Casey Q_{i} October 18th
Recall Tare's Lectuce:

$$
\begin{equation*}
0 \leq k<m \tag{0,1}
\end{equation*}
$$

all 2-din cones transform
U_{m} : in th roots of

um acts on $\mathbb{C}^{2} w /$ weiss $(1, k)$
$z, z(x, y)=\left(z x, z^{k} y\right)$
2-din Affie toxin Variets

$$
\mathbb{C}^{2} / u_{m}:=\operatorname{spec}\left(\mathbb{C}[x, y]^{u_{m}}\right)
$$

Now, want T dinensis \& add more cones.
II
The class of exarch: the construtic of the
Weighted Projetir Space $\mathbb{P}\left(d_{0}, \ldots, d_{n}\right), d_{i} \in \mathbb{Z}_{>0}$

- Start w/ He sane fan used is the construction of projectile space
- Cones generated by proper subsets of $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ where $e_{0}+e_{1}+\ldots+e_{n}=0$.
- BUT take our lattice N to be generated by the vectors $\frac{1}{d_{i}} \cdot e_{i}, 0 \leq i \leq n$.
\Rightarrow Results tori variety is the variety

$$
\mathbb{P}\left(d_{0}, \ldots, d_{n}\right)=\mathbb{C}^{n+1}\left\{\{0\} / \mathbb{C}^{*},\right.
$$

where \mathbb{C}^{*} acts by $\mathbb{C}^{*} \times \mathbb{C}^{n+1} \backslash\{0\} \rightarrow \mathbb{C}^{n+} \backslash\{0\}$

$$
\text { by } \left.\mathbb{C}^{*} \times \mathbb{C}^{n+1} \backslash\{0\} \rightarrow\left(x_{0}, \ldots, x_{n}\right)\right) \mapsto\left(c^{d_{0}} x_{0}, \ldots, c^{d_{n}} x_{n}\right)
$$

Side note: $\mathbb{P}\left(d_{0}, \ldots, d_{n}\right)=\mathbb{P}^{n} /\left(\left(u d_{0} \times \cdots \times u d_{n}\right) / u_{\text {seed }}\right)$ Ewe chart $\rightarrow \mathbb{C}^{n} /$ UNi $w /$ weights

$$
\left(d_{0}, \ldots, \hat{d}_{i}, \ldots, d_{n}\right)
$$

2.3 One-paraketer subgroups; lim't points

Goal: one-paraneter subsrouss of the torns $+$
their lim't points in torin varietis

$$
\Downarrow
$$

to recover the fan from the torns action.
$\left[\begin{array}{c}\text { Reminder: Alsebrair group }=\text { group }+ \text { Variety } \\ \text { Example: } G \operatorname{Ln}(\mathbb{C}) \text {. }\end{array}\right]$
Want: recover the lattie N fron the torms T_{N}. \rightarrow Loale af one-paraneter subgroms (I-PS)
Def: In the theory of alsebrain growps, $1-P S i \sim$ a hom $\varphi: \mathbb{C}^{*} \rightarrow G=T_{N}=\left(\mathbb{C}^{*}\right)^{n}$ $\varphi(a b)=\varphi(a) \varphi(b)$.
$\forall k \in \mathbb{Z}, \exists$ homomorph $L \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}, z \longmapsto z^{k}$.
In fact, $\operatorname{Hom}\left(\mathbb{C}^{*}, \mathbb{C}^{*}\right)=\mathbb{Z}$: All of such form.
Given lartice $N, w /$ dual $M \quad \operatorname{dim} M=\operatorname{dim} N=n$
\Rightarrow correspondis torm $T_{N}=\operatorname{tam}\left(M, \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{n}$
Takj a basis for $N \Rightarrow$

U \rightarrow Renek: every one-parameter subgron $\lambda: \mathbb{C}^{*} \rightarrow T_{N}$ is given by an unigu V in N.
\rightarrow denrece cos $\lambda_{V} . \lambda_{V}: \mathbb{C}^{*} \rightarrow T_{N}=\left(\mathbb{C}^{*}\right)^{n}$

$$
t \mapsto\left(t^{v_{1}}, \ldots, t^{v_{n}}\right)
$$

Nate that $T_{N}=\left(\mathbb{C}^{*}\right)^{n}$ has an action on X_{Δ} $G l u i n U_{6}, b \in \Delta \leadsto X_{\Delta} \Rightarrow$ it suffices to define its action on earth affice piece. i.e. Slay respects this tarim action. $S_{6} \subset M=\mathbb{Z}^{n} \Rightarrow$ induces an attire of $T_{N}=\left(\mathbb{C}^{*}\right)^{n}$ on $U_{6}=\sec \left(\mathbb{C}\left[S_{6}\right]\right)$, where $\forall I \in U_{6}$, let $f_{1} \ldots, f_{k}$ be the generators of I ie. $I=\left(f_{1}, \ldots, f_{k}\right)$, then
$\left(\mathbb{C}_{U}^{x}\right)^{n} \cdot I=\left(\left(\mathbb{C}^{x}\right)^{n} \cdot f_{1}, \ldots,\left(\mathbb{C}^{*}\right)^{n} \cdot f_{n}\right)$, whole

