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Abstract. I will introduce Nakajima quiver varieties and attempt to explain why
so many people care about them.

1. Introduction and history

Nakajima quiver varieties are related to many areas of mathematics and originally
appeared as moduli spaces of Yang-Mills instantons, for example in

• Kronheimer, The construction of ALE spaces as hyper-Kähler quotients (1989);
• Kronheimer-Nakajima, Yang-Mills instantons on ALE gravitational instantons

(1990).

In the representation theoretic context, they were introduced and originally studied
by Nakajima in two papers in the 1990s to study representations of Kac-Moody
algebras:

• Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras (1994);
• Quiver varieties and Kac-Moody algebras (1998).

There are several expositions of the basic ideas of Nakajima, for example:

• Schiffmann, Varietés carquois de Nakajima (Séminaire Bourbaki, 2006-2007);
• Ginzburg, Lectures on Nakajima’s quiver varieties (2012);
• Nakajima, Introduction to quiver varieties – for ring and representation theorists

(2016).

There is also an entire book by Kirillov that starts from the basics of quivers and
finishes with the work of Nakajima. Nakajima varieties are also used to study
geometric representations of other objects, for example in

• Nakajima, Quiver varieties and finite-dimensional representations of quantum
affine algebras (2001);

• Maulik-Okounkov, Quantum groups and quantum cohomology (2019);
• Okounkov, Lectures on K-theoretic computations in enumerative geometry

(2017);
• Aganagic-Okounkov, Elliptic stable envelopes (2021);

2. What is a Nakajima variety?

Let Q be a quiver with vertex set I. Recall that a representation of Q is the same
thing as a functor Q → VectC. Nakajima quiver varieties will be moduli spaces of
framed representations of Q in the following sense.
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First, define a new quiver Q ′ by adding a vertex i ′ for all i ∈ I and an arrow i ′ → i.
Also let v = (vi)i∈I and w = (wi)i∈I be dimension vectors and V =

⊕
i∈I and

W =
⊕

i∈IWi be v, w-dimensional vector spaces, respectively. Consider the space

M := T∗Rep(Q ′, v, w) =
⊕
i→j

edge of Q

Hom(Vi,Vj)⊕ Hom(Vj,Vi)

⊕
⊕
i∈I

Hom(Wi,Vi)⊕ Hom(Vi,Wi)

= Rep(Q, v)⊕ Rep(Qop, v)⊕ HomI(W,V)⊕ HomI(V ,W)

of representations of the union of Q ′ and (Q ′)op with the vertices identified. This
has a natural action of GLv =

∏
i∈IGLvi

.

The Nakajima variety will be a hyperkähler reduction of this vector space, which
is given the natural symplectic form of a cotangent bundle. The moment map is
defined by

µ : M → glv (x, y, i, j) 7→
∑
e

[xe,ye] + i ◦ j,

where gln is identified with its dual by x 7→ Tr(x ·−).

It remains to define stability conditions. Let θ ∈ ZI. (Often, we will choose
θ+ = (1, . . . , 1) or θ− = (−1, . . . ,−1).) The following definition of stability is not
the standard definition of stability as defined for quiver representations, but is
equivalent and most useful in practice. It also coincides with GIT stability by work
of King.

Definition 2.1. A quadruple (x, y, i, j) ∈ µ−1(λ) is θ-semistable if the following
condition holds: If S =

⊕
i∈I Si ⊆ V is stable under x and y, we have

Si ⊂ ker ji ∀i ∈ I =⇒ θ · (dimI S) ⩽ 0;

Si ⊃ Im ii ∀i ∈ I =⇒ θ · (dimI S) ⩽ θ · v.

Finally, we define the Nakajima quiver variety

Mλ,θ(v, w) := µ−1(λ)�θ GLv.

If we omit λ, this means that we take λ = 0. For a generic λ, θ, there are no strictly
semistable points, and there are no nontrivial finite stabilizers, so Mλ,θ(v, w) is a
holomorphic symplectic variety.

Example 2.2. Let Q be the quiver with one vertex and no edges and let θ > 0. Set
v = r and w = n. Then we see that

µ(i, j) = i ◦ j.

