}$ and $\gamma=\tau \cap\left(u^{\prime}\right)^{\perp}$ for $u \in \sigma^{\nu}$ and $u^{\prime} \in \tau^{2}$, then for large positive $p, u^{\prime}+p u$ is in σ^{\vee} and $\gamma=\sigma \cap\left(u^{\prime}+p u\right)^{\perp}$.

It's casein to be a dual of τ because there are fewer conditions to satitits comparal to being a dual of sigma so therefore the set is potentinlizy larger.
The large positure is used ts overome thant.
HTS $\quad n^{\prime}+p u \in \sigma^{v}$ let $v \in \sigma$

$$
\left\langle u^{\prime}+\rho, v\right\rangle=\underbrace{\left\langle u^{\prime}, v\right\rangle}_{y \geqslant 0 \text {, done }}+\underbrace{p\langle u, v\rangle}
$$

if <0 trem must be lange enougs to fore
sum $\geqslant 0$
A fouct is a face of cochumension one

$$
\begin{aligned}
& v \in \sigma \rightarrow v=\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
& \in \sigma^{v} x, y \geqslant 0 \\
& \left\langle u^{\prime}+p u, v\right\rangle \\
& =\left\langle\left[\begin{array}{c}
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
0 \\
p
\end{array}\right],\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) \\
& =x+(p-1) \underset{v_{0}}{y} \geqslant 0
\end{aligned}
$$

fore

$$
\tau \cap\left(u^{\prime}\right)^{\top}
$$

$$
p \geq 0
$$

5) Any proper face is contained in some facet.
(1) - maybe just
$\operatorname{dim}(\sigma)=\operatorname{din}(V)$
say this and the prof involves quattionl Spaces.

$$
\operatorname{dim}(\tau)=\operatorname{dim}(\omega)
$$

space sparked

Assume $\underbrace{\operatorname{din}(\sigma)-\operatorname{din}(\tau)}_{\text {columension }} \geqslant 2$
we dent need to wary abut chen the cod $=1$
bemuse then fret $=$ fiver

The images \bar{v}_{i} in V / ω of the genentios of σ are contain in a hult-space determined by u.
$n \in \sigma^{v}$
and $\tau=\sigma \cap u^{\perp}$
If $\sigma=\operatorname{gen}\left\{v_{1}, \ldots, v_{n}\right\}$
then V / W with contain $\bar{V}_{1}, \ldots, \bar{V}_{n}$ in the halt-space male by $h:\left\langle\bar{v}_{i}, \bar{w}\right\rangle \geqslant 0$
At least two are $\neq \overline{0}\left(i e\right.$. two or more $\left.v_{i} \notin W\right)$ in fart any fire of colimension tho is the intersection of exactly tho frets.
(6) Any proper face is the intersection of all facets containing it.

$$
\begin{aligned}
v_{1} & =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad v_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
\sigma & =\operatorname{fint} \text { ortuar } \\
& =\operatorname{gen}\left\{v_{1}, v_{2}, v_{3}\right\} \\
\tau_{1} & =\operatorname{gen}\left\{v_{1}, v_{2}\right\} \quad \overrightarrow{L_{3}}=\operatorname{gen}\left\{v_{2}, v_{3}\right\} \\
\tau_{2} & =\operatorname{gen}\left\{v_{1}, v_{3}\right\}
\end{aligned}
$$

$$
\tau_{1} \cap \tau_{2}=\gamma_{1}=\operatorname{gen}\left\{v_{1}\right\}
$$

$$
\tau_{2} \cap \tau_{3}=\gamma_{2}=\operatorname{gen}\left\{v_{2}\right\}
$$

$$
\gamma_{1} \cap \gamma_{2}=\{0\} \leftarrow \text { proper fur cram in }=3
$$

$$
\underbrace{\tau_{1} \wedge \tau_{2} \cap \tau_{3}}_{3 \text { fonts }}
$$

Indeed, if τ is any face of codimension larger than two, from (5) we can find a facet γ containing it; by induction τ is the intersection of facets in γ, and each of these is the intersection of two facets in σ, so their intersection τ is an intersection of facets.
(7) The topological boundary of a cone that spans V is the union of its proper faces (or facets).

\& (*) If σ is a convex polyhedral cone and $v_{0} \& \sigma$, then there is some $u_{0} \in \sigma^{\vee}$ with $\left\langle u_{0}, v_{0}\right\rangle\langle 0$.

$$
\begin{aligned}
& {\left[\operatorname{seq} \cdot\left(w_{i}\right) \rightarrow v\right.} \\
& \rightarrow \operatorname{seq}\left(u_{i}\right) \rightarrow u_{0} \leq \sigma^{v} \\
& \left\langle w_{i} \cdot u_{i}\right\rangle<0 \quad(\text { all } i) \\
& \left\langle v, u_{i}\right\rangle \geqslant 0 \quad \text { by def. of } \sigma
\end{aligned}
$$

Then by continuity:

$$
\underbrace{\left\langle w_{i}, u_{i}\right\rangle}_{i, k} \rightarrow\left\langle v_{1}, u_{0}\right\rangle=0
$$

$$
w_{i} \longrightarrow V \quad w_{i} \notin \sigma
$$

(8) If σ spans V and $\sigma \neq \mathrm{V}$, then σ is the intersection of
the half-spaces $H_{\tau}=\left(\mathrm{v} \in \mathrm{V}:\left\langle\mathrm{u}_{\tau}, \mathrm{v}\right\rangle \geq 0\right)$, as τ ranges over the
facets of σ.

This is helptal for fininnig gerentos for the dual cone
$\operatorname{din}(V)=n \quad \sigma$ spans V

$$
\sigma \neq V
$$

$$
\text { PRoCEDURE } \sigma=\operatorname{gen}\left\{v_{1}, \ldots . v_{m}\right\rangle \quad(m \geqslant n)
$$

get a lin. indy. suroset of size $n-1$ facet in σ (These are $\binom{m}{n-1}$ of these)
Check each at for Linear ladegenderse

$$
\begin{aligned}
& a_{1} v_{1}+\ldots+a_{n-1} v_{n-1}=0 \\
& \text { UTS } a_{1}=\ldots=a_{n-1}=0
\end{aligned}
$$

and complete perp. Subspace in V (whish wa have dim. 1)
choose the generator u_{τ} that has

$$
\left\langle v, w_{\theta}\right\rangle \geqslant 0 \quad \forall v \in \sigma
$$

feet al u_{τ} to finis the genemtor hit.

$$
\sigma^{v}=\operatorname{gen}\left\{u_{\tau_{1}}, \ldots . u_{\tau_{k}}\right\}
$$

Fake' Theorem:
(9) The dual of a convex polyhedral cone is a convex polyhedral cone.
The corollary is the genentors of the perv. subspaces are the genemton for σ^{v} (just chooge the genentos with gens with non neg. dot poult. w. elements of σ)

If we now suppose σ is rational, meaning that its generators can be taken from \mathbb{X}, then σ^{2} is also rational; indeed, the above procedure shows how to construct generators u_{i} in $\sigma^{2} \cap M$.
\mathbb{Z}^{n}

cull it
\mathbb{Z}^{n}
rational meas v_{i} has integer coonlinutes

Proposition 1. (Gordon's Lemma) If σ is a rational convex polyhedral cone, then $S_{\sigma}=\sigma^{\vee} \cap M$ is a finitely generated semigroup. main point

A semigroup: $(S, *) \quad *: S \times S \rightarrow S$ set and * is assiuntive

$$
a *(b * c)=(a * b) * c
$$

Proof : Let σ be a rational convex poly. cone

- Then σ^{v} is abs. RCPC

Let $\left\{n, \ldots, u_{s}\right\} \subseteq \sigma^{v} \cap \mathbb{Z}^{n}$ be a generntunig set for σ^{v} as a cone in \mathbb{R}^{n}

- Let $K=\left\{\sum t_{i} u_{i}: 0 \leqslant t_{i} \leqslant 1\right\}$
- Then K is compact (closed \& bounded)
- Thus $k \cap \mathbb{Z}^{n}$ is finite \&
- Let $u \in \sigma^{v} \cap \mathbb{Z}_{1}^{n}$, wite $u=\sum r_{i} u_{i}, r_{i} \in \mathbb{R}_{\geqslant 0}$
- Take $t_{i}=r_{i}-\left\lfloor r_{i}\right]_{\Omega} \underset{\text { greatest integer less } r_{i}}{ } \in[0,1]$
- Set $m_{i}=\left\lfloor r_{i}\right\rfloor$
- $u=\sum r_{i} u_{i}=\sum\left(m_{i}+t_{i}\right) u_{i}=\sum_{\epsilon \mathbb{Z}_{r}}^{\sum m_{i} u_{i}}+\underbrace{\sum t_{i} u_{i}}_{\epsilon K}$
- If u has integer coordisintes \&
$\sum m_{i} n_{i} \in \mathbb{Z}^{n}$, then $\sum t_{i} u_{i} \in \mathbb{Z}^{n}$ as neh
So $\sum t_{i} u_{i} \in K \cap \mathbb{Z}^{n}$
Therefore u is genemted by clements of $k \cap \mathbb{Z}^{n}$