$$
\begin{aligned}
& \begin{aligned}
&\left.\left(t_{1}, \ldots, t_{n}\right) \cdot\left(x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots\right)_{n}^{a_{n}}\right)=\left(t_{1}^{a_{1}} \ldots t_{n}^{a_{n}}\right)\left(x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}\right) \\
&\left.E \times n \cdot\left(t_{1}, t_{2}\right) \cdot x^{3}=t_{1}^{3} x^{3} ;\left(t_{1}, t_{2}\right) \cdot x y^{2}=t_{1} t^{2} x\right)^{2}
\end{aligned} \\
& \frac{E x a n}{c h a i}\left(t_{1}, t_{2}\right) \cdot x^{3}=t_{1}^{3} x^{3} ;\left(t_{1}, t_{2}\right) \cdot x y^{2}=t_{1} t_{2}^{2} x y^{2} \text {. }
\end{aligned}
$$

Ref: The character $X^{m}: T \rightarrow \mathbb{C}^{*}$ associated with the lattice point m is defined by

$$
x^{m}(t)=t_{1}^{m_{1}} t_{2}^{m_{2}} \ldots t_{n}^{m_{n}}
$$

Remark: $X^{m}(t \cdot s)=x^{m}(t) x^{m}(s)$
$\Rightarrow x^{m}$ is a group homomorphin
Ten $\forall u \in \sigma^{V} \subset M$, the duel of N, we hare

$$
\begin{aligned}
\lambda_{v}(z)(u) & =x^{v}\left(\lambda_{v}(z)\right) \\
& =x^{n}\left(\left(z_{1}^{v_{1}}, \ldots, z^{v_{n}}\right)\right) \\
& =z^{v_{1} u_{1}} \cdot z^{v_{2} u_{2}} \ldots \cdot z^{v_{n} u_{n}} \\
& =z^{\langle v, u\rangle} \rightarrow \text { inner produx } \\
& \text { (usm } \left.\cong \mathbb{R}^{n}\right)
\end{aligned}
$$

Want: recover 6 from the Torn embeddis $T_{N} \subset U_{6}$ \rightarrow lock at $\lim _{z \rightarrow 0} \lambda_{v}(z)$ for various $V \in N$

Exc: 6 senercited by part of a bus's $e_{1}, \ldots, e_{l c}$ for N, so $U_{6}>\mathbb{C}^{k} \times\left(\mathbb{C}^{*}\right)^{n-k}$

$$
\begin{aligned}
& \text { for } N, \text { so } U_{6} \text { is } \mathbb{C}^{k} \times\left(\mathbb{C}^{*}\right) \\
& \operatorname{Fon}\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}, \lambda_{v}(z)=\left(z^{m_{1}}, \ldots, z^{m_{n}}\right)
\end{aligned}
$$

$$
\lim _{z \rightarrow 0} \lambda_{v}(z) \text { exists in } U_{6}
$$

$$
\begin{aligned}
& \lim _{z \rightarrow 0} \lambda_{v}(z) \text { exists in } \\
& \Leftrightarrow m_{i} \geq 0 \quad \forall i \text { and } m_{i}=0 \quad \forall i>k \\
&
\end{aligned}
$$

$$
\Leftrightarrow V \in \sigma .
$$

$\lim _{z \rightarrow 0} \lambda_{v}(z)=\left(\delta_{1}, \ldots, \delta_{n}\right)$, where $\delta_{i}=1$ if

$$
\begin{aligned}
& v(z)=\left(\delta_{1}, \ldots, \delta_{1}=0 \text { if } m_{i}>0\right. \text {. } \\
& m_{i}=0 \text { and } \delta_{i}=0 \text { these inf poi }
\end{aligned}
$$

By Will's talk, know there lin't point all the distinguished point x_{τ} far sore face (s) τ of σ.

$$
U_{\tau}=\underbrace{U_{\tau^{\prime}}}_{\text {viewed inside }} \times\left(\mathbb{C}^{x}\right)^{n-k}
$$

- viewed insich the span of itself. ie. $\tau^{\prime}=\tau$ viewed as a top cone
$x_{\tau}=\binom{$ He wipe fixed Doit }{ When anted on by $\left(\mathbb{C}^{*}\right)^{k}, \frac{1, \ldots, 1}{n-k}}$
Tho Clans:
Claims : If V is $=|\Delta|=U_{6 \in \Delta} b$, and τ is the core of Δ that contains v in its relatie interinv, then $\lim _{z \rightarrow 0} \lambda_{v}(z)=x_{c}$

Clain2: If v is ust in ang cove of Δ, then $\lim _{z \rightarrow 0} \lambda_{l}(z)$ doernot exit in $X(\Delta)$.
Two defin'te fron 2.4
Det: $X(\Delta)=X_{\Delta}$ is compact iff

$$
|\Delta|=\mathbb{R}^{n}
$$

Rahul's letue of

mars Δ^{\prime} into $\Delta \sim \varphi^{*}: X_{\Delta^{\prime}} \rightarrow X_{\Delta}$
def φ proper if $\varphi^{-1}(|\Delta|)=\left|\Delta^{\prime}\right|$
Exa:

