Casey Qi October 18th Reall Tare's Lecture: all 2-din cores transform (0,1) (0,1) (0,1) (0,1) Scd(k,m)=1. Scd(k,m)=1. (m,-k) (m,-k) (m,-k) (m,-k) Smel: Non-sig Um: With Voots of Unity Um acts on C² W neights (1.K) $\frac{U}{2}, \frac{U}{2}(1, \gamma) = (21, 2^{k}\gamma)$ $\frac{U}{2}, \frac{U}{2}(1, \gamma) = (21, 2^{k}\gamma)$ $\frac{U}{2}(1, \gamma) = (21, 2^{k}\gamma)$ Non, want I dinersis & add more comes. The class of example : the construction of the Weighteel Projectice Space (P(do...., dn), di E Zro - Start w/ the same fair used in the Construction af projective space - Cones generated by proper subsets af {eo, e1,..., en } where eoter + ... + en = 0. - BUT take our lattice N to be generated by the vectors the ez, DEZEN. > Resulting town variety is the variety $\mathbb{P}(d_0,\ldots,d_n) = \mathbb{C}^{n+1} \setminus \{0\} / \mathbb{C}^*,$ Where C* acts by C* × Cn+1/{0} -> Cn+1/{0} (C, (to,..., tn)) 1-> (cdo to,..., cdn tn) Side note: IP(do,..., dn) = IP/((udox...xUdn)/Ugcd) Each chart is C/Udi w/ Weights (do..., di,..., dn)

2-3 One-parameter subgroups; limit points Goal: one-parameter subgroups at the torus their limit points in torin Varietin to recover the fan fron the torus artion. Reminder: alsebrain group = group + Variety] Example: GLn(C). Want: recover the lattice N from the torus TN. 5 Loele at one-parameter subgroups (I-PS) Det: In the theory of alsobrain groups, I-PS in a how $Q: C^* \rightarrow G = T_N = (C^*)^n$ $\varphi(ab) = \varphi(a)\varphi(b)$. YKEZ, J homomorphi C* -> C*, ZI-> ZK. In fact, $Hom(\mathbb{C}^*, \mathbb{C}^*) = \mathbb{Z}$: All of such form. Given lattice N, W/ dual M din M = din N = N =) corresponding tory TN = Hon (M, C*) = (C*)" $|\operatorname{Hon}(\mathbb{C}^{*}, \mathbb{T}_{N}) = \operatorname{Hom}(\mathbb{C}^{*}, (\mathbb{C}^{*})^{n}) = \operatorname{Hom}(\mathbb{C}^{*}, \mathbb{C}^{*})^{n} = \mathbb{Z}^{n} = \mathbb{N}$ Takis a basis for N => Ut Rench: every one-parameter subgroup $\lambda: \mathbb{C}^* \longrightarrow TN$ is given by an unique V in N. $\Box denske \ c \ \lambda_V. \ \lambda_V: C^* \longrightarrow T_N = (C^*)^n$ $t \longrightarrow (t^{v_1}, \ldots, t^{v_n})$

Note that
$$T_{N} = (C^{*})^{n}$$
 has an action on Xs
Gluis U6, 66 $\land \rightarrow$ Xs \Rightarrow it suffices to
define its aution on each affine piece.
i.e. gluis respects this tax aution.
S6 $C M = \mathbb{Z}^{n} \Rightarrow$ induces an aution of $T_{N} = (C^{*})^{n}$
on U6 = Spec(CES_{0}), where $\forall I \in U_{0}$,
let $f_{1} \dots, f_{K}$ be the generators of I
i.e. $I = (f_{1} \dots, f_{K})$, then
 $(C^{*})^{n} \cdot I = ((C^{*})^{n} \cdot f_{1}, \dots, (C^{*})^{n} \cdot f_{n})$, where
 U
 U
 $(T_{1}, \dots, T_{n}) \cdot (d_{1}^{n} d_{2}^{n} \dots d_{n}^{n}) = (t_{1}^{n} \dots t_{n}^{n})(d_{1}^{n} \dots d_{n}^{n})$
 $Exact (t_{1}, t_{2}) \cdot d^{3} = t_{1}^{3} d^{3}$; $(t_{1}, t_{2}) \cdot dy^{2} = t_{1}^{2} dy^{2}$.
Def: The character $X^{m}: T \rightarrow C^{*}$ associated with
the lattice point m is defined by
 $X^{m}(t) = t_{1}^{m_{1}} t_{2}^{m_{2}} \dots t_{n}^{m_{m}}$
Remark: $X^{m}(t, S) = X^{m}(t) X^{m}(S)$
 $\Rightarrow X^{m} \simeq A$ grow honomorphin
Ten $\forall n \in 6^{V} \subset M$, the duct of N ,
we have $\lambda_{V}(\tilde{z})(m) = X^{n}(\lambda_{V}(\tilde{z}))$
 $= X^{n}((X^{V_{1}}, \dots, Z^{V_{m}}))$
 $= Z^{V_{1}M_{1}} = Z^{V_{1}M_{2}} \dots Z^{V_{m}}$
 $T_{2}^{V_{1}M_{2}} = K^{m}(t, S) = X^{m}(t, S)$
 $= X^{m}(t, S^{V_{1}} \dots Z^{V_{m}})$
 $= X^{m}(t, S^$

Exa. 6 sevented by part of a basis en., ex for N, So U6 is CK × (C*)^{n-k} $F_{n}(m_{1},...,m_{n}) \in \mathbb{Z}^{n}, \lambda_{v}(z) = (Z^{m_{1}},...,Z^{m_{n}})$ lin Lu(2) exits in U6 Emizo Vi and Mi=0 Vi>K 2-70 WG6. $\lim_{y \to \infty} \lambda_v(z) = (s_1, ..., s_n), \text{ where } s_i = 1$ if 3-70 Mi=0 and Si=0 2f Mi=>0. By Will's talk, know these lin't points are the distinguished point XT for sove face(s) T af 6. Viewed inside the space of itself. i.e. T'= T viewed on a top coul $\mathcal{U}_{\overline{L}} = \mathcal{U}_{\overline{L}}, \times (\mathcal{L}^{\times})^{n-K}$ $X_{T} = \left(\begin{array}{ccc} \text{tle unique fixed point} \\ \text{tlen acted on by } (\mathbb{C}^{*})^{k}, \begin{array}{ccc} 1, \dots, l \\ n-k \end{array} \right)$ Wo dains: Claim I: If Vin a |A| = U6, and Ti the cover of D that contains V in its relatie interior, Hen lim Lu(2) = XC $C^{*} \xrightarrow{\lambda v} (C^{*})^{n} \xrightarrow{z \to 0} \xrightarrow{\lambda v}$

Clanz: If vis unt in any come of d, then lim lu(z) does not exit = X(0). Ino definition from 2.4 Ref: X(0) = Xo is compart iff $|\Delta| = |k^n|$ Rabul's lectre if N' P>N maps & into A ~ ? ? XA ~ Xo det 9 proper if 9-1(121)= [2] Exn: 1/(1) 1/(1)