
Blue ⇒ Write on board

Introduction
Hello, my name is Peri Kay. I am a senior math major and I will be discussing the
second half of chapter 1 regarding sections 1.6 through 1.10. I want to highlight
what the goal of our book is: “To help an eager reader understand what quantum
information science is all about, and for them to realize which facets of it they
would like to study in more detail”. So what I will do today is elaborate more on
the introduction that Liz gave, so we can have an even better understanding and a
better foundation of what we will be learning about throughout the semester.

Here are the topics for each section which I’ll check off as we go:
1.6: Qubits, Gates, and Circuits
1.7: Quantum Decoherence
1.8: Types of Computation
1.9: Computational Complexity
1.10: Outlook

1.6 Qubits, Gates, and Circuits
Def (Quantum Entities): microscopic particles or systems that exhibit
quantum behavior, governed by the principles of quantum mechanics.

To break that down even further:
● really tiny building blocks–quantum entities – follow quantum mechanics
● can be in multiple states at once– like a magical coin spinning in the air

instead of just showing heads or tails – superposition

Many different quantum entities, such as atoms, trapped ions, molecules, and
nuclear spins, exhibit quantum interference by leveraging two pre-selected basis
states, denoted as ∣0⟩ and ∣1⟩. These entities, collectively referred to as quantum
bits or =qubits, serve as the building blocks for implementing basic quantum
interference. Note: delving into the specifics of each technology, such as

understanding nuclear spin, is not necessary for grasping the fundamentals of
quantum theory.

To simplify our 1.6 discussion, we'll focus on representing the path qubits take
graphically through circuit diagrams.

These diagrams are read from left to right, where the horizontal line symbolizes a
quantum wire taking a qubit through quantum operations.

The boxes or circles along the wire represent elementary quantum operations
known as quantum gates.

So far we kind of understand the structure of the diagram, but now we can look at
it more closely and understand what each piece really means. We know the qubit is
a tiny quantum entity, which then glides along the quantum wire and passes
through this H in a box, which represents the first gate in the diagram. The H gates
are called Hadamard Gates, which we can think of as resonant interaction. –
Resonant interaction in physics: pushing swing example

The Hadamard Gates represent a matrix H s.t.

When a qubit passes through a Hadamard gate, it undergoes a linear transformation
that puts it into a superposition of its basis states. In quantum mechanics, a qubit in
superposition can exist in a combination of its basis states. For example, if a qubit

is in the |0⟩ state (like a coin in heads) and undergoes a transformation, it can be in
a superposition of |0⟩ and |1⟩ (like heads and tails) simultaneously.

The other gate that we see is “phi” above a circle, which is called a phase gate,
which we can think of as a dispersive interaction – changing the timing or
alignment of different aspects of a quantum system. For example, a phase gate in
quantum computing introduces a dispersive interaction by altering the phase of the
qubit state.

The representation of this phase gate is:

where phi is a phase angle. This matrix introduces a phase shift to the quantum
state.

Where the horizontal line (the quantum wire) stops is where we can identify the
output qubits of the diagram. When we multiply the three matrices H, P of phi, and
H again in that left to right order, our result will be an output matrix:

which mathematically describes the entire action of the whole circuit, depending
on the basis state of the input qubit.

I want to explain it in a way that might make more sense.

-Cooking recipe example: Quantum recipe represented by a circuit diagram. On the
left side of our quantum recipe, we have the input qubits. Think of them like the
ingredients you start with.
On the right side, we get the output qubits. This is like the final dish after following
the recipe. In the middle, there are three special matrices (mathematical tools)
denoted as H and P of phi. These matrices perform certain actions on the qubits as
they pass through the quantum recipe.
The combined action of these matrices, denoted as H Pofphi H, tells us how our
ingredients, or the input state vectors, transform into the final dish, or the output
state vectors.

The first row of our final matrix tells us what the output would look like if we
started with 0 as our input state. The second row tells us what the output would
look like if we started with 1 as our input state.

So the output matrix describes the action of the whole circuit, telling us that it
maps input state vectors to output state vectors as follows:

1.7 Quantum Decoherence

As you might have noticed from 1.6, quantum theory is closely related to physics
and physical phenomena. But believe it or not, we don’t actually need quantum
theory to understand all physical phenomena, and instead we can use plain old
probability to describe a lot of it.

Quantum theory works well when the object in question is completely isolated
from its surroundings.
Example: consider a single atom in deep space, far away from any external
influences – as soon as the atom interacts with its surroundings, the quantum
behavior may be affected. This is where simpler models like classical probability
might be more suitable to describe the system's behavior, as the isolation necessary
for using quantum theory disappears.

This is where quantum decoherence comes into play.