In addition, a point (i, j) is semistable if and only if ker j = 0, so we see that

µ−1(0)ss = {(j : Cr ↪→ Cn, i : Cn/ Im(j) → Cr)},

and so quotienting out by GLr, we see that Mθ+(r,n) = T∗Gr(r,n). If we choose
the other stability condition, then (i, j) is semistable if and only if i is surjective, so

µ−1(0)ss = {(i : Cn ↠ Cr, j : Cr → ker i)},
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and again we have Mθ−(r,n) = T∗Gr(r,n).

Example 2.3. Let Q be the quiver with one vertex and one edge. Let v = n and
w = 1 and choose θ = −1. Then i ◦ j is a rank 1 operator, so we see that in µ−1(0),

⟨i, j⟩ = Tr(i ◦ j) = −Tr([x,y]) = 0

and thus [x,y] is a nilpotent rank 1 operator. Then by some linear algebra magic,
we can choose a basis of Cn such that x,y are both upper-triangular. Now in this
upper triangular form, we have a morphism

M0(n, 1) → C2n/Sn (x,y, i, j) 7→ (eigenvalues of x,y),

and in fact this is an isomorphism.

Now adding in the stability condition, we see that i must be a cyclic vector for x
and y. But then we know ⟨j,ai⟩ = Tr(a ◦ i ◦ j) = −Tr(a ◦ [x,y]) = 0, so j = 0 and
thus [x,y] = 0. Therefore,

µ−1(0)ss = {(x,y, i, j) | [x,y] = 0, j = 0, i is cyclic for x,y}.

Taking the quotient by GLn, we see that Mθ−(n, 1) = (C2)[n] is the Hilbert scheme
of n points on C2 and the natural map Mθ−(n, 1) → M0(n, 1) is the Hilbert-Chow
morphism.

3. Kac-Moody Lie algebras

Let C = (aij) be a matrix such that aii = 2, aij ⩽ 0, and aij = 0 if and only if
aji = 0. Then define the Lie algebra g̃ by

g̃ = ⟨ei, fi,hi⟩

/ [ei, fj] = δijhi

[hj, fj] = −aijfj

[hi, ei] = aijej

 .

Then the Kac-Moody algebra g is defined to be the quotient of g̃ by the maximal
submodules in ñ+ and ñ−. In the case where C is symmetrizable (for example for
semisimple Lie algebras), then the maximal submodules in ñ± are generated by
the Chevalley-Serre relations

ad(ei)1−aijej = ad(fi)1−aijfj = 0 for all i, j.

Note that for every i, we have a copy of sl2 given by sli2 = ⟨ei,hi, fi⟩.

Definition 3.1. A g-module M is integrable if for every i, M decomposes as a sum
of finite-dimensional sli2-modules.

For our purposes (where g is associated to a quiver with no loops), we will modify
g by replacing the root lattice in the Cartan decomposition with the weight lattice
(still having [h, ei] = ⟨h,αi⟩ ei and [h, fj] = −

〈
h,αj

〉
fj). However, this point is

not essential for our discussion.
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4. Borel-Moore homology

We will let H∗(X) denote the Borel-Moore homology of a space X. This is defined
by H∗(X) := H∗(M,M \ X), where X ↪→ M is any embedding into a smooth
manifold, and is independent of the choice of M. This has an advantage over
ordinary homology in that even noncompact manifolds have fundamental classes.
For any proper map p : X → Y, there is a pushforward p∗. There is also a cap
product ∩ : Hi(X)×Hj(Y) → Hi+j−dimM(X), which does depend on the ambient
smooth manifold M.

If M1,M2,M3 are smooth manifolds, Z12 ⊂ M1 ×M2, Z23 ⊂ M2 ×M3, and
p13 : (p

−1
12 Z12)∩ (p−1

23 Z23) → M1 ×M3 is proper, define

Z12 ◦Z13 := p13((p
−1
12 Z12)∩ (p−1

23 Z23)).

Then the convolution product is defined by

∗ := p13∗((−⊠ [M3])∩ ([M1]⊠−)) : Hi(Z12)×Hj(Z23) → Hi+j−dimM2(Z12 ◦Z23).