It is often necessary to find a point in the relative interior of a cone σ, ie., in the topological interior of σ in the space $\mathbb{R} \cdot \sigma$ spanned by σ. This is achieved by taking any positive combination of $\operatorname{dim}(\sigma)$ linearly independent vectors among the generators of σ. In particular, if σ is rational, we can find such points in the lattice.
All point in the relative intorni' car be found by taking a positive combination of dim (σ) L.I vector among the gerestion of σ.
(10) If τ is a face of σ, then $\sigma^{2} \cap \tau^{2}$ is a face of σ^{2}, with $\operatorname{dim}(\tau)+\operatorname{dim}\left(\sigma^{\wedge} \cap \tau^{\perp}\right)=n=\operatorname{dim}(\mathrm{V})$. This sets up a one-to-one order-reversing correspondence between the faces of σ and the faces of σ^{2}. The smallest face of σ is $\sigma \cap(-\sigma)$.
eg. origri of σ mould map to the whole cone σ^{-}
$\vec{V} \in \tau$ (a fire of σ) s.t. \vec{V} is in τ^{\prime} intenoir. then $\sigma^{v} \cap v^{\perp}=\sigma^{v} \cap\left(\tau^{v} \cap v^{+}\right)=\sigma^{v} \cap \tau^{\perp}$ perp to $\vec{v} \Rightarrow$ perp to ever.thing

- defini $\tau^{*}=\frac{\sigma^{v} \cap \tau^{+}}{\text {fires of } \sigma^{v}}$
$F: \operatorname{Fres}(\sigma) \rightarrow$ Frues $\left(\sigma^{v}\right)$

$$
F(\tau)=\sigma^{v} \cap \tau^{\perp}
$$

$\tau \subseteq \sigma \cap\left(\sigma^{\vee} \cap \tau^{\perp}\right)^{\perp}=\left(\tau^{*}\right.$
Form this $\left.\mathfrak{c}^{*}=\left(\left(T^{*}\right)\right)^{*}\right)^{*}$ so bijertre
and this imphes

$$
\begin{aligned}
\left(\sigma^{v}\right)^{*} & =\left(\sigma^{v}\right) \vee \cap\left(\sigma^{v}\right)^{\perp} \\
& =\sigma \cap\left(\sigma^{v}\right) \perp \\
& =\left(\sigma^{v}\right) \perp \\
& =\sigma \cap(-\sigma)
\end{aligned}
$$

subspmere in \mathbb{R}^{n} contrined in σ
(11) If $u \in \sigma^{2}$, and $\tau=\sigma \cap u^{\perp}$, then $\tau^{2}=\sigma^{2}+\mathbb{R}_{\geq 0} \cdot(-\mathrm{u})$.

$$
\begin{aligned}
& \tau^{v}=\sigma^{v}=\mathbb{R}_{\geqslant 0} \cdot(-n) \\
& \cdot\left(\tau^{v}\right)^{v}=\tau \\
& \cdot\left(\sigma^{v}+\mathbb{R}_{\geqslant 0} \cdot(-u)\right)^{v}=\sigma \cap(-n)^{v}
\end{aligned}
$$

have $\sigma \leq\left(\sigma^{v}\right)^{\perp}$ and $-\sigma \leq\left(\sigma^{v}\right)^{+}$ subget of π and -a

$$
=\sigma \cap u^{+}
$$

Propgition 2

Proposition 2. Let σ be a rational convex polyhedral cone, and let
u be in $S_{\sigma}=\sigma^{2} \cap$. Z Then $\tau=\sigma \cap u^{\perp}$ is a rational convex

$$
S_{\tau}=S_{\sigma}+\mathbb{Z}_{0} \cdot(-u)
$$

Faves of RCPC are themselves RCPC.

Prose If τ is a face, then $\tau=\sigma \cap u^{\dot{+}}$ for any ${ }^{u}$ in the relative intens i \& \mathbb{Z}^{n} an be

Know it's rutroinal from (9.5). σ nothoirl $\Rightarrow \sigma^{\circ}$ notional.

Guin $w \in S_{\tau}$ then $\omega+p \cdot u$ is in σ^{v} for large positive $P_{(4)}$ and talking p to be an integer shows that ω is in $S_{\sigma}+\mathbb{Z} \geqslant 0 \cdot(-n)$
(12) Sepurntroi Lemma

If σ and σ^{\prime} are convex polyhedral cones τ is a fire of exch, then there is a u ir $\sigma^{v} \cap\left(-\sigma^{\prime}\right)^{v}$ with

$$
\tau=\sigma \cap u^{+}=\sigma^{\prime} \cap u^{\perp}
$$

-Look af cone $\gamma=\sigma-\sigma^{\prime}=\sigma+\left(-\sigma^{\prime}\right)$

- We know that for any u in the relative intenoi of $\gamma^{V}, \gamma \cap U^{+}$is the smallest fire of 8. s "u' males smallest face"

$$
\gamma \cap V^{\perp}=\gamma \cap(-\gamma)=\left(\sigma-\sigma^{\prime}\right) \cap\left(\sigma^{\prime}-\sigma\right)
$$

(10)
dritishr
$\sigma \subseteq \gamma: w \in \gamma, \exists v \in \sigma, \exists v^{\prime} \in \sigma^{\prime}$
st. $W=U+V^{\prime}$
Consumer when $V^{\prime}=0: \omega=V \in \sigma$
so $\forall V \in \sigma, v \in \gamma \Rightarrow \sigma \subseteq \gamma$

- Siare σ is continued in γ, n is contained in $\sigma^{v} \&$ sine ψ is combined' ia $\gamma \cap-\gamma$, τ is contained in $\sigma \cap u^{\perp}$.
- If $v \in \sigma \cap u^{\perp}$ then v is in $\sigma-\sigma$ so if $w^{\prime} \in \sigma^{\prime}, w \in \sigma \quad v=w^{\prime}-w$.
$-v+w=w^{\prime} \quad v+w \in \sigma^{\prime} \quad v+w \in \sigma \quad \tau=\sigma \cap \sigma^{\prime}$
$\Rightarrow V+w \in \tau$ the sum of Z elements in a fore can be in a fire orly if the summons are in the fire (because all the clefs are pos. or equal to zero in a cone)

$$
\Rightarrow \quad v \in \tau
$$

This shows that $\tau=\sigma \cap u^{\perp}$ \& same arywonent can be applied for $-n$ to give $\sigma^{\prime} \cap u^{\perp}=\tau$.

Propojituri 3
Proposition 3. If σ and σ^{\prime} are rational convex polyhedral cones whose intersection τ is a face of each, then

$$
S_{\tau}=S_{\sigma}+S_{\sigma^{\prime}}
$$

Proof

$$
\begin{aligned}
& \leq \sigma \cap \sigma^{\prime} \\
\Rightarrow & \left(\sigma \cap \sigma^{\prime}\right)^{v} \leq \tau^{v} \\
& \sigma^{v}+\left(\sigma^{\prime}\right)^{v} \leq \tau^{v} \\
& \left(\sigma^{v}+\left(\sigma^{\prime}\right)^{v}\right) \cap \mathbb{Z}^{n} \leq \tau^{v} \cap \mathbb{Z}^{n} \\
& S_{\sigma}+S_{\sigma^{\prime}} \leq S_{\tau}
\end{aligned}
$$

For the other wy around by (12)
we can say u in $\sigma^{v} \cap\left(-\sigma^{\prime}\right) \vee \cap \mathbb{Z}^{n}$
so that $\tau=\sigma \cap u^{\perp}=\sigma^{\prime} \cap v^{\perp}$ By proposition
$2 \&$ that $-u$ is in $S_{\sigma^{\prime}}$ we have $S_{\tau} \subset S_{\sigma}+\mathbb{Z}_{\geq 0} \cdot(-u) \subset S_{\sigma}+S_{\sigma^{\prime}}$
13) For a convex polyhedral cone σ the following.
condituris are conditions are equimbent
i) $\sigma \cap(-\sigma)=\{0\}$ the origins
ii) σ contains no non linear subspace If $0 \neq v \in \sigma$, then $-v \notin \sigma$
iii) there is a u in σ^{\vee} with $\sigma \cap u^{+}=\{0\}$
iv) σ^{v} spans \mathbb{R}^{n}

A cone is called strongly convex if it satisfies the conditions of (13). Any cone is generated by some minimal set of generators. If the cone is strongly convex, then the rays generated by a minimal set of generators are exactly the one-dimensional faces of σ (as seen by applying (*) to any generator that is not in the cone generated by the others); in particular, these minimal generators are unique up to multiplication by positive scalars.

In future lectures be in ll just all them comes.