Def: Quantum decoherence is a phenomenon in quantum mechanics where the
coherence and superposition of quantum states break down due to
interactions with the external environment.

– the process by which a quantum system loses its special quantum properties and
starts behaving more classically when it interacts with its surroundings.

Our reference gives an example of an isolated system composed of a quantum
computer and its environment. Suppose the computer is prepared in some input
state I and produces an output O.

These are our two given scenarios:

1. The computer is isolated and quantum info does not affect the
environment.

In this case, the computer is working independently of the environment so the
environment doesn’t hold any record of how the computer reached its output. So,
we take the sum of the amplitudes for each of the two different paths the computer
could take to get from its input I to its output O. So p = the absolute value of z1 +
z2 squared. The squared magnitude of the sum is taken to obtain the probability
(p). This is a common practice in quantum mechanics to ensure that the probability
is non-negative. The probability p represents the likelihood of observing a specific
outcome corresponding to the quantum system.

Our second scenario is

2. Quantum computation affects the environment.

Now, the environment remembers and keeps record of how the computer got to its
output O, creating two final states for the whole system , which we call O₁ and O₂.
To figure out the overall likelihood, we just add up the probabilities for each of
these two different paths the computation could take.

The sum of the squared magnitudes gives the total probability (p). This is a
fundamental principle in quantum mechanics known as the Born Rule discovered
by Max Born. It states that the probability of a system being in a particular state is
the sum of the probabilities associated with each possible path or state.

In quantum computation, when the environment is involved, there are two possible
outcomes: O₁ and O₂. O₁ is when the computer shows output O, and the
environment knows path z_1 was taken; O₂ is when the computer shows output O,
and the environment knows path 2 was taken. No interference occurs, so the
probabilities for O₁ and O₂ are given by p₁ = |z₁|² and p₂ = |z₂|². The overall
probability of the computer showing output O is the sum of these probabilities: p =
p₁ + p₂, which is the decoherence formula when decoherence is not present.

When it is present, it changes to

Here, v = visibility is a parameter ranging from 0 to 1.

v = 0 ⇒ total decoherence

meaning that the environment distinguishes the two paths, resulting in no
interference

v = 1 ⇒ no decoherence

meaning that the environment cannot distinguish between paths, leading to full
interference.

And any values in between represent varying degrees of partial decoherence.

1.8 Types of Computation
We already know that a qubit (or a quantum bit) has two possible logical states, 0
and 1.
1 qubit ⇒ 2^1 = 2
If we’re looking at 2 qubits, then the system of those 2 qubits has four possible
states 00, 01, 10, or 11.
2 qubits ⇒ 2^2 = 4
In general, if we have n qubits, the system will have 2^n possible states.
n qubits ⇒ 2^n possible states
When we guide and control how qubits interact with each other, we're essentially
carrying out computation.

This chapter discusses three types of computation, used for different problems or
tasks; Deterministic Computation, Probabilistic Computation, and Quantum
Computation.

Deterministic cooking example: same recipe ⇒ same cookies

Deterministic algorithm: the same input (like the ingredients for cookies), it will
always produce the same output (like the batch of cookies). The outcome is
entirely predictable, and there's no randomness involved.

In practical terms, think of a calculator as an example of deterministic
computation. If you enter the same numbers and perform the same operations,
you'll always get the same result. The calculator follows a set of rules or
instructions in a predictable way.

It's also the most common form of computation that computer scientists study.

Deterministic: same input ⇒ same output

The next type of computation is probabalistic. When we say a process or algorithm
is probabilistic, it means that the outcome is not fixed or certain. It involves a bit of
randomness or uncertainty, like the friend who makes the cookies trying out new
things in the kitchen.

Another example: program that makes predictions about the weather. In a
probabilistic model, it might not give you a definite "it will rain tomorrow" or "it
won't rain." Instead, it might say, "There's a 70% chance of rain."

So, probabilistic computation is about dealing with uncertainties and expressing
outcomes in terms of probabilities rather than absolute certainties.

Probabilistic: outcomes = probabilities

The last type of computation discussed is quantum computation, which involves
amplifying the probability that we will see one particular output or outputs that
correspond to the correct answer in a problem. So in this case,we add probability
amplitudes.

Quantum computation puzzle example: each piece represents a different way a
computer can process information.

When dealing with quantum computation, the likelihood of reaching a specific
final state is determined by adding up the amplitudes along all distinct paths that
connect the initial state to that particular outcome. This is represented by the
equation here. (point to cos equation)

Understanding different types of computation is important because they each cater
to various needs, challenges, and applications. Each type of computation has its
strengths and weaknesses, which makes them suitable for different tasks.