5. Constructing representations of Kac-Moody Lie algebras

From now on, let Q be a quiver with no loops (including loops containing more
than one edge) and g = gQ be the Kac-Moody Lie algebra produced from the
Cartan matrix CQ = 2Id−AQ, where AQ is the adjacency matrix of the underlying
undirected graph of Q. We will denote the generators ei,hi, fi for i ∈ I, the
simple roots by αi, and the corresponding fundamental weights by ϖi. We will
also make the universal choice of θ = θ+ and write M(v, w) = Mθ+(v, w) and
M(v, w) = M0(v, w) for the affine quotient.

Consider the natural morphism π : M(v, w) → M(v, w), which is projective. Define
the subscheme

Λ(v, w) := π−1(M(v,w)C×
)red,

where the action of C× on M = T∗Rep(Q ′, v, w) by scaling the cotangent directions.
This action preserves µ−1(0) and in fact descends to M(v, w). In fact, in our case
where Q has no loops, M(v, w)C×

= {0}, so Λ(v, w) = π−1(0).

Theorem 5.1. Every irreducible component of Λ(v, w) is a Lagrangian subvariety of Q.

Recall that a Lagrangian subvariety L of a symplectic variety X if for any smooth
point x ∈ L, TxL ⊂ TxX is a maximal isotropic subspace with respect to the
symplectic form ωX. In addition, the irreducible components of Λ(v, w) are the
closures of attracting loci of components Fs of M(v, w)C×

, which are defined by

Attr(Fs) =
{
z ∈ M(v, w) | lim

t→∞ t(z) ∈ Fs

}
.

These attracting loci play an important role also in the work of Okounkov and
collaborators.
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Now, for v, v ′ ∈ ZI, we will define a Steinberg variety Z(v, v ′, w) ⊂ M(v, w)×
M(v ′, w) as the fiber product in the following diagram:

Z(v, v ′, w) M(v ′, w) M(v ′, w)

M(v, w) M(v, w) M(v + v ′, w).

π

π

All irreducible components of Z(v, v ′, w) are half-dimensional in our case, and
good components are Lagrangian subvarieties. Also, if d = dimC(M(v, w)) +
dimC(M(v ′, w)), we will define a new grading on Borel-Moore homology by

H[i](Z(v, v ′, w)) := Hd−i(Z(v, v ′, w)).

Now we may introduce the following schemes with infinitely many components:

M(w) :=
⊔

v∈ZI

M(v, w), M(w) :=
⊔

v∈ZI

M(v, w), Z(w) :=
⊔

(v,v ′)

Z(v, v ′, w).

Also, define the algebra

Hw =
⊕
m⩾0

 ∏
v,v ′⩾0

|v−v ′|⩽m

H[0](Z(v, v ′, w))


and the vector space

Lw :=
⊕

v∈ZI

Htop(Λ(v, w)).

Theorem 5.2 (Nakajima). There is a natural algebra homomorphism Ψ : Ũg → Hw such
that the induced action on Lw makes Lw a simple integrable g-module with highest weight∑

i∈Iwi ·ϖi.

This action is defined in the following way. Let i ∈ I. Then define

Zi(v, w) :=

{
(ρ, ρ ′) | ρ

framed
⊂ ρ ′

}
⊂ M(v, w)×M(v + ei, w).

This is an irreducible component of Z(v, v ′, w). Thus we have operators

Fi(v, w) := [Zi(v, w)] ∗−: Htop(Λ(v, w)) → Htop(Λ(v + ei, w))

Ei(v, w) := [Zi(v, w)] ∗−: Htop(Λ(v + ei, w)) → Htop(Λ(v, w))

Finally, we define the following operators:

fi =
∑

v
Fi(v, w);

ei =
∑

v
(−1)dimC(M(v+ei,w)−dimC(M(v,w)))Ei(v, w);

hi =
∑

v

wi −
∑
j

aijvj

idHtop(Λ(v,w)).
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