Bell's theorem and its experimental tests aim to demonstrate that quantum mechanics cannot be explained

by local hidden variable theories, which would allow outcomes to be predetermined based on hidden
information

6.5 Tsirelson’s inequality
The commutator measures the degree to which two operators fail to commute, i.e., the degree to which
the order of application of these operators matters. The norm of an operator (or a matrix) I1Al. 1Al is a
numerical value that represents the "size" or "length" of the operator.
IITA_1,A 2] or| [B_1, B_2] | refers to the norm of the commutator of two operators (or matrices)
IIfA_1, A 2]]| or || [B_1, B_2]]||, respectively. Here these are bounded by 2.

In classical probability theory, the (absolute value of the) average value of the CHSH

quantity

o — Al(Bl — Bg) + AQ(Bl -+ Bg)
is bounded by 2, and this bound can be attained.
In quantum theory, the same value is bounded by 24/2, and this bound can also be

attained.

Classical Probability Theory

-  Both pairs (A_1and A 2) and (B_1 and B _2) have 4 possible outcomes where A kand B k (k=
1, 2) takes the values of +1 or -1 depending on the observable
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One may ask if |(§)| = 24/2 is the maximal violation of the CHSH inequality, and the answer is
“yes, it is": quantum correlations always satisfy the bound |(S)| < 2+/2. This is because, no matter
which state |1) we pick, the expected value (S) = (2/|S|9) cannot exceed the largest eigenvalue
of S, and we can put an upper bound on the largest eigenvalues of S. To start with, taking the
largest eigenvalue (in absolute value) of a Hermitian matrix M, which we denote by || M|, gives a
matrix norm, i.e. it has the following properties:

M@ N| = [|MI[[|N]|
|MN|| < [[M]||V]
M + N|| < [|M]| +[|V]]

Quantum Theory

Given that |Ax|| = ||Bk|| =1 (for k = 1,2), it is easy to use these properties to show that
I|S]| < 4, but thisis a much weaker bound than we want. However, one can show that

§? =4(1®1) + (A1, 43] ® By, B

Now, the norms of the commutators ||[4:, As]|| and |[B:, Bs]|| are bounded by 2, and

|S2|| = || S||%. All together, this gives
15%) < 8
— |8 <2v3
= |(S)| < 2v2

Thisresultis known as the Tsirelson inequality.
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6.6 Quantum randomness

The experimental violations of the CHSH inequality have shown us that there are situations in
which the measurement outcomes are truly unknown the instant before the measurement is
made, and so the answer must be “chosen” randomly. We can make use of this randomness is a
number of different ways, the most obvious example of which being a random number generator.

Indeed, we have already met one suitable implementation:

0) H

The state before measurement is (|0) + [1))/4/2, so the two possible outcomes occur with equal

probability. This is a truly random number generator, not like the pseudorandom one that is used if

you ask your computer for some random data.



Starting from an initial seed of private randomness (completely unknown to any other party),
randomness expansion is the process of extending this to a larger amount of randomness that
remains completely private.

Using the idea of randomness expansion, let's assume that they start with some shared random
private seed: some m-bit string that only they know. They start by generating n of these putative
singlet states, and publicly decide on some value 0 < p < 1. With this, they randomly select [pn |
of the pairs to perform a CHSH test on. Each test requires two random bits (to determine Alice and
Bob’s choice of measurement), so in total we will need the length m of their shared random private
seed be roughly

m ~ 2pn — pnlog, p — n(1 — p)log,(1 — p)

where the log terms are approximately how many bits are required to randomly choose the subset
of pairs to test.
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6.7 Loopholes in Bell tests

To test the idea of hidden variables we introduced some assumptions. Any test that does not satisfy one or
more of these assumptions is said to have a loophole.

Detector efficiency loophole: When we make a measurement with a real-life device, in practice it
doesn’t always work — maybe it just fails to notice a photon flying past. Each detector has a parameter #
known as its efficiency. 7 is the probability that the measurement succeeds. For testing fundamental
physics, it seems reasonable to assume that the successful measurements are a fair sample of what’s really
going on. But if there’s an adversary, they might substitute our detectors for completely perfect one, and
then deliberately choose to fake a failure whenever their eavesdropping attempts fail. This aims to
highlight how dependencies on detector efficiency could theoretically be exploited to manipulate
experimental outcomes.

Locality Loophole: if Alice and Bob are physical at distance L from each other, then their random
choices of measurement setting, followed by their corresponding carrying out of the measurement, and
receipt of the answers, should all be accomplished within a time approximately L/c of each other, wherec
is the speed of light. If Alice and Bob are not far enough away from each other, then they are said to be
within each other’s locality, and so this is known as the locality loophole.

Free-will loophole: The final important assumption that we will mention here involves the availability of
true randomness, and emphasises the importance of randomness expansion. It asserts that Alice and Bob
must be able to choose their measurement settings randomly. This freedom to make their own choices is glibly
referred to as them having “free will”, and so this is known as the free-will loophole. Resolving the locality
loophole puts extremely tight constraints on how quickly choices must be made, to the extent that Alice and
Bob cannot make those choices manually — they need to use random number generators. The idea of "free
will" here is a shorthand for saying that the choices are made randomly and are not influenced by any
factors that could also be influencing the measurement outcomes.

The goal to close these loopholes is to make it extremely unlikely that any hidden variables could
influence both the choice of measurement settings and the outcomes simultaneously, thus maintaining the
integrity of the experiment.