1.9 Computational Complexity
Now we will discuss the big question that will hopefully motivate us to stay
focused throughout the rest of the semester:Why is quantum info processing
interesting? In other words, as quoted by our reference, “Is there a compelling
reason why we should care about quantum computation?” In general, for physicists
they can play with quantum phenomena, build gadgets, experiment with quantum

teleportation and quantum cryptography, and at some point, will hopefully be able
to build quantum computers.

Computer scientists find quantum computation interesting because it redefines
computational complexity classes. To go deeper into this, computer scientists
classify problems as either easy or hard, like we all naturally do. But what
computer scientists specifically do in this process of classification to quantify
problems into the two classes is that they look at an algorithm for a specific
problem. We’ve all heard the word algorithm before, I assume, but in this case, to
address a specific problem, computers, whether classical or quantum, adhere to a
defined set of instructions known as an algorithm. Computer scientists apply an
algorithm for whatever problem they’re working on and try to solve it by
increasing the size of the input.

They evaluate the efficiency of an algorithm based on how quickly its execution
time increases with larger inputs.

An algorithm is considered efficient if the number of elementary operations
required for its execution doesn't grow faster than a polynomial function of the
input size. The input size is measured by the total number of binary digits (bits)
needed to represent the input. For instance, when using a basic multiplication

algorithm taught in elementary school, the time to multiply two n-digit numbers
increases at a rate proportional to the square of the number of digits (n^2). On the
other hand, the fastest-known method for the reverse operation, factoring an n-digit
integer into prime numbers, takes an exponentially growing amount of time,
roughly 2^n, which is considered inefficient, as we can see by the graph.

Good ⇒ Execution time doesn’t grow too fast
Bad ⇒ Exponential function of the size of the input…Computer scientists are
not happy in this case because they know how to solve the problem, but it's not an
efficient way to solve it

A remark from section 1.11 reads, “polynomial is good and exponential is bad”. It
reads:

To further separate easy and difficult, computer scientists draw complexity classes
like this

All problems that we can solve on a deterministic classical computer in polynomial
time is a class called “p”

That class is a subset of a big class of problems that require exponential time to
solve them.

And we talked about probabilistic computation in the previous section, so what if
we want to use that? When we use randomness as an extra resource for
computation, computer scientists believe that maybe the class of problems that can
be solved in polynomial time on a probabilistic computer is slightly larger,

Which is not proved yet but for the sake of this lesson, we can ignore that and this
class is called BPP, which stands for bounded-error probabilistic polynomial
time.

BPP includes P because deterministic computation (P) is a type of probabilistic
computation where we don't use randomness. In probabilistic (or randomized)
computation, if we run the same task many times, we might not get the exact
answer every time. However, it's considered useful as long as there's a high chance
of getting the correct answer.

What we’re more specifically interested in is a larger class of problems that
quantum computers can solve in polynomial time, which we call BQP

Which stands for bounded-error quantum polynomial time.

Because a quantum computer can effortlessly create random bits and imitate a
probabilistic classical computer, it's clear that the category BQP includes the class
BPP (which, in turn, includes the class P). There are problems in BQP such as
factoring large integers or decomposing a large number into prime factors, which
we saw was difficult for any classical computations, but this is why computer
scientists find quantum computing so interesting is because in BQP, with a
quantum computer, computer scientists can do it. There are problems that are
known to be in BQP that are not in BPP or P. Building a faster and faster computer
doesn’t make a difficult problem easier because whatever problem progresses
exponentially in terms of difficulty will still progress exponentially no matter how
fast the computer is.

In order to make a difficult problem easy, the only way is to be creative and to
think of new forms of algorithms or ways to use external tools to solve the
problem. That’s what computer science is all about. So in conclusion of this
chapter, quantum information is very technological and looks very technological
but actually requires a lot of creativity.

1.10 Outlook
1960s, when scientists began exploring how computers work, they were worried
that the strange rules of quantum mechanics, some of which I just went over, might
limit how accurately computers could represent abstract ideas like logical
operations. BUT quantum mechanics didn't cause as many problems as they feared,
and it even helped solve some issues from classical physics.

Quantum mechanics has a lot of interesting possibilities that can lead to new
technologies and knowledge. Our reference only touches the basics of quantum
computing and focuses on important concepts, not getting into too many technical
details. Although we're not sure when or how we'll have fully working quantum
computers, they're definitely a serious option for the future.

In our current society, quantum theory in computing is already more important than
the older classical ideas. If you're interested in understanding the core principles of

physics, computing, or logic, you should do more research in the field beyond the
text and consider the new perspectives brought by quantum theory. Quantum
theory can be used to explain many questions we have about the universe.

